
Course of Advanced Fluid Dynamics - Final Exam

Optimal perturbation and stability analysis
of a spatial developing flow

Damiano Natali

Abstract

Short-term instabilities play an important role in fluid dynamical stability theory,
where the most common approach is dominated by the quest for the optimal initial con-
dition that results in the maximum amplification of itself over a finite time span. In
the present paper, both the optimal perturbation and the non-modal stability theory is
applied to the one-dimensional linearized Ginzburg-Landau model, which describes the
evolution of a perturbation in a spatially developing flow.

1 Introduction

The aim of the present paper is dual. First, we look for the optimal perturbation in a
spatially developing flow, then the stability of the flow is determined applying tools from
both the modal and non-modal stability analysis. The fluid dynamical system in object
is described by the Ginzburg-Landau model, which is used to describe a wide variety
of phenomena, from phase transition in thermodynamic systems to superconductivity.
However, in our case, the Ginzburg-Landau model will be used to describe the wave
amplitude in a bifurcating spatially developing flow.

After the declaration of all the quantities of the problem, both the adjoint equation
and the optimality system is derived for the Ginzburg-Landau model in Section 2 and nu-
merically discretized along with the direct equation in Section 3. Moreover, some optimal
perturbations for different sets of parameters are shown in Section 4. The stability ana-
lysis will be discussed in Section 5 and 6 with respectively modal and non-modal theory.
Finally, conclusions and future improvements are depicted in Section 7.

The linearized equation for the amplitude of a perturbation about the basic state is
governed by the Ginzburg-Landau model:

∂φ

∂t
= (−U ∂

∂x
+ γ

∂2

∂x2
+ σ) φ (1)

where

• φ = φ(x, t) is the wave amplitude of the perturbation,

• U is the velocity of the mean flow,

• γ is the diffusion coefficient,

• σ(x) is the local bifurcation parameter (σ(x) = σ0 − σ2
x2

2
, σ2 ≥ 0),

• g = g(x) is the initial condition.

The above-written equation will be solved in a one-dimensional infinite domain D =
(−∞,+∞) from time 0 to T , optimizing g by means in order to maximize the following
quantity

< φ(t = T ), φ(t = T ) >

< g, g >
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which represents the ratio between some measure related to the energy of the system
at final and at the initial time. where < a, b >=

∫
D a · b dx. Initial conditions are

φ(x, t = 0) = g(x), whereas asymptotic boundary conditions are φ(x→ ±∞, t)→ 0.

2 Adjoint equations

So far we have defined our state equation F as

F (φ, g) =
∂φ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ) φ

in 0 < t < T with initial condition φ(x, t = 0) = g(x) and boundary conditions φ(x →
±∞, t)→ 0, along with the following cost function J

J =
< g, g >

< φ(t = T ), φ(t = T ) >
(2)

In order to derive the optimal condition with equality contraints with the method of
Lagrangian multipliers we have to find the stationary points of the Lagrangian function
L with respect to its variables:

L(φ, g, a, b, c, d) = J(φ, g)−
∫ T

0
< a,F (φ, g) > dt− < b, φ(x, t = 0)− g > +

−
∫ T

0
c[φ(x→ +∞, t)− 0]dt−

∫ T

0
d[φ(x→ −∞, t)− 0]dt

Whereas derivation with respect to a, b, c and d leads to the state equation, initial and
boundary conditions

∂L

∂a
= 0⇒ ∂φ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ) φ = 0 ;

∂L

∂b
= 0⇒ φ(x, t = 0) = 0 ;

∂L

∂c
= 0⇒ φ(x→ +∞, t)→ 0 ;

∂L

∂d
= 0⇒ φ(x→ −∞, t)→ 0 .

derivatives of L with respect to φ and g give the adjoint equation

−∂a
∂t

= (U
∂

∂x
+ γ

∂2

∂x2
+ σ)a

with its initial and boundary conditions

a(x, t = T ) =
2(
∫ +∞
−∞ g(x̃)g(x̃) dx̃) φT

< φ(x̃, t = T ), φ(x̃, t = T ) >2
; a(x = ±∞, t) = 0 (3)

along with the following optimality conditions (for the full derivation see Appendix A):

g(x) = −a(x, t = 0)

2

∫ +∞

−∞
φ(x̃, t = T ) φ(x̃, t = T ) dx̃ (4)
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Figure 1: Eigenvalues of implicit scheme used for the integration of direct (a) and adjoint (b)
equations compared to the unity circle.

