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Abstract

This studies aim, is to verify from a mathematical
point of view the validity of a model for the infusion
of a drug inside a cancer tissue. Avery important
parameter has been optimised in the description of
the phiscal fenomenon the hydraulic conductivity K.
The optimal value has been determined with Lag-

range's approach. The function K was considered as
the optimal value that better represent sperimental
data. The results show how the optimised function
has a reasonable tendency from a phisycal point of
view and furthermore has a singular tendency to the
one obtained in the model.

The model

In this reasearch we hypothize the solid tumor to have
a spherical form.The changes (deformations) that the
tumor undergoes are to be considered in�nitesimal,
for that reason the deformations are governed by
Hooke's law (elastic �eld).
We study the transfer of the therapeudic agent in-

side the tumor considering a porelastic medium ca-
rachterized by hydraulic conductivity k of the tissue
(given the relationship between dinamic viscosity and
permeability of the medium) and by Lame's coe�-
cient G and λ.
The relationship between the therapeutical agent

and blood vessels is governed by starling's law:

Ω = Lp
S

V
(pe − p) (1)

where:

Lp = conduttività vascolare [ cm
mmHg·s ]

S
V = sup erci e vasc olare p er unità di volume[ cm

2

cm3

]
pe = pressione vascolare eettiva[mmHg].
p= pressione interstiz iale[mmHg].
Ωcan act both as a well or as a source based on the

di�erence of pressure inside or outside the blood ves-
sel. the tumor is by nature strongly heterogeneous,
we only consider it in its radial direction, which is
expressed by the hydraulic conductivity of the tumor
K.
another study has observed that conductivity k is

strongly in�uenced by the deformation of the tumor.
The farmaceutical agent is introduced in the cen-

ter of the tumor, creating a small radius (a) cavity,
which its dimensions can be compared to the tip of
the needle.
The general strength acting on the tumor would

be:

T
=

= σ
=
− pI

=
(2)

T
=
=tensor of e�ective stress

σ
=
= tensor of contact stress

p= interstizial �uid pressure (IFP)
considering that the tension deformation of the tu-

mor is governed by hooke's law, throught the equa-
tion of the bond we get:

T
=

= −pI
=

+λ(∇·u)I
=

+ 2G[
1

2
((∇·u) + (∇·u)T )] (3)

where
u=deformation of solid
λ = 2ν

1−2νG

1



dove

ν= is the Poisson's coe�cient

assuming we found ourselves in stationary con-
ditions, transforming the equation in cilindrical co-
ordinates, and and remembering that all variables are
hypotetically only expressed in accordance of the ra-
dial r coordinate, we obtain:

(2G+ λ)
d

dr
(
du

dr
+

2u

r
) =

dp

dr
(4)

To be able to �nd the distribution of the pressure
and deformation we need another equation. We have
to consider the conservation of the mass:

∇̄ · q̄ = Ω (5)

Please note that q has the direction and dimention
of the velocity, But truthfully is not the actual velo-
city inside the pores, but it refers to the volumetric
carrying for unit area.

The second meaning of55 represent, as already
said, the relationship between the vascular net and
the pharmaceutical agent during the evolution of this
last one.

A �uid that evolves inside a pore is described by
Darcy's law:

q̄ = −K · ∇̄p (6)

Taking into consideration the 1 and 5 becomes:

∇̄ · (−K · ∇̄p) = LpS(pe − p) (7)

Taking into consideration the

− 1

r2
d

dr
(r2K

dp

dr
) = Lp

S

V
(pe − p) (8)

Regarding the hydraulic conductivity of the tumor
it has been chosen to consider it as depending from
the deformation with a semi-empiric exponential law:

K = K0e
M [α du

dr +(1−α)u
r ] (9)

The equations are closed by the boundary condi-
tions.


p = 0 r = R′

p = pinf r = a′

du
dr + 2ν

1−ν
u
r = 0 r = R′

du
dr + 2ν

1−ν
u
r = 0 r = a′

where a′ and R′ are respectivly the inside and out-
side radiuous after the deformation.

Linearization of

equations

The linearization of the equation is made through a
perturbative analysis of the model which functions
in accordance to a characteristic parameter of the
problem.

p∗ = p
pinf−pe ; T=

∗ =
T
=

2G+λ ; r
∗ = r

R ; u
∗ = u

r ;

K∗ = K
K0

;
and the equations become:

d

dr∗
(
du∗

dr∗
+

2u∗

r∗
) = δ

dp∗

dr∗
(10)

d

dr∗
(r∗2K∗

dp∗

dr∗
) = r∗2γ2(p∗ − p∗e) (11)

K∗ = eM [α du∗
dr∗ +(1−α)u∗

r∗ ] (12)

having γ2 =
Lp

K0

S
V R

2 e δ =
pinf−pe
2G+λ

Its around the adimensional value of δ that the lin-
earization is executed and stopping at the �rst order
we have:

u∗ = u∗0 + u∗1δ

K∗ = K∗0 +K∗1δ

p∗ = p∗0 + p∗1δ

Please note that we are taking into account the
hypothesis of small movements and therefore we can
express the exponential as the development in series
of mclaurin stopping at the �rst order
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K∗ = 1 +M [α
du∗

dr∗
+ (1− α)

u∗

r∗
]

Now lets move on to express the conditions on the
boundaries of points a

R and R
Rassuming we are mov-

ing linearly from point a
R until a

′

R and from 1 to R′

R .

