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1 Introduction
The growing interest in non-Newtonian fluids is due to the many applications at low-Reynolds number like the
microfluidics in biochemistry applications. For example, Newtonian fluids typically flow in the laminar regime
at small Reynolds number and mixing occurs via diffusion, an inefficient and slow mechanism. Non-Newtonian
fluids can have an advantage with respect to Newtonian fluids for the possibility to generate mixing via purely
elastic instabilities and turbulence.

The aim of this project is to support the recent studies done by Boi, Mazzino and Pralits in “Order-disorder
transition induces network instabilities in non-Newtonian parallel flows”. In this project we have studied the
non-modal stability with optimal disturbances technique of a rheopectic non-Newtonian fluid flow to show the
existence of a general mechanism for non-Newtonian instabilities occurring close to zero Reynolds number.

The problem of optimal disturbances, in the context of bypass transition to turbulence, has been of great
interest because there are many applications where transition to turbulence occurs without exponential growth,
but where there is great potential for transient growth of the disturbance energy in flows that are stable to
wave-like perturbations.

2 Problem formulation
According to the studies of Boi, Mazzino and Pralits, the non-Newtonian character of the fluid has been described
by the following relationship:

µ = µ∞ + (µ0 − µ∞)
(
1 + 2a2γ̇2

)n−1
2 (1)

a widely accepted model to describe the dependence on shear rate of apparent viscosity called Carreau-Bird
model. Here γ̇ is the strain rate, a is a constant and n describe the class of fluid (n < 1 for shear-thinning fluid,
n > 1 for shear-thickening fluid, n = 1 for Newtonian fluid). The parameter µ0 is the viscosity at zero shear
rate (i.e. for γ̇ → 0) and µ∞ is the infinite-shear-rate viscosity (i.e. γ̇ → ∞). In many case the infinite shear
viscosity µ∞ is negligible and the model simplifies.

Following the model introduce in [1], we now introduce an index of fluid finite time response to shear λ. The
governing equation of λ come from the requirement the eq. 1, with the simplification of µ∞, must be obtained
in the limit of a fast network response and assume the following relationship:

dλ

dt
= −λ

τ
+

2a2γ̇2

τ

where dλ/dt is a material derivative and τ is a characteristic time.
To close the circle it is necessary to assume a relation between the time response (λ) and the fluid (µ)

µ = µ0 (1 + λ)
n−1
2

The previous parameters are re-sum in some important dimensionless parameters that enter into play: the
Reynolds number (Re = ρV L/µ0), the Deborah number (De = τV/L) used to characterize the fluidity of
materials and Γ = aV/L that is a measure of the level of how non-Newtonian a fluid is.

We consider a disturbance which behave as

q̃ (x, y, z, t) = q (y, t) ei(αx+βz)

that excite the Kolmogorov parallel flow, here assumed in its two-dimensional form U (y) = V cos (y/L).
We are interested in finding initial optimal disturbances, that is the initial condition that is able to produce

the maximum value of an objective function. Our choice of target function is the maximum amplification of
final kinetic energy compared to its initial size optimized over all possible initial conditions, commonly called
“gain”:
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G (T ) =
E (T )

E (0)
=
‖Φout‖22
‖Φin‖22

3 Optimization system
Once the objective function has been identified, the Lagrangian multiplier technique is employed in order to
solve the constrained optimization problem.

Since the state of fluid is describe from Φ = (u, v, w, p, λ) and we want to evaluate the kinetic energy, we
define two linear operator to select the velocity components to calculate the energy

M1 : Φin → Φ0 & M2 : ΦT → Φout

M1 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 & M2 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


Using the Lagrange multiplier, we minimize J as the inverse of G for all given initial condition Φin

min
∀Φin

J =
1

G

So the Lagrangian becomes

L =
‖Φin‖22∥∥∥∥M2
=

ΦT

∥∥∥∥2

2

−
T̂

0

aH
(
B
=

∂Φ

∂t
+A

=
Φ

)
dt− bH

[
Φ0 −M1

=
Φin

]

where matrices A and B contain the expression of the continuity equation, the momentum equation along
x, y and z and the lambda equation.

