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Abstract 

	
  

Study of a model representing the growth of a coastal population under an external forcing. 

The work first concerned the determination of the state equation governing the problem and the 
definition of the variables and parameters required to deal the problem. 

Then has been done the analysis of the problem using the Lagrange operators method in order to 
obtain the fundamental equations to write down the model’s code. 

Once discretized the equations and defined the fundamentals matrices  has been possible to 
implement the code and use it to simulate different dynamic situations of a coastal population 
growth, with and without an external forcing. 

It resulted that the optimization code enables to find the optimal fishing/repopulation vector which 
guarantee the survival of the species. 
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Introduction 

	
  

Today resource management is fundamental in every economic sector; energy, money, food, in a 
industry as much as in a natural environment. 

Recently the worldwide demand for goods resulted in a critical unbalance in different sectors, 
leading sometimes to an environment and resources abuse which would results in a resources 
exhaustion. 

This is the case of fishing, where the global demand of fish, crustaceans and other edible species 
has almost become a serious threat to the survival of several species in different places around the 
world. 

A reckless fishing will also destroy natural habitats and will get a strong interference in the natural 
processes that affect the life cycle of the species, resulting thus in a destructive external forcing that 
must be adjusted to avoid the irreversible erasing of one or several species. 

In order to establish a correct fishing way, it is of primary importance define a maximum fishing 
rate for each moment in a time period typical for a life cycle of a determined species. 

This evaluation must be done after to have determined the natural life cycle of the species without 
any disturbance, in order to compare the natural evolution with the fishing forcing that can be 
tolerated by the marine populations. 

In this work we tried to do something like this, determining a analytical model which could 
represent the dynamic of the population growth for some species  distributed along a coastline 
interested by a considerable along-shore current.  

The target was to find the optimal forcing vector to maintain a sufficient abundance level in the 
populations in order to allow the survival of the species. 
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Methods 

 

 

First of all we started with the analysis of the growth dynamic for a generic population of species. 

The situation requires the division in number j sectors of the analyzed coastline, corresponding to 
number j sub-populations. 

Each of those populations is connected to the other with different weights, so we can represent this 
connection net by a connectivity matrix which reports the relationship between each site. 

This matrix has a Gaussian distribution along its rows but due to the nature of the intense along-
shore current the matrix must be asymmetric [1].Figure 1 shows an example.  

The population growth is also affected by the natural mortality which can be represented with a 
diagonal matrix, by a density dependent settlement rate expressed as a matrix and at last by the 
fishing rate. 

The relations between those factors can be written according to the following state equation which 
governs the problem: 

𝑑𝑛
𝑑𝑡 =   𝐾 𝑡 𝑆 𝑛 −𝑀 − 𝐹   𝑛                                    [1]     

where 

𝒏  is the state vector containing the number of individuals in each population, 

𝑲 𝒕   is the time dependent dispersal matrix, which defines the probability of competent larval 

delivery to each of j local populations per unit time per local adult at time t. Its diagonal therefore 
represents the level of self-recruitment of the populations.	
  Furthermore it is composed by a constant 
part, 𝑲𝒐 , and by a time variable part, 𝛾𝑲𝒕 𝒕  normally distributed, such that < 𝑲𝒕 𝒙,𝒚 >  = 𝟎  and 

 < 𝑲𝒕 𝒙,𝒚 >𝟐= 𝟏. 

𝑺 𝒏   is the density dependent settlement rate, which is expressed as 

                            𝑆 𝑛 =    𝐼 − 𝛴 𝑛                                                                   [2]               

where 𝜮 𝒏    = diag(n1/N1 n2/N2 … nj/Nj) , diag(…) denotes a matrix with elements along the 

diagonal and zeros elsewhere and Nj is the maximum abundance in population j. 

𝑴 is the mortality rate matrix expressed as diag(m1 m2 … mj) where mj are the local mortality 

rates per unit time 
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and 

𝑭    is the fishing rate matrix, diag(f1 f2 … fj). 

Since  the equation [1] shown before is not linear we must linearize it to be able to deal with it. 

After linearization we have: 

𝑑𝑛
𝑑𝑡 = 𝐾 − 2𝐾  𝛴 𝑛∗   −𝑀 − 𝐹   𝑛                                                          [3]   

where 𝒏 is the perturbation defined as    

                            𝑛 =   𝑛 −   𝑛∗                                                                                                              [4] 

with  𝒏∗  solution of equation [1].  

