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Abstract

The aim of this work is to develop some examples of surrogate mod-
eling in a python environment. To give this work a practical applica-
tion, a one-variable shape optimization problem is presented. Given a
ship geometry, its bulb is elonged or shortened and OpenFOAM sim-
ulations are performed to collect a set of data. Here focus is placed
on surrogate techniques rather than on hydrodynamic aspects. Three
different methods are presented: polynomial regression, radial basis
function approach, kriging interpolation. Moreover, best model must
be chosen, so two techniques to do this are presented: Cross-Validation
and Maximum Likelihood Estimation.
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1 Collecting the training data-set

Purpose of this work is find the better bulb configuration in order to re-
duce ship resistance. To simplify the code implementation only longitudinal
deformations are applied to bulb geometry. Geometry considered is a 1:20
scale-model of the real ship (LPP = 4[m]).

Using CAMILO shape morpher, bulb’s nose is displaced forward and
backward. Seven nose displacements are performed:

X = {−0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5} [m] (1)

Then for each of these geometries an OpenFOAM solution is founded.

R = {70.74, 68.88, 67.38, 68.24, 65.67, 64.13, 64.86} [N ] (2)

OpenFoam solution set-up is inspired by Duisburg Test Case interFoam val-
idation case. Case set-up main features are:

• Model scale 1 : 20 : LPP = 4[m]

• Model velocity = 2.301[m/s] (20[knots] real scale)

• T = 0.265[m], α = 0[deg]

• Cells ∼ 800K

• interFoam solver (0-dof, VoF)

• Quasi-steady solution (Local Time Stepping)
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Mesh and dictionaries have been validated doing a comparison with avail-
able experimental data [TESI].

In order to give a better generalization about bulb deformations, a param-
eter described in literature [2] is used. This is called length parameter and
is the protruding length of the bulb LPR (distance between noise and ship
forward point) adimensionalized by the length between perpendicular LPP
(distance between backward and forward points) that is a main parameter
of the ship.

CPR =
LPR
LPP

(3)

Concluding, a data set is collected; this is called training data-set and upon
it surrogate will be constructed.

Figure 1: Representation of training data-set

2 Surrogate: why and what is?

Before dealing with surrogate building methods, it is necessary to explain
what a surrogate is and which advantages it takes.

In this instance, interest is focused on finding the optimal bulb geometry,
that is the one that minimizes hydrodynamic resistance.
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Looking at Figure 1, optimization means finding the ”lower” point. The
problem is that only seven discrete points are known, and each of these
involve hours of computation (11-hour running in parallel on 8 cores). Fur-
thermore it is important to remember that a priori, resistance behaviour
is unknown and, except some physical intuitions, practically unpredictable.
Then using gradient-based methods or genetic algorithms can become heavily
expensive, especially if the starting point is bad defined.

Here advantages of surrogate modeling comes into play.
If behaviour is unknown a first thing to do is exploring the variable design

space, making some observations. This is exactly what have been explained
in the section before.

This step give some insights of the problem. For example, the presence of
two local minimums and that the optimum probably will be around CPR =
0.15.

At this stage different choices can be made. For example, thanks to the
information given by design space exploration, gradient-based and GA can
be used more easily.

Otherwise the entire behavior can be reconstructed, passing from some
discrete points to a continuous function called Surrogate Model (also known
as meta-model or response surface).

This means that minimum research or any other optimization scopes,
won’t be made using an expensive high-fidelity model, but on a surrogate of
it.

In other words, high-fidelity model (i.e. CFD simulation) will be used
only to calculate a certain number of outcomes. Then these values will be
used to built a meta-model (or surrogate) that predicts responses in other
design points.

So, once a surrogate model is built, evaluating the quantity of interest
becomes inexpensive, and any kind of optimization, calibration and investi-
gation can be made.

3 Techniques implemented in Python

There is a wide variety of surrogate building techniques, some have very
different approach.

Their goal is to learn from the training data, that is searching across
the space of conceivable functions f̂ the one that better fits the training
data. The bad news is that this space is infinite, the good one is that the
overwhelming majority of these functions would be practically useless at
predicting responses at new sites. On the manner such nonsensical predictor
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are filtered out lies the variety of surrogate modeling approaches.
The one adopted in this work is to hard-wire the structure of f̂ into the

model selection algorithm and search over the space of its parameters to tune
the approximation to the observations [3].

