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Abstract

The aim of this work is to provide a linear stability analy-
sis of a real flow evolving over low pressure turbine blade
profile and measured through a PIV system. An eight or-
der polynomial function is adopted to fit the experimen-
tal data in the boundary layer. The resulting base flow is
introduced in the Orr Sommerfeld Squire system. Eigen-
values and eigenvectors of the OSS system for the tempo-
ral problem are determined so that the less stable eigen-
value growth rate is converted into a spatial growth rate
using the Gaster’s transformation. The evolution of the
perturbation growth rate along the streamwise direction is
presented and discussed. The limits of using the Gaster’s
transformation and of considering a perturbations alge-
braic growth mechanism for the present base flow are dis-
cussed.

1 Introduction

The prediction of the boundary layer transition is a key
information for evaluating the aerodynamic efficiency of
low pressure turbine (LPT) blades for aeroengine appli-
cation. An early transition, driven for instance by high
values of the free stream turbulence (FSTI), could avoid
the laminar separation which may occur due to the strong
adverse pressure gradient that affects the latter part of the
suction side.

The linear stability theory represents an useful tool
for studying the evolution of small disturbances in flows
which undergo a transition from laminar to turbulent state.
Indeed, it is expected that whenever the amplitude of such
small disturbances grows the flow is unstable and transi-
tion may occurs. Such unstable disturbances are known
as Tollmien-Schlicting waves and took the name from the
first authors who identified them. One may use the growth
rate of the amplitude of these disturbances to identify the
conditions that lead to the maximum amplification of the
disturbance’s energy and set the onset of transition where

this maximum occurs. This is the principle of the the well
known eN method (see Arnal 1994). The factorN, de-
fined asN(x) = ln(A(x)/A0), is introduced, whereA0 is
the initial amplitude of the disturbance andA(x) is the am-
plitude at a datum streamwise position. Comparison with
experimental transition data (Smith and Gamberoni 1956
for instance) collected for a Blasius boundary layer, had
shown thatN is nearly constant (between 7 and 9) at the
measured transition point. This means that the breakdown
to turbulence occurs when the amplitude of the unstable
Tollmien-Schictling waves becomes 7-9 times larger than
the initial amplitude.

It is argued that theeN method is as simple to use as
hard to be applied to the boundary layers that occur on tur-
bine blades. In this case the free-stream turbulence inten-
sity as well as the pressure gradients affect the transition
process which likely occurs through the by-pass mecha-
nism defined by Morkovin (1969). Modifications of the
eN method were proposed to account for the free-stream
turbulence which acts reducing the value ofN at transi-
tion. Andersson et al (1999) made an attempt at prediction
of bypass transition, due to algebraic mode, by correlating
the transition Reynolds number and the free-stream turbu-
lence level.

In the present work the PIV measured boundary layer
evolving on the rear part of the suction side of a LPT
blade, characterized by strong adverse pressure gradi-
ent, is presented. The velocity profiles that occur in
any streamwise position have been reduced and analyzed
through the linear stability theory by calculating the eigen-
values and eigenvectors of the Orr-Sommerfeld-Squire
operator for the current base flow. The stability proper-
ties of the base flow as function of the streamwise-position
(local Reynolds number and base flow variations) and the
directional wavenumbers are presented and discussed.
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2 Governing Equations

2.1 The Orr-Sommerfeld and Squire Equa-
tions

The governing equation for small disturbances evolving
in a parallel viscous mean flowU(y) obtained from the
linearized Navier-Stokes equations, can be reduced into
the following pair for the normal velocityv and vorticity
η :

[(
∂
∂ t

+U
∂
∂x

)∇2
−U ′′ ∂

∂x
−Re−1∇4]v = 0 (1)

[
∂
∂ t

+U
∂
∂x

−Re−1∇2]η =−U ′ ∂v
∂ z

(2)

where the prime denotes derivation with respect toy. The
Reynolds number is defined asRe=U∞δ/ν whereδ is the
boundary layer thickness. The stability of the base flow is
studied with respect to wave-like perturbations. Thus the
disturbances are assumed of the form:

v(x,y,z, t) = ṽ(y)ei(αx+β z+ωt) (3)