3 Numerical Scheme

A Matlab script has been written in order to solve numerically the optimization pro-
blem. The main steps are here briefly outlined:

• forward integration of the state equation;

• evaluation of the cost function;

• backward integration of the adjoint equation;

• assessment of a new control function via the optimality equation;

These steps have been embedded inside a loop stopping when the absolute difference
between two consecutive values of J is lower than an imposed accuracy.

Both integrations of state and adjoint equations are performed using an implicit back-
ward Euler finite difference scheme:

• State equation

φn+1
i − φni

∆t
= −U

φn+1
i+1 − φ

n+1
i−1

2∆x
+ γ

φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
+ σiφ

n+1
i ⇒

φn+1
i−1 [−U∆t

2∆x
− γ∆t

∆x2
] + φn+1

i [1 +
2γ∆t

∆x2
− σi∆t] + φn+1

i+1 [
U∆t

2∆x
− γ∆t

∆x2
] = φni

• Adjoint equation

−
ani − a

n−1
i

∆t
= U

an−1i+1 − a
n−1
i−1

2∆x
+ γ

an−1i+1 − 2an−1i + an−1i−1
∆x2

+ σia
n−1
i ⇒

an−1i−1 [
U∆t

2∆x
− γ∆t

∆x2
] + an−1i [1 +

2γ∆t

∆x2
− σi∆t] + an−1i+1 [−U∆t

2∆x
− γ∆t

∆x2
] = ani

Both methods have proved to be stable when investigated with the absolute stability
condition due to the implicit method used (see Figure 4).

The accuracy of the adjoint has been checked using the adjoint equality

< a,Lφ >=< φ,L†a > +B.T. (5)

which in our case gives∫ T

0

∫ +∞

−∞
a[
∂φ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ) φ]dtdx =
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=

∫ T

0

∫ +∞

−∞
φ[
∂a

∂t
+ (U

∂

∂x
+ γ

∂2

∂x2
+ σ)a]dtdx+ [a φ]T0

but since both state and adjoint equation does not have any source term,

[a φ]T0 = 0⇒ a(0)φ(0) = a(T )φ(T ),

which in all our simulation has been less than 10−10, next to the machine precision.

4 Optimal perturbation

The particular choice of the control as the initial condition and the cost function as
the ratio between quantities proportional to the energy of initial and final perturbation
defines g as the optimal perturbation.

J =
< g, g >

< φ(t = T ), φ(t = T ) >

To prove the effectiviness of the code we present different optimal perturbations g at
different values of the Ginzburg-Landau parameters (U , γ and σ0/σ2), trying to give them
an interpretation form the physical point of view (see Figure 2). In all our simulation, we
obtained different values of Jmin, which are summarized in Table 1:

different U By increasing U , the optimal perturbation tends to move slighty backward.
This result is because of our approximation of the infinite domain with a finite grid,
since the boundary conditions are φ = 0.

different γ As the diffusion parameter γ grows we notice that the peak of the optimal
perturbation increases and the stiffness decreases, in order to minimize the diffusive
effects.

different σ0/σ2 Since σ0 is constant positive and the bifurcation function σ(x) is given
as σ0 − (σ2/2)x2, the increment of this ratio means a larger portion of domain in
which σ > 0, i.e. where the solution exponentially grows. So, as the ratio increases
the optimal perturbation does not have to be as energetic as the previous ones.