Hence in each of the following techniques a structure is chosen and its
structural parameters computed to fit the data; after that tuning parameters
are varied to find the more ”likely” surrogate.

In this work only three approaches are presented: polynomial least square
regression, radial basis functions approach and Kriging interpolation.

3.1 Least square Polynomial Regression

f̂(x,m,w) = w0 + w1x+ w2x
2 + ...+ wmx

m =
m∑
i=0

wix
i (4)

This is the structure of a polynomial response curve: polynomial coefficients
w are the structural parameters and polynomial degree m is the tuning pa-
rameter.

Supposing polynomial degree is known, let’s find the polynomial coef-
ficients w. Applying polynomial equation to each training points a linear
system can be constructed as follows:

1 x1 x21 ... xm1
1 x2 x22 ... xm1
... ... ... ... ...
1 xn x2n ... xmn



w1

w2

...
wm

 =


R1

R2

...
Rn

 (5)

Writing in a more concise form:

Φ · w = R (6)

where Φ is called Vandermonde matrix.
Generally, to solve this system a least-squares analysis is employed. This

means finding the vector w∗ that minimizes the residuals ||Φ w−R||. Using
the theory behind least-squares, the more ”likely” estimation of w can be
calculated as:

w = (ΦTΦ)−1ΦTR = Φ+R (7)

Where Φ+ is called Moore-Penrose pseudo-inverse of Φ.
Once coefficients have been determined, surrogate can be plotted.
Unfortunately, in building surrogates, order of the polynomial is usually

unknown a priori. One could point out that the higher polynomials fits well
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Figure 2: Polynomial fitting of different order (1,2,3,4)

the data, and this is true. But in surrogate modeling danger of overfitting
the noise must be kept in mind.

Then another method must be used to tune the polynomial degree m to
best fit the data. Here Leave-One-Out-Cross-Validation is used.

First of all, it is necessary to measure the model accuracy. This can be
done by defining a loss function representing the difference between model
and observations. Obviously to do this other design points, out of the training
data set, need to be used; these are called Test Data.

As previously said, observations could be very expensive and time-consuming,
then have a set of data used only for testing may be not convenient.

A way to overcome this limit is splitting the available data set into q
subsets and building the model without considering one of these; this will be
used later as test data-set.

Rotating the left-out subset, q loss functions can be computed and that
can help finding the better parameters.

This procedure is called ”q-Fold Cross Validation”, when q = n it is called
”Leave-One-Out Cross Validation”. The latter is used in this instance, and
its result are plotted in Figure 3. It seems that the best fitting is the linear
trend.
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Figure 3: Polynomial fitting of different order (1,2,3,4)

3.2 Radial Basis Function Approach

f̂(x) = wTΨ =
nc∑
i=1

wiψ(‖x− ci‖) (8)

This is the structure used by Radial Basis Function approach: the essence is
to represent a continuous smooth function as a combination of simple basis
functions ψi, defined in nc centers ci and with their own weight wi.

There is a wide variety of basis functions, here are some of this:

Linear ψ(r) = r Gaussian ψ(r) = e−r
2/(2σ2)

Cubic ψ(r) = r3 Multiquadric ψ(r) =
√
r2 + σ2

Thin plate spline ψ(r) = r2 log(r) Inverse multiquadric ψ(r) =
1√

r2 + σ2

Functions on the left are fixed basis, while those on the right are paramet-
ric basis. The difference is the presence of σ that could be used as tuning
parameter.
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Now let’s see how to estimate the weights w for a noise-free case.

f̂(xj) =
nc∑
i=1

wiψ(‖xj − ci‖) = yj , j = 1, ..., n (9)

Herein lies the beauty of radial basis function approximation [3]. The above
equation is a linear system in term of weights wi and if there is an RBF
center for each training data (n = nc) it has an unique solution. Even an
highly non-linear response can be modeled by solving a linear system:

w = G−1R (10)

where G is called Gram matrix.