η(x,y,z, t) = η̃(y)ei(αx+β z+ωt) (4)

whereα andβ denote the streamwise and spanwise wave
numbers respectively whileω stands for the frequency.
The Orr Sommerfeld and Squire equation are therefore
obtained:

[(−iω + iαU)(D2
− k2)− iαU ′′

−Re−1(D2
− k2)2]ṽ = 0

(5)
[(−iω + iαU)−Re−1(D2

− k2)]η̃ = iβU ′ṽ (6)

with the boundary conditions ˜v = Dṽ = η̃ = 0 at solid
walls and in the free-stream. D and prime denote deriva-
tion with respect toy, k2 = α2+β 2.

In the present work the temporal problem is consid-
ered for the wavelike perturbation, thus the frequencyω
is a complex value whileα and β are real. The fre-
quency can then be written asω = ωr + iωc where ωi

represents the growth rate of the disturbance amplitude.
Alternatively, the phase speedc ∈C is considered, where
c = cr + ici = ω/α.

The two equations can be written in matrix form which
is more suitable for the solution of the eigenvalue problem
other than presented in a compact notation. The compos-
ite state vector ˜q is introduced, which consists of the nor-
mal velocity and normal vorticity ˜q = (ṽ, η̃)T . Therefore,
the Orr-Sommerfeld and Squire equations 5 and 6 can be
written in the following form:

−iω
[

k2−D2 0
0 1

](

ṽ
η̃

)

+

[

LOS 0
iβU ′ LSQ

](

ṽ
η̃

)

= 0 (7)

with:

LOS = 1αU(k2+D2)+ iαU ′′+Re−1(k2+D2) (8)

LSQ = 1αU +Re−1(k2+D2) (9)

Finally, the eigenvalue problem is written with compact
notation and becomes:

M−1Lq̃ = iωq̃ (10)

where the matricesM−1 andL are:
[

k2−D2 0
0 1

]

(11)

[

LOS 0
iβU ′ LSQ

]

(12)

2.2 The Gaster’s transformation

The evolution of the amplitude of a disturbance grow-
ing within a boundary layer represents a spatial problem
rather than a temporal one. The governing equations still
remain in the general form of equations 5 and 6, while the
phase velocityc is a real quantity andα is defined com-
plex. The imaginary partαi represents the spatial growth
rate of the disturbance. Thus, the spatial stability prob-
lem consists of solving the spatial wavenumberα which
constitutes an eigenvalue problem where the eigenvalue
appears nonlinearly with increasing matematical efforts.

Gaster (in Gaster 1962) proposed a transformation to
convert the growth rate of the temporal problem into spa-
tial growth rates. It is assumed that the perturbation veloc-
ity for the hydrodynamic linear stability problem is given
by equations 3 and 4. The characteristic function relating
the eigenvaluesα andω at a given Reynolds number is:

F(α,ω) = 0 (13)

The temporal case is labeled (T) withαi(T ) = 0 and
α =αr(T ), ω =ωr(T )+ iωi(T ), while the spatial case, la-
beled (S), is characterized byω = ωr(S) andα = αr(S)+
iαi(S). Then, it is considered that spatial and temporally
growing modes belong to a region whereω is an analytic
function ofα. With this assumption the Cauchy-Riemann
relations are:

∂ωr

∂αr
=

∂ωi

∂αi
(14)

∂ωr

∂αi
=−

∂ωi

∂αr
(15)

These relations are integrated with respect toαi from state
(T) to state (S) keepingαr = αr(T ) = cost and under the
hypothesis that the growth rates are small. The following
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relation is obtained:

ωi(T )
αi(S)

=−
∂ωr

∂αr
(16)

which relates the spatial growth rateαi to the temporally
growth rateωi through the group velocitycr = ∂ωr/∂αr.
It is worth noting that the previous relation results from
considerations of mathematical nature and the only as-
sumption of small growth rate is made. Thus the rela-
tion is valid only in the neighborhood of the neutral curve
whereωi ≈ 0. In the present work the eigenmode and
eigenvectors of the OSS system are determined for the
temporal case, then the spatial growth rateαi is obtained
from the less stable eigenmodemax(ci) of the discrete
spectrum, using the relation 16.

