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Abstract

A linear stability analysis of a liquid film flowing down an inclined
flat plane is carried out. In particular, we focus on how the variations
of some parameters, which represent, for example, the contact angle
among the solid-liquid-air interface, modify the stability of the base
flow. This kind of studies are very important to understand the forma-
tion of drops. For this reason the theoretical model utilized takes into
account microscopical quantities like the van der Waals potential which
rules the dynamics near the contact line. The implemented model is a
simplified case of the theoretical model, but it underlines some impor-
tant characteristics of the real film. As the first step, the free surface
profile and the displacement velocity are determined. Starting from
here some stable and unstable modes for the steady base flow are ana-
lyzed. The stability of the constant base flow is performed analytically.

1 Introduction

Consider a liquid film flowing down a flat plate of lenght L as in Figure
1. Assuming that the motion is independent of the z-axis, if u is the velocity
field depending on the position x on the plate and the time t, the governing
equations are

ux + vy = 0

ρ(ut + uux + vuy) = −px + ρgsin(θ) + µ∇2u−
Ä

A′

6πh3

ä
x

ρ(vt + uvx + vvy) = −px + ρgcos(θ) + µ∇2v

(1)

where A′ is the Hamaker constant and φ = A′

6πh3
is the van der Waals potential

that represents the inter-molecular interaction. If we want to know which
region in space is occupied by the liquid we have to introduce a new variable
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h that is the height of the liquid. Calling xc the liquid-solid-air interface the
domain of the equation is

D = {(x, y)|0 ≤ x ≤ xc, 0 ≤ y ≤ h(x, t)} (2)

Now we are able to introduce initial and boundary conditions:

• at y = 0 we have

u =
α̃

3h
uy, v = 0; (3)

where the first equation represents the slip condition due to the contact
point among solid-liquid-air interfaces.

• at y = h we have
v = ht + uhx (4)

θ

h

u

X

Y

Figure 1: Schematic of a real three dimensional problem and simplified two
dimensional problem after assumption of z-independence.

Our goal is to study the stability of the solution of this differential problem.
A strategy to do this is to focus our attention on the shape of the film and
consider the stability of this one. Hence, we have to find an equation for h.
We introduce h0 that is the mean height of an infinity long film far away
from the contact point, and the mean velocity of the same film ū defined by

ū =
1

h0

∫ h0

0
u∞ dy =

1

h0

∫ h0

0

gy sin θ

2ν
(2h0 − y) dy =

gh2
0 sin θ

3ν
(5)

where u∞ is the velocity of the film driven only by gravity, neglecting the
surface tension. Once we have introduced these quantities we can non-
dimensionalize the problem:

u∗ =
u

ū
, v∗ =

v

δū
, y∗ =

y

h0

, h∗ =
h

h0

, x∗ =
δx

h0

,
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t∗ =
t
h0
δū

, p∗ =
p
µū
δh0

where δ << 1 is the characteristic length in y; it underlines that the fact that
there is a big difference between the length scale in x and y. At this point,
rewriting equations (1), (3), (4) and using the non-dimensional quantities we
obtain an equation for the thickness of the film:

ht +

ñÇ
3 + A

hx
h4

+ Shxxx

åÇ
h3

3
+ Ãh

åô
x

= 0 (6)

with the following initial and boundary conditions

I.C. h(x, 0) = f(x) (7)

B.C. h(0, t) = 1, hx(0, t) = 0, h(xc, t) = 0, hx(xc, t) = −tg(α) (8)

where f is a given initial shape for the film and xc is the contact point and
S, A, Ã are constant

S =
3δ3σs

ρgh2
0sin(θ)

, A =
3δA′

2πρgh4
0sin(θ)

, Ã =
α̃

3h2
0

. (9)

with δ << 1.

Notation 1.1. In order to clarify the meaning of the constant S, A, Ã we
list the notations:

• σs: surface tension for an air-water interface;

• ρ: density of the liquid;

• h0: height of the film far away from the contact point;

• θ: inclination of the solid wall;

• α: contact angle;

• α̃: slip constant;

• δ: characteristic length in y;

• A′: Hamaker constant.
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Figure 2: Two possible initial conditions f(x) (linear and logarithmic).

Assumptions. Defining the problem in this way, we impose the contact
angle α between solid liquid air interface. Actually α is unknown. In order
to be more realistic we introduce the precursor film; it is a thin film of liquid
that flows over the plate. Introducing this trick, α is able to assume a natural
value. Obviously this value depends on the thickness ε of the film and this will
be studied in the following: we need to find a value for which the solution do
not change. Moreover, to adjust the contact angle as we want, we can modify
the constant α̃. Another important assumption is that, for simplicity, we will
take the constant A equal to zero; this means that we are not accounting for
the Van der Waals potential in equation (1). Under this assumptions, the
problem becomes

ht +

ñ
(3 + Shxxx)

Ç
h3

3
+ Ãh

åô
x

= 0, (10)

with initial and boundary conditions

h(x, 0) = f(x), (11)

h(0, t) = 1, hx(0, t) = 0, h(xmax, t) = ε, hx(xmax, t) = 0, (12)

where xmax >> xc.