Figure 4: Radial basis function interpolation with linear, cubic or gaussian
(σ2 = 0.05) basis

There is a fundamental difference between this approach and the previ-
ous: interpolation includes training observations in the surrogate and predict
others from these, regression try to learn information from such points and
predict a general behavior. This represents an important limit of interpola-
tion techniques when data are corrupted by noise. However there are some
tricks that can help facing the noise.
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For example, as suggested by Forrester et al. [3], it is possible to intro-
duce an added model flexibility in the form of the regularization parameter
λ (Poggio & Girosi, 1990). This allow surrogate not to pass through the
training points. Now weights are computed by solving:

w = (G+ λI)−1R (11)

Also λ is an unknown parameter, ideally related to noise variance, and can
be fixed or estimated.

Figure 5: Radial basis function interpolation with gaussian basis (σ2 = 0.05)
and added model flexibility (λ = 0.005)

3.3 Kriging Interpolation

f̂(x) = t(x) + ε(x) (12)

Kriging surrogate is the sum of a trend function t(x) and a gaussian
process error model ε(x).

As suggested by ”Dakota v6.5 Theory Manual” building a Kriging model
involves mainly three steps:

• choice of a trend function
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• choice of a correlation (kernel) function

• estimation of correlation parameters

Trend function could be a known costant (simple kriging), a general
polynomial obtained with least square regression (universal kriging) or an
unknown constant value (ordinary kriging).

As in many other Gaussian processes, a Bayesian approach is used, so
observed responses will be viewed as if they are from a stochastic process.
[3].

Under this assumption, each response can be defined by its expected value
and covariance function.

E(R(x)) = fT (x) · β (13)

Cov(R(x), R(x∗)) = λ · kernel(x, x∗|θ) (14)

where in the first one fT (x) are trend function basis and β their weights; in
the second one x∗ is a point outside the training data-set, λ is the process
variance, and θ is the correlation function parameter.

Collecting all responses, an observed ”random” vector is defined:

R = {R(x1), ... , R(xn)} (15)

By definition, the joint distribution of R satisfies [4]:

R ∼ Nn

(
t(x), λK

)
(16)

where K is the n× n matrix of correlations between training points (kernel
function applied between all training points).

Assuming to know trend and kernel functions parameters it is possible to
compute conditional expected value and conditional variance of the process
at an untested location x∗:

E(R(x∗)|R(x)) = fT (x∗)β + kT∗K
−1(R− F β) (17)

V ar(R(x∗)|R) = λ
(
1− kT∗K−1k∗

)
(18)

where k∗ is the vector of correlations between untested point and training
points, and F is the n × q matrix of all q trend basis functions at training
points.

In this work the squared exponential is chosen as correlation function:

kernel(x, x∗|θ) = e−θ(x−x
∗)2 (19)
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As can be seen by its structure, this function correlates the outputs de-
pending on the distance between inputs: very close inputs are strong corre-
lated (∼ 1), while distant inputs are weak correlated (∼ 0).

This correlation can be tuned by varying the parameter θ: augmenting
its value will enhance correlation, zeroing it will make outputs independent
between each other. Here, θ is a scalar because only one design variable is
considered; if for example also deformations in z direction are considered,
two different θ can be defined.

Another parameter that could be used for tuning is the exponent; it could
be varied in range [0, 2] [4], but not to complicate the implementation this
step has been avoided.

In this work only Simple Kriging and Ordinary Kriging are presented. A
result of Simple approach is presented Figure 6.

Figure 6: Simple Kriging interpolation with fixed constant trend function
(t(x) = 68) and θ = 10

Curve shown in figure seems to reasonably fits the data, but it is unknown
if it fits ”best” than others. Then a criterion to estimate how ”likely” is the
surrogate is required, in order to estimate kriging parameters: trend function
coefficients β and tuning parameter θ.
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3.3.1 Tuning

Different criteria can be used to estimate parameters, but in this context
only one them is presented: Maximum Likelihood Estimation.

The aim is to find the most ”likely” multivariate normal distribution that
fits the training data. Having parametrized mean and covariance functions,
optimization is reduced to their tuning parameters β and θ [4].

Choosing a polynomial degree, a polynomial trend function can be found
using a least-squares analysis as in the previous section. Also in this case
Leave-One-Out-Cross-Validation could have been used to find the order, but
not to add complexity, it has been avoided and a zero-order has been choosed.