3 Test facility and data reduction

3.1 Experimental apparatus

The experimental investigations have been performed in
a 7-blade large-scale planar cascade, representative of
highly loaded LPT blade profiles, feed by a blow-down
wind tunnel. The blades are characterized by a chord
of 120 mm and an aspect ratioAR = 2.5 to ensure two-
dimensional time-mean flow at midspan. Measurements
have been carried out at a low Reynolds number condi-
tion Re = 70000 (defined on the blade chord and the isen-
tropic exit velocity) with a free-stream turbulence inten-
sity of FST I = 5.2%. In order to characterize in detail
the dynamics leading to the transition process of the suc-
tion side boundary layer, PIV measurements have been
performed in the wall-normal plane as shown in figure 1.
The PIV field of view of the wall-normal plane extends
from s/smax = 0.74 to the blade trailing edge and from the
wall up to y/g = 0.1 in the streamwise and wall-normal
directions respectively (withsmax the suction side surface
length andg the cascade pitch).

The PIV instrumentation is constituted by a double-
cavity Nd: Yag pulsed laser BLUESKY-QUANTEL

���
���

����	 ���
���

�
��� 

���
���

�
��� 

������������  
����� 

����� �� ��� 
������� ����� 

���
���

����	 

Figure 1: Measuring domain over the suction side of the
blade profile

CFR200 (energy 2x100 mJ per pulse at 532 nm, pulse du-
ration 8 ns, repetition rate 10 Hz). The optical system
forms a light sheet of 1 mm thickness. The light scat-
tered by the seeding particles mineral oil droplets with a
mean diameter of 1.5µm) is recorded on a high sensitive
digital camera with a cooled CCD matrix of 1280 x 1024
pixels (with single pixel dimension of 6.7x6.7 µm2). The
camera maximum frame rate in the double frame mode is
4.5 Hz, and the minimum frame interval is 200 ns. The
magnification factor for the present experiments was set
to M = 0.165. The cross-correlation function has been
calculated on a 16x16 pixels interrogation area with a
50% overlap. This corresponds to a spatial resolution of
0.325x0.325 mm2. The instantaneous velocities have been
estimated with an accuracy of 3.0%.

3.2 Polynomial fit

The measured domain is constituted by 159 and 30 points
in the streamwise direction andy direction respectively.
The boundary layer is described by 6 up to 12 points along
they direction in the different streamwise positions. In or-
der to make the measured boundary layer profile suitable
for a linear stability analysis, the experimental data have
been reduced through a polynomial fit. In this way the
number of velocity values describing the boundary layer
can be set to the needed value (equal to the modes number)
and the first and second derivative of the non-dimensional
velocityU are directly calculated.

The fitting process is performed on the points along
the y direction from the wall (where the no slip condi-
tion U(y = 0)=0 has been added artificially) up to the
first measured point out of the boundary layer thickness
δ . The velocity values out of the boundary layer are con-
stant alongy and equal to the local external velocity thus
U(y ≥ δ ) = 1, so that∂U/∂y=∂ 2U/∂ 2y=0 for y > δ . An
eight order polynomial has been adopted. Figure 2 shows
the comparison between the experimental data for a fixed
streamwise position and the polynomial resulting from the
fitting as well as the first and second derivative of the fit-
ted velocity using 400 points. The agreement between the
polynomial and the experimental data is good within the
boundary layer thickness while a slight difference can be
noticed in the outer part of the domain.