Linearizing and recollecting term, the optimality system becomes:
B
=

∂Φ
∂t +A

=
Φ = 0, Φ0 = M1

=
Φin direct system

−BH
=

∂a
∂t +AH

=
a = 0, a (T ) = −2

(
BH

=

)−1

MH
2

=
Φout

‖Φin‖22
‖Φout‖22

adjoint system

Φin = −MH
1

=
BH

=
a (0)

‖Φout‖22
2 optimality condition

The Optimization system has been resolved numerically, so it has been discretized in space and time. A
finite difference discretization scheme has been implemented to numerically solve the equations with bound-
ary conditions. The discretization in space is hidden in the definition of matrices A and B , while for the
discretization in time we use the implicit Euler method. Then, the direct system can be rewritten as

B
=

Φn+1 − Φn

∆t
+A

=
Φn+1 = 0

[
B
=

+ ∆tA
=

]
︸ ︷︷ ︸

L
=

Φn+1 = B
=

Φn

that lead to the solution:

Φn+1 = L
=

−1B
=

Φn

whit initial condition Φ0 = M1
=

Φin.

Similarly, the adjoint equation can be rewrite as

L
=

Han+1 = B
=

Han

with the solution
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an =
(
L
=

H
)−1

B
=

Han+1

and the initial condition

a (T ) = −2
(
BH

=

)−1

MH
2

=
M2
=

ΦT
‖Φin‖22∥∥∥∥M2
=

ΦT

∥∥∥∥2

2

= −2
(
BH

=

)−1

MH
2

=
M2
=

ΦT
J∥∥∥∥M2

=
ΦT

∥∥∥∥
2

4 Result
Following to the result obtain by Boi, Mazzino and Pralits in “Order-disorder transition induces network insta-
bilities in non-Newtonian parallel flows”, we decide to limit our studies to case with Γ = De and look at four
stable case, two unstable case and two Newtonian case as presented in figure 1 and in the table 1.

Re Γ = De n Case
0.1 1, 3 1.3 Stable
1 1, 3 1.3 Stable
2 1, 3 1.3 Unstable

1, 2 0.001 1.01 Newtonian

Table 1: Summary of simulations

Figure 1: Marginal curve in the Re−De plane with Γ = De and n = 1.3 and position of simulation done (X)

Below are presented the “gain” trend over time subdivided by type of fluid; blue lines represents the gain
trend of a specific time optimization (T = 1, 3, 6, 9, 12, 15) while the red one is the envelope of all curves.
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• Re = 0.1, Γ = De = 1, n = 1.3

a) b)

c)

Figure 2: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

• Re = 0.1, Γ = De = 3, n = 1.3

a) b)

c)

Figure 3: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

4



• Re = 1, Γ = De = 1, n = 1.3

a) b)

c)

Figure 4: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

• Re = 1, Γ = De = 3, n = 1.3

a) b)

c)

Figure 5: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)
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• Re = 2, Γ = De = 1, n = 1.3

a) b)

c)

Figure 6: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

• Re = 2, Γ = De = 3, n = 1.3

a) b)

c)

Figure 7: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)
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• Newtonian : Re = 1, Γ = De = 10−3, n = 1.01

a) b)

c)

Figure 8: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

• Newtonian : Re = 2, Γ = De = 10−3, n = 1.01

a) b)

c)

Figure 9: Optimization at different time (blue line) and envelope (red line) of the “gain” trend over time,
α = 0.01 (a) , 0.1 (b) , 0.5 (c)

Below, will be presented the summary graphs subdivided by Reynolds number. For every Reynolds number,
the first graph is the trend of the maximum achievable energy over all possible value of α, while the second
graph is the the value of α corresponding to the maximum energy.
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• Re=0.1

Figure 10: Max energy at every time over all α

Figure 11: Value of α of the maximum energy
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• Re=1

Figure 12: Max energy at every time over all α

Figure 13: Value of α of the maximum energy
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• Re=2

Figure 14: Max energy at every time over all α

Figure 15: Value of α of the maximum energy
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5 Conclusion
In this project has been investigated the transient growth of a model of non-Newtonian fluid to support recent
studies [1].

The main result is the identification of an almost similar response to perturbation between non-Newtonian
and Newtonian model. Similar result has been reached in [2] with simulation on the same model with a flow
in a channel. Figures 10, 12 and 14 represent the trend of gain function and they shows that different types of
fluid share an almost similar behavior.

Another common behavior is the tendency to stabilize increasing the parameter α. This feature is shown in
figures 11, 13 and 15 where is represented the value of α which correspond the maximum of energy; for every
types of fluid the maximum energy has been reached with the minimum value of α used in ours simulation.

Furthermore, figures of the optimizations show an almost limited transient growth; for stable simulation the
energy reach at the peak less than 2 times the initial energy.
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