2 Numerical resolution

The numerical resolution of the problem is made by two fundamental
steps; in the first step we have implemented an integration in time of equation
(10); in the second step we have studied the stability of the solution.
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ε S Ã θ

10−2 0.92 0.35− 10.7 7o − 30o

10−3 0.0092 0.35− 10.7 7o − 30o

10−4 0.000092 0.35− 10.7 7o − 30o

Table 1: Here is shown for each value of ε the corresponding values of the
other utilized parameters (S, Ã, θ).
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Figure 3: Profiles of the steady solution after 30000 step in time, varying Ã
from 0.35 to 10.

Time integration. Setting as initial conditions the profiles in Figure 2,
equation (10) is integrated in time; there are two possible behaviors de-
pending on the choice of the parameters and initial condition: the solution
becomes a steady profile or evolves in a state of instability. Table 1 lists the
values of the parameters employed.

In order to validate the code we have tested that the solution does not
change if we vary some important parameters as:

• precursor film

• spatial and temporal step

We have tested the time convergence considering the relative error

|SOLN − SOLN+1|
|SOLN |

<< 1 (13)
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where SOLN is the solution profile after N steps in time. For N = 30000 this
condition is always satisfied and the solution profile is assumed to be steady.

Stability for a constant base flow. Here we study the stability of some
solutions; first of all we will consider the stability of a constant base flow.
This is the case of a semi-infinite film analyzed very far from the contact
point. If h(x) = H0 is the constant base flow, perturbing it with

h(x) + h̃(x)e−iωt, ω ∈ C

and linearizing equation (10) we obtainÇ
S

3
H

3

0 + SÃH0

å
h̃xxxx +

(
3H

2

0 + 3Ã
)
h̃x − iωh̃ = 0. (14)

Supposing that h̃ is of the form

h̃(x) = eikx k ∈ R

substituting into (14) the following equation arises:Ç
S

3
H

3

0 + SÃH0

å
k4 +

(
3H

2

0 + 3Ã
)
ik − i(ωr + iωi) = 0, (15)

so that ωr =
(
3H

2

0 + 3Ã
)
k

ωi = −
(
S
3
H

3
0 + SÃH0

)
k4.

(16)

In this way we have an analytical expression for ω varying the parameter
Ã; ωr is the frequency of oscillations of the mode, whereas ωi represents the
growth rate. A positive value of ωi denotes that the mode is unstable.

Stability for a steady base flow. By time integration we have obtained
a solution that we will use as base flow for the linear stability. We recall the
equation for h

ht +

Ä3 + Shxxx
äÑh3

3
+ Ãh

é
x

= 0. (17)

If we consider a steady solution of equation (17) as base flow, then we can
consider the following change of variable

X = x− ct. (18)
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Figure 4: Steady solution for varying thickness ε of the precursor film, with
∆x = 10−3,∆t = 10−2, Ã = 1 (frame (a)), Ã = 5 (frame (b)) and Ã = 10

(frame (c)), after 30000 steps in time.
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Figure 5: Steady solution for varying ∆x for ∆t = 10−2 at Ã = 1 (frame (a))
and Ã = 10 (frame (b)), after 30000 steps in time.
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If h is the solution, a perturbation of this one is

h = h(X) + h̃(X)eσt, h̃t =
î
h̃(X)eσt

ó
t

= eσt
Ä
−ch̃X + σh̃

ä
(19)

with c ∈ R the wave velocity, hx = hX and h̃x = h̃X . It will be clear in
the following paragraph that σ ∈ C is related to an eigenvalue problem.
In the approach of stability, Re(σ) represent the growth rate and Im(σ) the
frequency of the solution; in particular, if Re(σ) > 0, the solution is unstable.
Substituting into equation (17) we obtain

− chX − ch̃X + σh̃+

ñ
(3 + ShXXX)

Ç
h3

3
+ Ãh

åô
X

= 0. (20)

Linearizing with respect to h̃

−chX − ch̃X + σh̃+

Ä3 + ShXXX
äÑh3

3
+ Ãh

é
X

+

+

ÄSh̃XXXäÑh3

3
+ Ãh

é
X

+
[Ä

3 + ShXXX
ä (
h

2
h̃+ Ãh

)]
X

= 0

and using the fact that h is a solution of (17)

−ch̃X + σh̃+

Sh̃XXX
Ñ
h

3

3
+ Ãh

é
X

+
[Ä

3 + ShXXX
ä (
h

2
h̃+ Ãh

)]
X

= 0

σh̃ = h̃
(
6hhX + 2ShhXhXXX + Sh

2
hXXXX + ÃShXXXX

)
+ (21)

+ h̃X
(
c+ 3h

2
+ Sh

2
hXXX + 3Ã+ ÃShXXX

)
+

+ h̃XXX
(
Sh

2
hX + SÃhX

)
+

+ h̃XXXX

Å
S h

3

3
+ SÃh

ã
that is the linearized equation for h̃ in which we have put in evidence the
eigenvalue σ. To perform an eigenvalues problem from this equation we have
to discretize it. The velocity c is computed in the time integration code
observing the displacement of the steady profile; some values of c are shown
in Table 2.
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Ã c α

0.4 0.04 88.51o

1 0.07 83.17o

5 0.26 63.06o

10 0.88 52.53o

Table 2: Here we show how c and α change for varying Ã.

