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Abstract

This project deals with a modal stabilty analysis of a flow inside a vaneless
radial compressor diffuser. The numerical analysis has been performed using
the program pastaAxi3d, developed at Politecnico di Milano under the su-
pervision of Franco Auteri. The analysed geometry is axisymmetric and the
inlet velocity profiles of the basic flow have been taken, for different oper-
ating conditions, from solutions obtained by solving the Reynolds-averaged
Navier-Stokes equations. For all operating conditions, the stationary base
flow, left and right eigenvectors and corresponding eigenvalues have been
computed. In particular, solutions have been obtained for different values of
the azimuthal wave number. It was found that unstable solutions are obtained
above a certain value of the azimuthal wave number. Moreover, a structural
sensitivity analysis has been performed for all unstable eigenvalues found.

1 Introduction

The performance of compressors at low mass-flows is characterized by the oc-
currence of unsteady flow phenomena surge and rotating stall. These instabilities
can cause noise and critical operating conditions with strong dynamical loading
on the blades. Therefore, they cannot be tolerated during compressor operation.
To avoid these phenomena, compressors are operated at higher mass-flow rates
than those prevailing at the critical operating conditions to keep a safety margin to
the stability limit. Limiting of the compressor operating range results in the loss
of high-pressure ratios, which makes this issue an interesting subject to research
(S. Ljevar (2006)). Figure (1) shows the complete geometry of the compressor and
the shaded section represents the axisymmetric portion of the diffuser domain for
this analysis.
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Figure 1: Complete geometry of the compressor with the impeller and the dif-
fuser. The shaded area represents the axisymmetric section of the diffuser taken as
computational domain for this analysis.

2 PastaAxi3d

pastaAxi3d is a program for linear and nonlinear stability analysis written in For-
tran90 (Auteri (2016)). The program is able to compute the steady base flow, direct
and adjoint eigenvectors with the corresponding eigenvalues and the structural sen-
sitivity function. Two compulsory input files are always necessary, irrespective of
the kind of analysis that must be carried out. These files are called program data.in
and problem data.in. The program data.in file controls the execution of the pro-
gram: in this file the requested analysis and the necessary parameters are specified.
In the first section of this file it is possible to choose the analysis type: in this
work it has been used the steady state computation, the eigenvalue computation
and structural sensitivity computation. The file problem data.in contains the con-
trol parameters, such as the Reynolds number and the azimuthal wave number, for
the flow under investigation, the boundary conditions and the forcing specification.

3 Problem formulation

The governing equations of the problem are presented in this section.
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3.1 Navier-Stokes equations

The fluid motion is described by the two-dimensional unsteady incompressible
Navier-Stokes equations{

∂u
∂t + (u · ∇)u− 1

Re∇
2u +∇p = 0

∇ · u = 0
(1)

where u = u(ux, ur, uθ, t). The equations are made dimensionless by choosing
a characteristic length scale X∗that is the width of the channel under investiga-
tion and a reference velocity U∗ =

√
u2
r,max + u2

θ,max, depending on inlet profile

velocity which allow to define the Reynolds number, Re = U∗X∗

ν .

3.2 Linearized equations

The starting point of the linear stability analysis is the linearization of the Navier−Stokes
equations. The velocity and pressure fields are then considered as the linear com-
bination of two fields, u = U + u′ and p = P + p′ which, substituted into the
Navier-Stokes equations, lead to the base flow and the perturbed systems.

3.2.1 Base Flow {
(U · ∇)U− 1

Re∇
2U +∇P = 0

∇ ·U = 0
(2)

The boundary conditions are specified in the program data.in file. Each row corre-
sponds to a side of the domain that is an axialsimmetric channel with a height to
width ratio equal to 6.794. The first three columns correspond to the three compo-
nents of the velocity field while the others represent the no-stress conditions.