Moreover, we presents the evolution of the optimal perturbation with three different
sets of parameters, whose discussion will be clarified in the section about non-modal
stability analysis (Figure 3).

parameters 1 2 3 4 5
U varying, γ = 1, σ0 = 0.48, σ0 = 0.1 0.3817 0.4602 0.6274 0.9671 1.6850
U = 1, γ varying, σ0 = 0.48, σ2 = 0.1 0.3817 0.5504 0.7286 0.9229 1.1364
U = 1, γ = 1, σ0 = 0.48, σ2 varying 0.3817 0.5835 1.7186 20.1317 5.3399·103

Table 1: Values of Jmin obtained with different parameters configurations.
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Figure 2: Optimal perturbation for systems with different values of parameters U (a), γ (b)
equations compared to the unity circle and σ (c).
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Figure 3: Different evolution of the initial perturbation in a (a) unstable (σ0 = 0.5), (b) neutral
(σ0 = 0.47) and (c) stable (σ0 = 0.42) sets of parameters. Note in the last figure the transient
growth before the decaying of the perturbation.
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5 Linear stability analysis

In order to investigate the behaviour of the solution with tools from linear stability
analysis we perform the normal mode decomposition, substituting the solution written as

φ(x, t) = φ̂(x) eλt

into the equation
∂φ

∂t
= Aφ (A = −U ∂

∂x
+ γ

∂2

∂x2
+ σ).

This transforms the linear initial-value problem into a corresponding eigenvalue problem

λφ̂(x) = Aφ̂(x)

(A− λI)φ̂(x) = 0

where I is the identity operator. If A has at least one eigenvalue λi > 0 the perturbation
φ grows exponentially with time, meanwhile it will decay exponentially if all λs are minor
than 0.

In the following we evaluate the behaviour of the most unstable eigenvalue of A with
the parameter σ0 (see Figure 4).

6 Transient Growth

As stated in [4], linear stability theory is concerned with a quantitative description of
flow behavior involving infinitesimal disturbances superimposed on a base flow. However,
for our case as for most wall-bounded shear flows the spectrum is a poor proxy for the
disturbance behavior as it only describes the asymptotic (t→∞) fate of the perturbation
and fails to capture short-term characteristics. To accurately describe the disturbance
behavior for all times, it appears necessary to introduce a finite-time horizon over which
an instability is observed.

As we are investigating the temporal evolution on an initial perturbation g(t), we define
the gain G(t) as the ratio between some measure related to the energy of the current and
initial perturbation

G(t) = max
g0

‖φ(x, t) φ(x, t)‖
‖g0(x) g0(x)‖

(6)

but since the evolution of the system is described by

φ(x, t) = g0(x)exp(At)

equation (6) becomes

G(t) = max
g0

∥∥g20(x) exp(2At)
∥∥∥∥g20(x)

∥∥ =
∥∥Sexp(2Λt)S−1

∥∥
It should become obvious that no information about the eigenvectors of A, contained in S,
is considered when only the least stable mode is taken as a representation of the operator
exponential.

From the stability theory we know that the minimum growth-rate of the solution coin-
cides at least with the most unstable eigenvalue, and because of the triangular disequality
we can say that

exp(2λmaxt) ≤ G(t) ≤ ‖S‖
∥∥S−1∥∥ exp(2λmaxt)

The quantity ‖S‖
∥∥S−1∥∥ represents the condition number of S (k(S)), a measure of the

non-orthogonality of its columns. So if k(S) > 1 (as in our case) the operator A is said to

6
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Figure 4: (a) Semilogarithmic plot of the gain function G(t) from which we can see the transient
growth of the solution and (b) the most unstable eigenvalue of A for different values of σ0
(U = 1, γ = 1, σ2 = 0.1). Note that the long-term behaviour of the solution turns from stable
to unstable as the most unstable eigenvalue of A becomes positive.

be non-normal, and systems governed by non-normal matrices can exhibit a large transient
amplification of energy contained in the initial condition.

In our case we evaluated the evolution of the energy related to the perturbation for
different values of σ0, in that we can check the results from the accordance between
modal and non-modal analysis. In Figure 4(a) we can see that, whereas for great times
(t & 10) the system undergoes a classical exponential behaviour ruled by the most unstable
eigenvalue of the spatial operator A, at lower times the system exhibits a transient growth
explained by the non-hortogonality of the eigenvectors of A. Results from numerical
simultions agree qualitatively with the one shown in [2], given that ours refer to the
energy of the perturbation and not to the perturbation itself.
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7 Conclusions

In the present paper we have investigated the stability of an initial pertubation in
a spatially developed flow described by the Ginzburg-Landau equation, with tools from
both classic modal analysis and from recently-developed non-modal analysis.