The OSS eigenvalue problem has been solved for the
base flow presented in the previous figure 2 as valida-
tion of the fitting process. There were considered the
wavenumbersα = 0.4 andβ = 0.4. They coordinate is
discretized using Chebyshev-spectral technique with 400
points. Figure 3 shows the eigenvalues of the OSS equa-
tion for the present example. It can be noticed that the
structure of the spectra is similar to the eigenspectra of
the Blasius boundary layer (see Schmid and Henningson
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Figure 2: Comparison between experimental data and
polynomial fitting of the streamwise mean velocity, and
behaviour of first and second derivative of the polynomial
function.

2012). The points close to the abscissacr = 1 constitute
the so-called continuous spectrum while the discrete spec-
trum is constituted by the modes on the left branch of the
continuous spectrum. It is demonstrated that the bound-
ary layer has at most one unstable eigenmode, denoted
Tollmien-Schittling wave, which appears always on the
discrete spectrum. It is the less stable eigenvalue of the
discrete spectrum highlighted by the red round in figure 3.
For the parameter combination shown in the present case,
the Tollmien-Schittling mode is stable. The correspond-
ing eigenfunctions ˜u and ṽ are plotted in figure 4 which
also appear similar to the ones computed for the Blasius
boundary layer.

3.3 Modes number sensitivity

The sensitivity of the eigensolution of the the Orr-
Sommerfeld-Squire system with respect to the number of
modes has been analyzed. The eigenvalue problem of eq.
10 has been solved for the base flows corresponding to the
streamwie positionss/smax = 0.9 and 0.95. Different val-
ues of mode number parametern are considered, from 111
up to 1000, and also the wave-numberα is varied from 1
up to 1.4 whileβ = 0 in both cases. The dependency of
the spatial growth rate upon the mode number parameter
n is shown in figures 5.

0 0.2 0.4 0.6 0.8 1
cr
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0

c i

Figure 3: Spectrum for boundary layer flow presented in
figure 2 forα=0.4,Re=375

It can be observed that the solution (in terms ofαi)
does not depends onn for n higher than 200 for everyα,
β and base flow conditions. The following results have
been therefore obtained usingn = 400 which appears the
best choice in terms of accuracy of the solution and com-
putational efforts.

4 Results

4.1 PIV mean results

Figure 6 reports the spatial distribution of time mean
streamwise velocity and rms of velocity fluctuations nor-
malized by the free-stream velocity (U0) at the measuring
domain inlet. The time-mean values ¯u/U0 indicates an
attached boundary layer growing through the latter part
of the blade and beyond the trailing edge where the flow
is unbounded. Large values of unresolved unsteadiness
can be observed at the measuring plane inlet. They pro-
gressively increase up tos/smax = 0.98, where the con-
tour plots show the maximum values. Previous works
(i.e. Lengani and Simoni 2015) indicates that the bound-
ary layer may be considered transitional in the region be-
yonds/smax = 0.85.

4.2 Modal analysis

The experimental streamwise mean velocity has been fit-
ted through the way described previously and the OSS
eigenvalue problem has been solved for every streamwise
base flow. Then the less stable eigenvalue of the discrete
spectrum is identified and the spatially growth rateαi is
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Figure 4: Eigenfunctions ofu (a) andv (b) of the less
stable eigenvalue in figure 3, Thick lines represents the
absolute value, the thin lines are the imaginary and real
part

derived from eq. 16. The analysis is provided for a wide
range of wavenumbersα andβ while the Reynolds num-
ber depends on the local flow properties.

The behavior ofαi as function of the non-dimensional
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Figure 5: αi dependency upon the mode numbern and
wavenumberα

streamwise coordinate is plotted in figure 7. Particularly
figure 7a shows different curves corresponding to the so-
lutions forβ = 0 and different values ofα while figure 7b
provides the effects ofβ > 0. Evidence of an algebraic
stability of the flow emerges from the previous figures for
αi(x) > 0 in every positions. The discordance with the
experiments that reveal a boundary layer transition, thus
instability of the flow, will be discussed later.