Figure 2: Boundary conditions inside the program data.in file

3.2.2 Disturbance equations

After dropping non linear terms, the Navier-Stokes equations for the perturbations
are: {

∂u′

∂t + (U · ∇)u′ + (u′ · ∇)U− 1
Re∇

2u′ +∇p′ = 0

∇ · u′ = 0
(3)
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The adjoint linearized NavierStokes system of equations is obtained from the
direct one by multiplying it by two test functions, v′ and q′, and integrating by
parts. After standard mathematical manipulation, the adjoint linearized Navier-
Stokes equations become Canton (2012-2013):{

∂v′

∂t + (U · ∇)v′ − (∇U) · v′ + 1
Re∇

2v′ +∇q′ = 0

∇ · v′ = 0
(4)

3.2.3 Modal Stability

The objective of this analysis is to describe the instability, the shape of the un-
stable modes and to find out where the instability mechanism is located in the
flow field. Once the base flow has been computed, the second step consists in the
solution of the linearized problem; under the assumption of normal modes, the ve-
locity and pressure perturbations can be written as u′(x, r, θ, t) = e(λt+βθ)û(x, r),
p′(x, r, θ, t) = e(λt+βθ)p̂(x, r); the direct linearized Navier-Stokes equations result
in the following generalized eigenvalue problem in the unknowns λj = λr,j + iλi,j
(λi,j representing the frequency and λr,j the amplification/damping rate of the per-
turbation), ûj and p̂j :{

λjûj + (U · ∇)ûj + (ûj · ∇)U− 1
Re∇

2ûj +∇p̂j = 0

∇ · ûj = 0
(5)

where λj is the eigenvalue and û and p̂ are the eigenfunctions of the direct problem.
To perform the structural sensitivity analysis, the adjoint eigenfunctions are also
needed, therefore the adjoint eigenvalue problem is introduced here. Starting from
the adjoint linearized NavierStokes equations, and repeating the same steps used
for the direct one, the corresponding eigenvalue problem is easily obtained:{

−λjv̂j + (U · ∇)v̂j − (∇U) · v̂j + 1
Re∇

2v̂j +∇q̂j = 0

∇ · v̂j = 0
(6)

where λj is the eigenvalue and v̂ and q̂ are the eigenfuctions of the adjoint problem.

3.2.4 Structural Sensitivity

The region where the instability mechanism acts cannot be identified from the study
of the direct and adjoint eigenfunctions separately. This is because, in general,
there is a large difference in the spatial structure of the direct and adjoint modes.
The aim of this analysis is to investigate in what region of the flow field the wave-
maker is located, more precisely, where in space a modification in the structure of
the problem, represented by a localized velocity feedback, is able to produce the
greatest drift of the least stable eigenvalue. This, indeed, is the core of the instabil-
ity mechanism. After a few manipulations (as described in Canton (2012-2013))
and thanks to the adjoint eigenvalue problem, the conclusion is that the linearized
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system is most sensitive to perturbations represented by a spatially localized feed-
back located in the maximum of the function:

s(x, r) =
|| ˆv(x, r)i|| || ˆu(x, r)i||

|
∫

Ω v̂i · ûi|
(7)

here referred to as structural sensitivity parameter.

4 Case analysis

The case of the vaneless diffuser is presented in this section and figure (3) shows
the computational domain with dimensionless lengths. In the first step we produced
a mesh with a high refinement level at the inlet patch that was able to resolve and
capture the strong gradients of the inlet profiles. The aim of the mesh process was
to have a good mesh and to keep the number of mesh elements limited according
to our computational resource and in order to limit the simulation time; then the
steady base flow was computed and the Reynolds number was gradually increased
from Re = 100 with a small step up to Re = 890 for all the inlet profiles enabling
the restart flag in the program data.in that allows to restart the simulation from the
previous one and facilitating the convergence of the numerical scheme. The upper
limit of the Reynolds number was the maximum that has been reached after that
the simulation diverges probably due to the lack of mesh’s elements and the kind
of discretization for diffusion and convective terms. Figure (4) shows the velocity
magnitude for the different Reynolds number computed. A diffusive behaviour
for the flow at low Reynolds number can be noted and the creation of a fluid core
with diffusive contour as the Reynolds number increases with the tendency to
curve inside the channel. The contour of the core flow can be resolved with greater
accuracy reducing the diffusivity at the boundaries by increasing the elements of
the mesh with additional computational costs.