Numerical simulations have shown that, whereas the long time behaviour is well-
catched by the modal analysis, the solution exhibits a so-called transient growth on a
finite-time horizon, explained by the non-normality of the spatial operator.

The results presented here are further borne out in [2], were it is stated that at the
increase of σ2 (i.e. when the flow is strongly non-parallel) the operator A becomes more
and more non-normal.
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A Derivation of adjoint equation

and optimality condition

L(φ, g, a, b, c, d) = J(φ, g)−
∫ T

0
< a,F (φ) > dt− < b, φ(x, t = 0)− g > +

−
∫ T

0
c[φ(x→ +∞, t)− 0]dt−

∫ T

0
d[φ(x→ −∞, t)− 0]dt =

=

∫ +∞
−∞ [g(x) g(x)]dx∫ +∞
−∞ [φT φT ]dx

−
∫ T

0

∫ +∞

−∞
a[
∂φ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ) φ]dxdt+

−
∫ +∞

−∞
b[φ(x, t = 0)− g]dx−

∫ T

0
c(φ(x→ +∞, t)− 0dt−

∫ T

0
d(φ(x→ −∞, t)− 0)dt

A.1 Derivation of L with respect to g

In the following we will use the notation φt̃ = φ(x, t = t̃).

∂L

∂g
δg =

∂J

∂g
δg +

∫ +∞

−∞
b(x) δg dx = 0

but since
∂J

∂g
δg = lim

ε→0

J(φ, g + εδg, a, b, c, d)− J(φ, g, a, b, c, d)

ε
=

= lim
ε→0

∫ +∞
−∞ (g + εδg) (g + εδg)dx−

∫ +∞
−∞ (g g)dx

ε
∫ +∞
−∞ [φT φT ]dx

=

= lim
ε→0

∫ +∞
−∞ 2gεδgdx

ε
∫ +∞
−∞ [φT φT ]dx

=

∫ +∞
−∞ 2gδgdx∫ +∞
−∞ [φT φT ]dx

so ∫ +∞
−∞ 2gδgdx∫ +∞
−∞ [φT φT ]dx

+

∫ +∞

−∞
b(x) δg dx = 0

∫ +∞

−∞
2gδgdx+

∫ +∞

−∞
[

∫ +∞

−∞
φT φTdx̃] b(x) δg dx = 0∫ +∞

−∞
δg[2g +

∫ +∞

−∞
φT φT dx̃ b(x)]dx = 0

Since the previous integral has to be zero ∀g,

2g +

∫ +∞

−∞
φT φT dx̃ b(x) = 0

g(x) = −b(x)

2

∫ +∞

−∞
φT φT dx̃
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A.2 Derivation of L with respect to φ

∂L

∂φ
δφ =

∂J

∂φ
δφ−

∫ T

0

∫ +∞

−∞
a[
∂δφ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ)δφ]dxdt+

−
∫ +∞

−∞
bδφ0dx−

∫ T

0
cδφ−∞dt−

∫ T

0
dδφ−∞dt = 0

but since
∂J

∂φ
=

∂

∂φ
(
p(φ)

q(φ)
) =

p′q − pq′

q2

where p(φ) =< g, g > and q(φ) =< φT , φT >, so

∂J

∂φ
δφ = −2 < g, g >< φT , δφT >

< φT , φT >2

Since boundary conditions impose φ→ 0 as x→ ±∞, also δφ±∞ → 0, so

∂L

∂φ
δφ = −2 < g, g >< φT , δφT >

< φT , φT >2
+

−
∫ T

0

∫ +∞

−∞
a[
∂δφ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ)δφ]dxdt−

∫ +∞

−∞
bδφ(x, t = 0)dx = 0

Now we have to develop the second integral of this relation:∫ T

0

∫ +∞

−∞
a[
∂δφ

∂t
+ (U

∂

∂x
− γ ∂

2

∂x2
− σ)δφ]dxdt =

=

∫ T

0

∫ +∞

−∞
a
∂δφ

∂t
dxdt+

∫ T

0

∫ +∞

−∞
aU

∂δφ

∂x
dxdt−

∫ T

0

∫ +∞

−∞
aγ
∂2δφ

∂x2
dxdt−

∫ T

0

∫ +∞

−∞
aσδφdxdt =

=

∫ T

0

∫ +∞

−∞

∂(aδφ)