Eigenvalue problem. The first step in the discretization is to observe that
here h̃ and h are vector and to compute the derivatives h̃X , h̃XXX , h̃XXXX ,
hX , hXXX and hXXXX ; in this case a central scheme is used. In order to
clarify the structure of the matrix in this eigenvalue problem we define the
vectors ζ, ξ, ψ, χ as

ζ = 6hhX + 2ShhXhXXX + Sh
2
hXXXX + ÃShXXXX ,

ξ = c+ 3h
2

+ Sh
2
hXXX + 3Ã+ ÃShXXX ,

ψ = Sh
2
hX + SÃhX ,

χ = S h
3

3
+ SÃh.

Now we are ready to understand the structure of our matrix.

Ω =


. . . . . . . . . . . . . . . 0 0

0 ωi i−2 ωi i−1 ωi i ωi i+1 ωi i+2 0

0 0
. . . . . . . . . . . . . . .


where

ωi i−2 = −ψi/(2δ) + χi/δ,

ωi i−1 = −ξi/(2δ) + ψi/δ − 4χi/δ,

ωi i = ζi + 6χi/δ,

ωi i+1 = ξi/(2δ)− ψi/δ − 4χi/δ,

ωi i+2 = ψi/(2δ) + χi/δ.
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Regarding boundary conditions, we need to modify the matrix in the follow-
ing way

Ω =



1 0 0 0 0 0 0

1 −1 0 0 0 0 0
. . . . . . . . . . . . . . . 0 0

0 ωi i−2 ωi i−1 ωi i ωi i+1 ωi i+2 0

0 0
. . . . . . . . . . . . . . .

0 0 0 0 0 −1 1

0 0 0 0 0 0 1


After doing this, equation (21) can be written as

σIh + Ωh = 0 (22)

where h is the vector of the solution.

3 Results and conclusions.

In this section we will show some results, focusing our attention on the
spectrum of Ω matrix, eigenfunctions and contact angles. In Figures 6 and
7 respectively we can see the linear and parabolic dependence of ωr and ωi
from the wave number k. Regarding the stability for a constant base flow,
since ωi < 0 ∀k (Figure 7), the solution is always stable. In the case of steady
base flow, the behavior of the solution and its stability is strictly related to
the value of Ã: for Ã ≤ 1 the profile h increases before the wavefront, like
a drop, and the contact angle tends to 90 degrees (see Figure 3 and Table
2). In Fiugure 8 we can see how the spectrum of Ω changes for varying
Ã: for Ã = 0.4 the imaginary part σi of the eigenvalues is near the x-axis,
increasing Ã σi becomes larger for each eigenvalue. In Figure 9 one real
stable eigenfunction for each Ã is shown. In Figure 10 we can observe that
the largest unstable eigenfunction looks like a peak in correspondence of the
contact point. Moreover for Ã ≤ 1 we have more than one unstable eigenvalue
(the corresponding eigenfunctions are shown in Figure 11), for Ã ≥ 1 there is
only one unstable eigenvalue. Eventually, in Figure 12 we can see the profile
of the solution for varying the inclination of the flat plate. What we need to
complete this work is to decrease the lower limit for Ã which now is 0.35 and
to add in the equation for h the terms multiplied by A which represent the
Van der Waals potential and, hence, the micro-scale interactions.
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Figure 6: Analytical solution for Re(ω).
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Figure 7: Analytical solution for Im(ω). No unstable modes can be seen.
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Figure 8: Spectrum of Ω for Ã = 0.4, 1, 5, 10 with ∆x = 10−3 and θ = π/24.
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Figure 9: Some stable eigenfunctions for Ã = 0.4, 1, 5, 10 with ∆x = 10−3

and θ = π/24.
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Figure 10: Largest unstable eigenfunctions for Ã = 0.4, 1, 5, 10 with ∆x =

10−3 and θ = π/24.
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Figure 11: All unstable eigenfunctions for Ã = 0.4 and Ã = 1 with ∆x =

10−3 and θ = π/24. (For Ã = 5 and Ã = 10 there is only one unstable
eigenfunction).
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Figure 12: Zoom of the profile of the solution for varying the inclination
angle θ with Ã = 1.
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