For example p(a′) = pinf w p(a) + dp(a)
dr (a′ − a)

with a′ − a = u(a).
We can now write our equations in orderδ0:

d
dr∗ (

du∗0
dr∗ +

2u∗0
r∗ ) = 0

d
dr∗ (r∗2K∗0

dp∗0
dr∗ ) = r∗2γ2(p∗0 − p∗e)

K∗0 = 1 +M [α
du∗0
dr∗ + (1− α)

u∗0
r∗ ]

c.c. 
p∗0 = 0 r∗ = 1

p∗0 = 0 r∗ = a
R

du∗0
dr∗ + 2ν

1−ν
u∗0
r∗ = 0 r∗ = 1

du∗0
dr∗ + 2ν

1−ν
u∗0
r∗ = 0 r∗ = a

R

It can also be demonstrated thatu∗0 = 0=⇒K∗0 = 1.
Even p0has an analytical answer such as:

p∗0 = p∗e +
A

r∗
eγr
∗

+
B

r∗
e−γr

∗

with A and B known from boundary conditions
At the order δ1 the equations are:

d
dr∗ (

du∗1
dr∗ +

2u∗1
r∗ ) =

dp∗0
dr∗

d
dr∗ (r∗2K∗0

dp∗0
dr∗ ) = r∗2γ2p∗1

K∗1 = 1 +M [α
du∗1
dr∗ + (1− α)

u∗1
r∗ ]

c.c. 
p∗1 = −u∗1

dp∗0
dr∗ r∗ = 1

p∗1 = −u∗1
dp∗0
dr∗ r∗ = a

R
du∗1
dr∗ + 2ν

1−ν
u∗1
r∗ = 0 r∗ = 1

du∗1
dr∗ + 2ν

1−ν
u∗1
r∗ = 0 r∗ = a

R

The carrying that goes through the tumor in the
non linear model has value (adimensional):

Q∗ = 4πr∗2q∗

In the linear case it would be

Q∗ = 4πr∗2(q∗0 + δq∗1) (13)

where

q∗0 = −dp
∗
0

dr∗

q∗1 = −K∗1
dp∗0
dr∗
− dp∗1
dr∗

Optimal K1 determination

why K1?

It has been decided to optimize the conductivity of
the hydraulic mean K for essentially two reasons:

• - The relationship between K and the deform-
ation u is crucial for it's use in the poroelastic
theory. It is as a matter of fact the mainly re-
sponsible for the interation between �uid and
pharmaceutical

• - Both in literature and in our model it is still not
clear how to combine K with the deformation u.

This study does not doubt the exponential relation-
ship that goes on between deformation and conduct-
ivity, but wants to verify if the exponential curve that
better approximates the experimental values (strictly
determined by a mathematical method) is qualitat-
ively similar to the one chosen in our model( determ-
ined with a physical-empiric method).

The experimental data reported in the 1were taken
from the work of McGuire et al. and for each value of
pinf (37,52,69 mmHg) . . . is calculated Qinf media
(QI = 0.15,QII = 1.4,QIII = 0.35).
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Figure 1: experimental values

Lagrangian approach

To make it easier from now on we will omit
∗remembering that all measurements are adimen-
sional
From the optimization we haveKott for every value

of Qinf .
For this reason the size that has to be minimized

has been expressed as follows:

J = (Q(a′)−QI)2 +
ξ

2

ˆ 1

a

K2
1dr (14)

The optimization has been done for the linear equa-
tions stopping at the 1 order, furthermore, for reasons
tied to the method of functionality . . . is expressed as
follows

Q(a′) =

ˆ 1

a

Q(r)δDdr (15)

where δD is a known function delta di Dirac.