Figure 3: Computational domain and nondimensional dimensions
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(a) Steady base flow Re = 100 (b) Steady base flow Re = 500

(c) Steady base flow Re = 600 (d) Steady base flow Re = 700
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(e) Steady base flow Re = 750 (f) Steady base flow Re = 800

(g) Steady base flow Re = 850 (h) Steady base flow Re = 870
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(i) Steady base flow Re = 890

Figure 4: Magnitude of velocity for the steady base flow withRe varying from 100
up to 890

Different inlet profiles have been tested in order to take into account of the
effect of the angle of attack in the subsequent stability analysis. The inlet profiles
are presented in figure (5). All these profiles have been extracted at the outlet from a
computation of an industrial centrifugal compressor with a RANS simulation with
scalable wall function for the k−ωSST turbulence model. They are representative
of different operating points of the radial compressor with the dimensionless mass
flow rate varying from 0.66 up to 0.8 at 60700[rpm] (all the mass flow rates have
been divided by a design operating condition). A summary of the different cases
is found in table (1) and the inlet angle was defined from the radial direction as
the α = atan ūθūr with ūr and ūθ representing the mean of the radial and azimuthal
inlet profiles. A better view of the fluid motion inside this channel can be performed
with an analysis of the components of the velocity field as shown in figures (6), (7),
(8). It should be underlined that the depth component takes on a vortex structure
of low intensity, with a different behaviour in the case with the lowest mass flow
with the formation of a vortex in the opposite direction from the other ones. The
radial component also shows a small recirculation zone near to the right boundary
that moves towards the inlet as the mass flow decreases.
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(a) Radial inlet profile

(b) Azimuthal inlet profile

Figure 5: Inlet velocity profiles

Table 1: Mass flux and angle of inlet velocity for the cases analyzed

ṁ/ṁdesign α

0.66 83◦

0.73 80◦

0.8 76.5◦

9



(a) Depth component (b) Azimuthal component (c) Radial component

Figure 6: Velocity component for ṁ/ṁdesign = 0.66

(a) Depth component (b) Azimuthal component (c) Radial component

Figure 7: Velocity component for ṁ/ṁdesign = 0.73
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(a) Depth component (b) Azimuthal component (c) Radial component

Figure 8: Velocity component for ṁ/ṁdesign = 0.8

5 Computing the spectrum

The global stability analyses of this turbulent flow is carried out based on the so
called mean-flow approach as described by Sipp & Lebedev (2007). This approach
simply relies on the linearization of the mass conservation and momentum equa-
tions around the given time-averaged mean flow. Here the base flow has not been
computed with a turbulence model, but only the inlet profile came from a RANS
computation. This is probably the biggest approximation in this work but this
approach can also give a qualitative estimation of the leading frequency of large-
scale organized waves as explained by Carini et al. (2016). Solving the generalized
eigenvalue problem for λ described in eq. (5) it has been computed the spectrum
and any solution û associated with an eigenvalue λ represents a global mode of the
mean flow with a growth rate Re(λ) and angular frequency Im(λ). For this kind
of analysis in PASTA the user has to choose how many eigenvalues to compute
in each run and the point in the complex plane around which they are evalueted.
The output data are the eigenvalues and, possibly, some selected eigenvectors. In
figures (9) and (10) there are two examples of spectra with all eigenvalues being
stable (that means Re(λ < 0)) and at least one eigenvalue with real part > 0
respectively. Comparing the stable and unstable spectra it is clearly apparent the
eigenvalue with the real part larger than zero and for all the cases two different
branches that changes slope as the imaginary part increases.
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Figure 9: Example of stable spectrum with a zoom near the immaginary axis

12



Figure 10: Example of unstable spectrum with a zoom near the immaginary axis

Figure 11 presents the variation of the growth rate and the circular frequency
as a function of the wave number in the azimuthal direction. For all cases the flow
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remains stable when the azimuthal wave number is zero or small. Increasing the
wave number above a certain threshold the flow becomes unstable. This occurs
here for values of 3 <= β <= 5. Moreover, it is shown that all solutions are
unstationary but the frequency remains low O(10−2 − 10−3).