The purpose of this work is to obtain an optimal fishing rate which enables the survival of the 
marine population allowing at the same time the fishing in that place. 

So the new state equation [3] has been decomposed as follows in order to define a forcing vector 
usable in the next analysis steps. What we have now is thus: 

𝑑𝑛
𝑑𝑡 = 𝐾 − 2𝐾  𝛴 𝑛∗   −𝑀   𝑛 −   𝐹  𝑛                                             5  

which can be written so: 

    
𝑑𝑛
𝑑𝑡 = 𝐾 − 2𝐾  𝛴 𝑛∗   −𝑀   𝑛 −     𝑓                                                [6]   

      
𝑑𝑛
𝑑𝑡 = 𝐴  𝑛 −     𝑓                                                                                                                            [7]     

where   𝒇 =   𝐹  𝑛    is the forcing of the problem. 

Now we can start the determination of the required equations for the code writing; using the La 
Grange operators method we will find the already known state equation, the adjoint equation, the 
initial conditions and the optimized forcing vector. 

We define our output as 

                          𝐽 =
𝛾!
2 𝑛 𝑇 − 𝑛!

!
𝑛 𝑇 − 𝑛! +   

𝛾!
2 𝑓!

!

!

𝑓  𝑑𝑡                                 8                                                  

where 𝑛! is the target, i.e. the value desired as final state vector of the populations.  
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Rewriting the equation states in that way 

          𝐹 =   
𝑑𝑛
𝑑𝑥 − 𝐴  𝑛 + 𝑓 = 0                                                                                    [9] 

our LaGrangian is  

𝐿 𝑛, 𝑓,𝑎, 𝑏 =   𝐽 − 𝑎𝐹
!

!

𝑑𝑡 − 𝑏 𝑛 0 − 𝑛! =   

=   
𝛾!
2 𝑛 𝑇 − 𝑛!

!
𝑛 𝑇 − 𝑛! +   

𝛾!
2 𝑓!

!

!

𝑓  𝑑𝑡 − 𝑎
!

!

𝑑𝑛
𝑑𝑥 − 𝐴  𝑛 + 𝑓 𝑑𝑡 − 𝑏 𝑛 0 − 𝑛!         [10] 

Proceeding, placing the derivatives of L respect to 𝑛, 𝑓,𝑎  𝑎𝑛𝑑  𝑏 equal to zero we obtain the 
following results in the order: 

𝑑𝐿
𝑑𝑎 = 0  

  
− 𝛿𝑎

!

!

𝑑𝑛
𝑑𝑥 − 𝐴  𝑛 + 𝑓 𝑑𝑡 = 0  

  
  
𝑑𝑛
𝑑𝑡 − 𝐴  𝑛 + 𝑓 = 0                  𝑠𝑡𝑎𝑡𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛              [11]   

𝑑𝐿
𝑑𝑏 = 0  

  
  −𝛿𝑏 𝑛 0 − 𝑛! = 0  

  
    𝑛 0 = 𝑛!                                𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛                                                        [12] 

𝑑𝐿
𝑑𝑛 = 0  

  
  𝛾! 𝑛 𝑇 − 𝑛! 𝛿𝑛 − 𝑎 𝑡 𝛿𝑛 𝑡

!
! − −

𝑑𝑎
𝑑𝑡 − 𝐴

!𝑎
!

!

𝛿𝑛  𝑑𝑡 − 𝑏𝛿𝑛! = 0        
  
             

              
  
         𝛾! 𝑛 𝑇 − 𝑛! − 𝑎 𝑇 𝛿𝑛 − −

𝑑𝑎
𝑑𝑡 − 𝐴

!𝑎
!

!

𝛿𝑛  𝑑𝑡 − 𝑎 0 − 𝑏 𝛿𝑛! = 0                      [13] 

which gives 

𝑎 𝑇 = 𝛾! 𝑛 𝑇 − 𝑛!                                                                                         [14] 

−
𝑑𝑎
𝑑𝑡 = 𝐴!𝑎                          𝑎𝑑𝑗𝑜𝑖𝑛𝑡  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛                                  [15]     

𝑏 = 𝑎 0                                                                                                                                             [16] 

𝑑𝐿
𝑑𝑓 = 0  

  
  𝛾! 𝑓!

!

!

𝛿𝑓  𝑑𝑡 − 𝑎!
!