Taking into account that 13 13 and remembering
that 14 linearization has stopped on order 1 the 14
becomes :

J = χ0 +

ˆ 1

a

(χ1
p1
dr

+χ2K1)δDdr+
ξ

2

ˆ 1

a

K1dr (16)

where:

- χ0 = (QI)2 + 16π2a′4(dp0dr )2 + 8Qπa′2 dp0dr

- χ1 = 32π2 dp0
dr εr

4 + 8QIπr2ε

- χ2 = 32π2εr4(dp0dr )2 + 8QIπr2εdp0dr

We can now de�ne the lagrangiana de�nition as fol-
lows:
L(p1,K1, α, b, c) = J −

´ 1
a
α · (d

2p1
dr + 2

r
dp1
dr −

γ2p1 + (2
r
dp0
dr + d2p0

dr2 )K1 + (dp0dr )(dK1

dr ))dr− b · (p1(a) +

u1(a)dp0(a)dr )− c · (p1(1) + u1(1)dp0(1)dr )

where α, b, c are moltiples of Lagrange.
imposing:

∇L =0 (17)

We obtain the conditions necessary for the resolu-
tion of the problem. Therefore we have:

• ∂L
∂p1

= 0
d2α
dr −

2
r
dα
dr −γ

2α = −8πε ddr ((4π dp0dr r
4+QIr2)δD)

α(a) = 0
α(1) = 0
b = dα

dr (a))

c = −dαdr (1)

• ∂L
∂K1

= 0

K = 1
ξ [−8πε ddr ((4π d

2p0
dr2 r

4 + QI dp0dr r
2)δD) +

α( 2
r
dp0
dr + d2p0

dr2 )− d
dr (αdp0dr )]

• ∂L
∂α = 0
d2p1
dr + 2

r
dp1
dr − γ2p1 + ( 2

r
dp0
dr + d2p0

dr2 )K1 +

(dp0dr )(dK1

dr ) = 0

• ∂L
∂b = 0

p1(a) = −u(a)dp0(a)dr

• ∂L
∂c = 0

p1(1) = −u1(1)dp0(1)dr

please note that:

- Deriving from p1we are able to determine
the three multiplicators of lagrange α, b, c

- - Deriving in respect to K1 we obtain
K1,ott
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- deriving in repect to α we obtain the dir-
ect

- deriving in respect tob e c we obtain the
initial conditions of the direct

Discretization of the method

The equation system generated from the 15 becomes
discretized by an explicit method at the second order

Results

As stated before, we face the problem separately for
each of the three values of the infusion range.

Given the obvious impossibility to impose a punc-
tual condition on the function it has become neces-
sary the introduction of a gaussiana function such
as f = C(θ)e−θr

2

(delta di Dirac approssimato)
. . . .which would have the e�ect of blocking the in-
formation on all of r given di�erent weights for every
point. In this way, acting onθ We can choose the
strength of our control. Obviously according to the
choices made on δD the calculus grid must be modi-
�ed. To make the calculations easier, the study will
be executed with a δDthe most ample possible t.c.´ 1
a
δDdr which doesn't have to move from the unit

for more than a variation of 1.5%.

Finally, for a particular case we must demonstrate
the convergence of the results at the varying of δD As
long as the grid was chosen accurately. In this case
study will be shown 3 di�erent cases with a δD ever
more forced.´ 1

a
δD1

dr = 0.9831;
´ 1
a
δD2

dr = 0.9999;
´ 1
a
δD3

dr =
1.

δD1
:

Figure 2: �rst case and 6000 points

If we know decided to keep on using a grid of 6000
points even forδD3we would obtain something like
this:

Figure 3: third case and 6000 points

It is clear that if we wish to keep on using this grid
we would have to raise the number of points on the
grid. The following will show a grid of 10000 points:
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Figure 4: fourth case and 10000 points

WhileδD2has the following form (grid of 8000)

Figure 5: second case and 8000 points

The optimization is obviously strongly in�uenced
by the freedom that is given to the control. The
parameter responsible for such choice is ξ,the more
it assumes small values the more the control is free
to go its own way despite the energy spent to make
all this possible.

In the �gure below are reported the values of the
solutions not optimized and not linearized for each
of the three experiments (QI , QII , QIII) confronted
with the values of the optimization at the change of
the parameter ξ:

Case 1 (QI)

Figure 6: Q for di�erent values of ξ

Which enlarged in the point of interest shows the
validity of the optimization:
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Figure 7: zoom

The black curve represents the non linear solu-
tion the others have a value of ξ respectively of
1, 0.1, 0.05, 0.04, 0.03.

The �gure beneath, is in reference to the di�erent
hydraulic conductivity of the mean K:

Figure 8: K for di�erent values of ξ

Which enlarged in the point of interest:

Figure 9: zoom

Beneath are reported the values taken by J at the
varying of the control parameter ξ:

Figure 10: J for di�erent values of ξ

In the end, to verify if the chosen grid is su�cient
the values are reported for one of the cases calculated
above before, with the 6000 point grid and then with
a 1000 point grid
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Figure 11: conversetion

The problem has now reached perfect conversion.

Case 2 QII

We report in the same order of the �rst case the res-
ults obtained.

Figure 12:

Figure 13:

Figure 14:
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Figure 15:

case 3 (QIII)

The optimization in the third case has taken the fol-
lowing values:

Figure 16:

Figure 17:

Figure 18:
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Figure 19:

Convergence

The graphic shows the convergence of the compute
when you increase the dots on the grid:

Figure 20:
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