Now only θ remains to be computed.
To discriminate which is the optimal value, an measure of how ”likely” is

the surrogate need to be introduced.
This can be accomplished by the likelihood function, that is the already

presented equation (16). Making the logarithm:

log f(R | X,λ, θ) = −n
2

log 2π − 1

2
log(λn|K| − 1

2λ
(R− F β)TK−1(R− F β)

(20)
taking the negative and neglecting terms that don’t influence optimization:

NLL ∝ m log λ+ log |K|+ 1

λ
(R− F β)TK−1(R− F β) (21)

Using properties of Negative Log Likelihood NLL gradients, it is possible
to calculate an optimum λ for each iteration over θ . Hence the problem
reduces to find θ that minimizes NLL.

Effect of θ can be seen in Figure 3.3.1, where four different surrogates are
plotted (θ = 101, 102, 103, 104).

As indicated by NLL diagram (Figure 7) most ”likely” surrogates are for
θ ∼ 103. Then case θ = 103 will be used in the following for bulb shape
optimization.

4 Conclusions

4.1 Comparison between methods

Since the practical purpose is to find the minimum, the best surrogate must
be choosed. At first glance it can be seen that, even if they give a ”clear”
representation, first order polynomial (green curve) and Gaussian radial basis
function with added flexibility (cyan curve) don’t have any minimum.
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Figure 7: Negative Likelihood versus θ parameter in Ordinary Kriging inter-
polation (unknown constant trend function)

Hence remains the choice between 4-order polynomial, Gaussian RBF and
Ordinary Kriging.

To help in this other two cases are computed near the global minimum:
0.35[m] and 0.45[m] elongations.

From this validation, best fitting surrogate seems to be the Gaussian
radial basis function, but also Ordinary Kriging catch well the behaviour.

Since difference in Resistance value are neglectable one the two model
can be selected (It was expected that have similar beahvior since Kriging is
a ”more sophisticated” version o Gaussian RBF).

A flaw of Gaussian RBF is the presence of two peaks near the edge of
the design space. Probably these are non-physical and are caused by its
mathematical definition.

4.2 Physical Intuitions

Some physical considerations can be made around results obtained.
First one is about hydrodynamic.
The decreasing behavior of ship resistance with bulb elongation was ex-

pected. In fact the bulb main effect is to modify the pressure field around
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Figure 8: Ordinary Kriging surrogates for four different values of tuning
parameter θ = 101, 102, 103, 104

the hull by negative interfering with hull wave system. Hence a protrusion
makes this resistance, called wave resistance, falling down.

On the other hand, longer bulb means more surface, then more viscous
resistance. This could explain resistance’s rise at the right limit of design
space. To better understand this fact, pressure and viscous forces on the hull
can be split and plotted.

Figure 11 raise an important consideration. While pressure force behaves
as expected, viscous force has a ”strange” behavior.

This trend of viscous force create a ”plateau” that splits the design space
in two minimum regions. One hazardous hypothesis is that this could be
related to wave length since we are talking about interference, but this effect
should have been seen on pressure component. A more realistic version is
that, since an high velocity (20[kn]) is tested, some problems in solution
arise.

The second consideration is about Design.
In fact the minimum found near CPR = 0.15, corresponds to an elongment

of about 0.4[m], that is 10% of ship characteristic length.
The basic hypothesis of fixed ship, that allows to use a quasi-steady
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Figure 9: Comparison between different surrogate building methods.

Figure 10: Validation test with two test points near global minimum
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Figure 11: Effect of bulb elongation on pressure and viscous resistance

solver, becomes too strong to be accepted. Then an optimal solution must
be searched for smaller elongations.

However, more accurate simulations should be done to give application
and reality to these considerations.

As said in the introduction, aim of this work hasn’t been neither the
accurate study of ship’s hydrodynamic, nor the achievement of the optimal
feasible bulb. Rather the main purpose has been to give an example of
how surrogate modeling can easily extrapolate information about physical
behavior from a data set of responses. In this sense surrogate modeling
represents a solid basis for further investigations when dealing with expensive
optimization problem.
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