For the case ofβ = 0 (figure 7a) the less stable condi-
tion is obtain forα = 0.05 ands/smax < 0.87. Then the
curve of α = 0.4 becomes lower and a minimum value
is reached in correspondence ofs/smax < 0.9. It further
rises and becomes higher thanα = 0.05 downstream of
s/smax = 0.9.

The introduction of the Squire modes, i.e. positive val-
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Figure 6: Distribution of the mean streamwise velocity
component (top) and rms of the streamwise velocity fluc-
tuations (bottom)

ues ofβ , increase the stability for the conditionsα = 0.4
and 1.1 but acts in the opposite way for the lowestα. This
is in contrast with the Squire’s theorem enunciating that
Squire modes are always damped.

In order to better investigate this trend, the contour plots
of αi as function ofα andβ for s/smax = 0.9 and 0.95, are
plotted in figure 8.

In figure 8a a minimum value ofαi is observed in (α,
β ) = (0.38, 0). It increases as the two wavenumbers be-
come higher. A different behavior is observed in figure 8b
where the minimum value forαi is obtained forα close to
zero (α = 0 cannot be investigated) andβ = 0.4.

Therefore, the results for the temporal problem need to
be presented and discussed. Figure 9 shows the contour
plot of the temporally growth rate of the less stable eigen-
valueci for the same positions presented in figure .

The curves of constant grow rate again resemble the
ones for Blasius boundary layer (see Schmid and Hen-
ningson 2012). Both cases are stable and the less stable
condition is reached in both positions forβ = 0 andα
close to 0.38. Asα approaches zeroci becomes drasti-
cally lower and thus moves away from the conditionci = 0
corresponding to the neutral curve and to the region of va-
lidity of the Gaster’s transformation. It follows that the
results in terms ofαi can be considered valid only in the
range ofα and β that lead toci close to 0. Thus for
0.27< α < 0.42 andβ < 0.2.

Nevertheless, the streamwise evolution ofαi for the
condition (α, β ) = (0.4, 0) shown in figure 7 indicates
that the flow becomes less stable as it approach the posi-
tion where the transition occurs according to experimen-
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Figure 7: Evolution of the growth rateαi along the nondi-
mensional streamwise coordinate

tal data (approximatelys/smax = 0.85) but it never be-
comes unstable. Thus the evolution of the small distur-
bances can not be describe through an algebraic growing
mechanism. Measurements in the wall-parallel plane (pre-
sented in Lengani and Simoni 2015) reveals the presence
of streamwise elongated flow patterns with alternating low
and high momentum. The formation of those streaks have
been identified has the consequence of a non-modal dis-
turbance growing mechanism and their breakdown leads
to the so called by-pass transition mode.
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Figure 8: Contour plots of the spatial growth rateαi for
s/smax = 0.9 (top) ands/smax = 0.95 (bottom)

5 Conclusions

The algebraic stability of a PIV measured base flow evolv-
ing on the suction side of a low pressure turbine profile
has been analyzed. A polynomial fitting of the experi-
mental data has been developed in order to provide a base
flow velocity profile suitable for the solution of the OSS
eigenvalue problem. The Gaster’s transformation has been
adopted to convert the temporally growth rate into spatial
growth rate for the less stable eigenvalue on the OSS dis-
crete spectrum. However, it can only be applied in the
range of wavenumbers that leads to a close to zero tempo-
rally growth rate (i.e. close to the neutral curve).
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Figure 9: Contour plots of the temporally growth rateci

for s/smax = 0.9 (top) ands/smax = 0.95 (bottom)

The investigated base flow results stable with respect
to algebraic growing mechanism even though the mea-
surements indicates that a laminar to turbulent transition
occurs in the late part of the flow domain. It is argued
that, due to the strong free stream turbulence, the bound-
ary layer should follow a non-modal growing disturbance
which leads to the formation of streaks that are indeed ob-
served in the flow.
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