Figure 11: Real and imaginary part of the most unstable eigenvalue for different
operating conditions at Re = 890

Usually it is interesting to plot the eigenvectors associated with the eigenvalues
that are the nearest to the imaginary axis, but in some cases the user may want
to investigate eigenvectors associated with other eigenvalues, to investigate their
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physical significance/meaning. In figures 12-(23) only the most unstable direct
eigenvectors are presented with different wave number in the azimuthal direction.
Analysing the case with ṁ/ṁdesign = 0.8 in figures (12),(13),(14),(15) it is clearly
apparent a 3D vortex shape in the middle of the channel and the depth component
changes direction between β = 4 and β = 5. But for β = 7 there is a beginning of
a double vortex that increases the fluid motion from the hub and shroud walls to the
center of the channel. The successive figures (16), (17), (18), (19) are concerned
with a test with a dimensionless mass flow rate of 0.73 and they shows a similar 3D
vortex structure changing the rotation from clockwise to counterclockwise as the
azimuthal wave number increases. The most interesting case is that one displayed
in figures (20) (21) (22) (23) related to the lowest mass flow rate tested. Here the
instabilty occurs for a high azimuthal wave number with a big vortex that sizes
almost entirely the channel and changes its orientation twice from β = 5 to β = 7.

(a) Magnitude of perturbation
velocity with β = 3

(b) Magnitude of perturbation
velocity with β = 4

(c) Magnitude of perturbation
velocity with β = 5
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(d) Magnitude of perturbation
velocity with β = 6

(e) Magnitude of perturbation
velocity with β = 7

Figure 12: Magnitude of velocity for the most unstable modes with ṁ/ṁdesign =
0.8 and Re = 890

(a) Depth component of pertur-
bation velocity with β = 3

(b) Depth component of pertur-
bation velocity with β = 4

(c) Depth component of pertur-
bation velocity with β = 5
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(d) Depth component of pertur-
bation velocity with β = 6

(e) Depth component of pertur-
bation velocity with β = 7

Figure 13: Depth component of perturbation velocity for the most instable modes
with ṁ/ṁdesign = 0.8 and Re = 890

(a) Radial component of pertur-
bation velocity with β = 3

(b) Radial component of pertur-
bation velocity with β = 4

(c) Radial component of pertur-
bation velocity with β = 5
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(d) Radial component of pertur-
bation velocity with β = 6

(e) Radial component of pertur-
bation velocity with β = 7

Figure 14: Radial component of velocity for the most unstable modes with
ṁ/ṁdesign = 0.8 and Re = 890

(a) Azimuthal component of
perturbation velocity with β = 3

(b) Azimuthal component of
perturbation velocity with β = 4

(c) Azimuthal component of
perturbation velocity with β = 5
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(d) Azimuthal component of
perturbation velocity with β = 6

(e) Azimuthal component of
perturbation velocity with β = 7

Figure 15: Azimuthal component of velocity for the most unstable modes with
ṁ/ṁdesign = 0.8 and Re = 890

(a) Magnitude of perturbation
velocity with β = 4

(b) Magnitude of perturbation
velocity with β = 5

(c) Magnitude of perturbation
velocity with β = 6
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(d) Magnitude of perturbation
velocity with β = 7

Figure 16: Magnitude of velocity for the most unstable modes with ṁ/ṁdesign =
0.73 and Re = 890

(a) Depth component of pertur-
bation velocity with β = 4

(b) Depth component of pertur-
bation velocity with β = 5

(c) Depth component of pertur-
bation velocity with β = 6
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(d) Depth component of pertur-
bation velocity with β = 7

Figure 17: Depth component of velocity for the most instable modes with
ṁ/ṁdesign = 0.73 and Re = 890

(a) Radial component of pertur-
bation velocity with β = 4

(b) Radial component of pertur-
bation velocity with β = 5

(c) Radial component of pertur-
bation velocity with β = 6
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(d) Radial of perturbation veloc-
ity with β = 7