!

𝛿𝑓  𝑑𝑡 = 0  
  
      𝛾!𝑓    − 𝑎  
!

!

𝛿𝑓  𝑑𝑡 = 0  
  
   

                              
  
  𝛾!𝑓    = 𝑎

  
  𝑓    =

𝑎
𝛾!
                                      𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑  𝑓𝑜𝑟𝑐𝑖𝑛𝑔                                                            [17] 
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Next step is the discretization of all equations found above. Since in the code implementation  have 
been used many time steps, resulting in very small time intervals, we used the explicit method sure 
to keep the system stable. However, the stability check shown in fig 2 shows the perfect stability 
characterizing the system.  

Discretizing the state equation we have 

                                                                
𝑛!!! − 𝑛!

Δ𝑡 =   𝐴  𝑛! −   𝑓!                                                       [18] 

which treated becomes  

                                                                      𝑛!!! =   𝐵  𝑛! − 𝑓!𝑑𝑡                                                               19      

                            𝑤𝑖𝑡ℎ                      𝐵 =   𝐼 + 𝑑𝑡𝐴                                                                               [20]   

 

Equation [19] must be put in the code loop for the calculation of the integral from  0 to T  with  

𝑛!!! = 𝑛! = 𝑛(0)  as initial condition. 

For the adjoint instead we  have: 

                                                                  𝑎! = 𝐵!   𝑎!!!                                                                                      [21] 

 

which, inserted in the loop for the calculation of the integral from T to 0  with eq.[14] (which 
discretized is  𝑎! = 𝛾! 𝑛! − 𝑛!               [22] ) as initial condition leads to the  𝑎(0) evaluation, 
essential to determine the optimized forcing vector, according to equation [17]. 

 

This method includes adjoint, whose error can be appreciated, already discretized, as 

𝑒𝑟𝑟𝑜𝑟 =    𝑎! !𝑛! − 𝑎! !𝑛! +
1
𝛾!

𝑎!!! !𝑎!𝑑𝑡
!!!

!!!

                                                  [22] 

Now is possible to write down the code for the simulation of the growth dynamic of the marine 
species living in a generic coastline. We try to achieve the species survival acting on the output 
reported in equation [8] choosing an appropriate value of 𝑛!. 
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Results and discussions 

 

What it results from the many simulations performed is the survival of all the populations after an 
established time T, although the growth trend is often decreased by the acting forcing, interpreted as 
a fishing action. 

The particular structure of the output allows us to interpret the external forcing vector 𝑓 not only as 
a fishing rate, but also as a repopulation forcing when, during the simulation running, a population 
reaches a critical value or takes a descendent growth trend. 

The magnitude and the sign of the forcing vector components also depend on the initial condition 
𝑛! and the target value 𝑛!. 

For example if we start from a low value of 𝑛! and we have relatively high value for 𝑛!, i.e. higher 
than the final value 𝑛  (𝑇) of the system without forcing, the resulting forcing will be a repopulation 
vector whose components will have negative sign and magnitude proportional to the difference 
between initial condition and target value. Figure y show it. 

Instead, for all cases with 𝑛! sufficiently low compared to the unforced value of  𝑛  (𝑇), the external 
forcing will simply result as a fishing vector with the most of its components with a positive sign.  

In figures 4.1-4.2 we can observe the trend of a forcing vector and of its components for a 
simulation run with a output target set  at 25% of the maximum abundance. 

Therefore the code performed managed to find the optimized fishing condition for a determined 
environment guarantying  the survival of the species which live in it. It also verifies the validity of 
the optimization method in such a kind of analysis.   
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Figure 1: Asymmetric connectivity matrix. the values inserted in each cell report the 
connection level between the two corresponding sectors, for example in the cell identified by 
row 2 and column 5 is reported the connection between population 2 and 5. 

 

Figure 2: stability plot. It is shown a perfect system stability. 
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Figure 3.1: forced system growth compared with free system growth. Are plotted the different 
components of the state vector in   function with time. It’s visible an attenuation of the growth 
in the forced system. 

 

 

 

  

Figure 3.2: vector evolution in time for the forced system and for the free system. 
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Figure 4.1: external forcing in function with time. It’s evident a component which becomes 
negative, therefore interpretable as a repopulation component. All the other positive 
components are thus fishing rates.  

 

 

 

Figure 4.2: external forcing vector evolution in time. 
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