∂t
dxdt−

∫ T

0

∫ +∞

−∞
δφ
∂a

∂t
dxdt+

∫ T

0

∫ +∞

−∞

∂(aUδφ)

∂x
dxdt+

−
∫ T

0

∫ +∞

−∞
δφ
∂(aU)

∂x
dxdt−

∫ T

0

∫ +∞

−∞

∂

∂x
[aγ

∂δφ

∂x
]dxdt+

∫ T

0

∫ +∞

−∞

∂(aγ)

∂x

∂δφ

∂x
dxdt−

∫ T

0

∫ +∞

−∞
aσδφdxdt =

=

∫ +∞

−∞
[aδφ]T0 dx−

∫ T

0

∫ +∞

−∞
δφ
∂a

∂t
dxdt+

∫ T

0
[aUδφ]+∞−∞dt−

∫ T

0

∫ +∞

−∞
δφ
∂(aU)

∂x
dxdt−

∫ T

0
[aγ

∂δφ

∂x
]+∞−∞dt+

+

∫ T

0

∫ +∞

−∞

∂

∂x
(
∂(aγ)

∂x
δφ)dxdt−

∫ T

0

∫ +∞

−∞

∂2(aγ)

∂x2
δφdxdt−

∫ T

0

∫ +∞

−∞
aσδφdxdt =

=

∫ +∞

−∞
[aδφ]T0 dx−

∫ T

0

∫ +∞

−∞
δφ
∂a

∂t
dxdt+

∫ T

0
[aUδφ]+∞−∞dt−

∫ T

0

∫ +∞

−∞
δφ
∂(aU)

∂x
dxdt−

∫ T

0
[aγ

∂δφ

∂x
]+∞−∞dt+

+

∫ T

0
[
∂(aγ)

∂x
δφ]+∞−∞dt−

∫ T

0

∫ +∞

−∞

∂2(aγ)

∂x2
δφdxdt−

∫ T

0

∫ +∞

−∞
aσδφdxdt =

but since δφ goes to zero for x→ ±∞

10



=

∫ +∞

−∞
[aδφ]T0 dx−

∫ T

0

∫ +∞

−∞
δφ
∂a

∂t
dxdt−

∫ T

0

∫ +∞

−∞
δφ
∂(aU)

∂x
dxdt−

∫ T

0
[aγ

∂δφ

∂x
]+∞−∞dt+

−
∫ T

0

∫ +∞

−∞

∂2(aγ)

∂x2
δφdxdt−

∫ T

0

∫ +∞

−∞
aσδφdxdt =

Rearranging members leads to

=

∫ +∞

−∞
[aδφ]T0 dx−

∫ T

0

∫ +∞

−∞
δφ[

∂a

∂t
+ (U

∂

∂x
+ γ

∂2

∂x2
+ σ)]a dxdt−

∫ T

0
[aγ

∂δφ

∂x
]+∞−∞dt

Given that this holds ∀ δφ, the previous equation gives the following adjoint equation

−∂a
∂t

= (U
∂

∂x
+ γ

∂2

∂x2
+ σ)a

with the corresponding boundary conditions a = 0 for x → ±∞. Inserting the previous
one in the starting equation will lead to the initial condition for the adjoint equation:

∂L

∂φ
δφ = −2 < g, g >< φT , δφT >

< φT , φT >2
−
∫ +∞

−∞
[aδφ]T0 dx−

∫ +∞

−∞
bδφ0dx = 0

−2

∫ +∞

−∞
< g, g > φT δφT dx−

∫ +∞

−∞
aT < φT , φT >

2 δφT dx+

+

∫ +∞

−∞
a0 < φT , φT >

2 δφ0 dx−
∫ +∞

−∞
b < φT , φT >

2 δφ0dx = 0

Arranging in terms of δφT and δφ0,∫ +∞

−∞
δφT [−2 < g, g > φT − aT < φT , φT >

2] dx+

+

∫ +∞

−∞
δφ0[a0 < φT , φT >

2 −b < φT , φT >
2] dx = 0

And so, given that this holds ∀ δφT and ∀ δφ0

aT =
−2 < g, g > φT
< φT , φT >2

, b = a0
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