Figure 18: Radial component of velocity for the most unstable modes with
ṁ/ṁdesign = 0.73 and Re = 890

(a) Azimuthal component of
perturbation velocity with β = 4

(b) Azimuthal component of
perturbation velocity with β = 5

(c) Azimuthal component of
perturbation velocity with β = 6
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(d) Azimuthal component of
perturbation velocity with β = 7

Figure 19: Azimuthal component of velocity for the most instable modes with
ṁ/ṁdesign = 0.8 and Re = 890

(a) Magnitude of perturbation
velocity with β = 5

(b) Magnitude of perturbation
velocity with β = 6

(c) Magnitude of perturbation
velocity with β = 7

Figure 20: Magnitude of velocity for the most unstable modes for ṁ/ṁdesign =
0.66 and Re = 890
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(a) Depth component of pertur-
bation velocity with β = 5

(b) Depth component of pertur-
bation velocity with β = 6

(c) Depth component of pertur-
bation velocity with β = 7

Figure 21: Depth component of velocity for the most instable modes with
ṁ/ṁdesign = 0.66 and Re = 890

(a) Radial component of pertur-
bation velocity with β = 5

(b) Radial component of pertur-
bation velocity with β = 6

(c) Radial component of pertur-
bation velocity with β = 7

Figure 22: Radial component of velocity for the most instable modes with
ṁ/ṁdesign = 0.66 and Re = 890
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(a) Azimuthal component of
perturbation velocity with β = 5

(b) Azimuthal component of
perturbation velocity with β = 6

(c) Azimuthal component of
perturbation velocity with β = 7

Figure 23: Azimuthal component of velocity for the most instable eigenvectors
with ṁ/ṁdesign = 0.66 and Re = 890

6 Sensitivity

The sensitivity properties of the leading global mode are then investigated by com-
puting and making use of the properties of the corresponding adjoint mode, v̂,
which is solution of the adjoint eigenvalue problem in eq. (6). The parameter ψ
displayed in figures (24), (26), (25), has the same definition of s recalled from the
equation (7) and represents the structural sensitivity of the flow inside this vaneless
diffuser. The red pitch is always located near the left side of the channel but at
different radial position from almost the beginning till the half of the total height.
In the zones with the highest sensitivity it’s possible to introduce a kind of distur-
bance in the flow field in order to control the instability. The positions of the largest
red zones (high sensitivity) are related to the position of the vortex in the perturbed
fields described in the previous section except the small zones near the outlet in
figures (25), (26) that seem to be a bit unphysical and due to numerical errors with
the boundary conditions.
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(a) Sensitivity analysis of the un-
stable global mode with β = 3

(b) Sensitivity analysis of the
unstable global mode with β =
4

(c) Sensitivity analysis of the un-
stable global mode with β = 5

(d) Sensitivity analysis of the
unstable global mode with β =
6

(e) Sensitivity analysis of the un-
stable global mode with β = 7

Figure 24: Sensitivity analysis of the unstable global mode with ṁ/ṁdesign = 0.8
and Re = 890
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(a) Sensitivity analysis of the un-
stable global mode with β = 4

(b) Sensitivity analysis of the
unstable global mode with β =
5

(c) Sensitivity analysis of the un-
stable global mode with β = 6

(d) Sensitivity analysis of the
unstable global mode with β =
7

Figure 25: Sensitivity analysis of the unstable global mode with ṁ/ṁdesign =
0.73 and Re = 890
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(a) Sensitivity analysis of the un-
stable global mode with β = 5

(b) Sensitivity analysis of the
unstable global mode with β =
6

(c) Sensitivity analysis of the un-
stable global mode with β = 7

Figure 26: Sensitivity analysis of the unstable global mode with ṁ/ṁdesign =
0.66 and Re = 890

References

AUTERI, FRANCO 2016 pastaAxi3d. Politecnico di Milano, Dipartimento di In-
gegneria Aerospaziale.

CANTON, JACOPO 2012-2013 Global linear stability of axisymmetric coaxial jets.
PhD thesis, POLITECNICO DI MILANO Facoltà di Ingegneria Industriale
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