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SUMMARY 

The aim of this work is to apply an optimization process, based on the Lagrange multipliers method, to reduce the 
oscillations and the instabilities of a wing due to aeroelasticity effects. The problem is governed by a linear dynamical 
system; an objective (or cost) function is defined, taking in account both the state of the system and the control term. 
The goal is to find the optimal control law in order to minimize the objective function in a specified time range, where 
the final time is a parameter of the problem. 
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INTRODUCTION 

The aeroelasticity problem of this work consist of a wing, with a fixed wing root and a free wing tip, 
provided with an aileron. The latter represents the control term of the problem. The aeroelastic model of 
the wing is not here reported, detailed aspects of the physics of this problem can be found in [1] and [2], 
here only a mention is done. In Fig. 5 (see pag. 8) is represented the model of the wing section; one can see 
the wing has two d.o.f., a vertical displacement (ݕ)ݓ and a rotation (ݕ)ߠ around the c.g. of the airfoil, 
where y is the coordinate in the spanwise direction. There are also stiffness and damping factors. The 
equation governing this system can be written as 

(ݐ)ݔ݀
ݐ݀

= (ݐ)ݔ ܣ +  (ݐ)ߜܤ

where (ݐ)ݔ = ;(ݐ)ݓൣ ;(ݐ)ߠ ;(ݐ)ݓ̇  ൧ and A, B depend on the parameters of the problem. The time(ݐ)ߠ̇
domain is ݐ ∈ [0,ܶ] and the i.c. of the equation is (0)ݔ =   ଴. The objective function is defined asݔ

ܬ =
1
2
ଵනߛ (ݐ)ݔ(ݐ)்ݔ

்

଴
ݐ݀ +

1
2
ଶනߛ ଶ[(ݐ)ߜ]

்

଴
ݐ݀ +

1
2
  (ܶ)ݔ(ܶ)்ݔଷߛ

 
The first term of the function is associated to the evolution of the system, the second is associated to the 
energy of the control and the last term is associated to the state of the system at the time instant T. Each 
term is properly weighted with three coefficients ߛଵ,  ଷ. Varying properly one of these weights moreߛ ଶ andߛ
or less importance can be associated to each term.  
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DERIVATION OF THE OPTIMALITY SYSTEM 

The Lagrangian function is defined as: 

ℒ൫(ݐ)ݔ, ,(ݐ)ܽ,(ݐ)ߜ ܾ൯ = ܬ ቀ(ݐ)ݔ, ቁ(ݐ)ߜ − න ܨ (ݐ)்ܽ ቀ(ݐ)ݔ, ቁ(ݐ)ߜ
்

଴
ݐ݀ − (0)ݔൣ்ܾ −  ଴൧ݔ

where the vectors a and b are the Lagrange multipliers, J is the cost function and 

ܨ ቀ(ݐ)ݔ, ቁ(ݐ)ߜ =
(ݐ)ݔ݀
ݐ݀

− (ݐ)ݔ ܣ (ݐ)ߜܤ− = ݐ   , 0 ∈ [0,ܶ] 

that is another way to write the state equation. 

Now the optimality conditions are obtained by setting the first variation of the Lagrangian function equal to 
zero, that means: 

ℒߜ =
߲ℒ
ݔ߲

ݔߜ +
߲ℒ
ߜ߲

ߜߜ +
߲ℒ
߲ܽ

ܽߜ +
߲ℒ
߲ܾ

ܾߜ = 0 

hence ∇ℒ = 0. 

Performing all the derivatives one obtains: 

∎
߲ℒ
߲ܾ

= (0)ݔൣ்ܾߜ                                        0 − ଴൧ݔ = 0 ⟹ (0)ݔ = ଴ݔ  ܾߜ ∀    

∎
߲ℒ
ߜ߲

= 0 

ଶනߛ (ݐ)ߜߜ(ݐ)ߜ
்

଴
ݐ݀ +න (ݐ)ߜߜܤ(ݐ)்ܽ

்

଴
ݐ݀ = 0 

න (ݐ)ߜଶߛൣ + (ݐ)ߜߜ൧ܤ(ݐ)்ܽ
்

଴
ݐ݀ = 0 ⟹ (ݐ)ߜ = −

ܤ(ݐ)்ܽ
ଶߛ

ݐ   ,(ݐ)ߜߜ ∀      ∈ [0,ܶ] 

∎
߲ℒ
߲ܽ

= 0 

න ܨ(ݐ)்ܽߜ ቀ(ݐ)ݔ, ቁ(ݐ)ߜ
்

଴
ݐ݀ = 0 ⟹ 

⟹ ܨ ቀ(ݐ)ݔ, ቁ(ݐ)ߜ =
(ݐ)ݔ݀
ݐ݀

− (ݐ)ݔ ܣ − (ݐ)ߜܤ = 0 ݐ   ,(ݐ)ܽߜ ∀    ∈ [0,ܶ]     

∎
߲ℒ
ݔ߲

= 0 

Using the integration by parts leads to the following expression: 

න ቈ
(ݐ)ܽ݀
ݐ݀

+ (ݐ)்ܽܣ + ቉(ݐ)ݔଵߛ
்

(ݐ)ݔߜ
்

଴
ݐ݀ + (ܶ)ݔଷߛൣ − ܽ(ܶ)൧

்
(ܶ)ݔߜ + ൣܽ(0) − ܾ൧

்
(0)ݔߜ = 0 
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Hence the adjoint system is: 

 
(ݐ)ܽ݀
ݐ݀

+ (ݐ)்ܽܣ + (ݐ)ݔଵߛ = ݐ   ,(ݐ)ݔߜ ∀       0 ∈ [0,ܶ] 

ܽ(ܶ) =  (ܶ)ݔߜ ∀              (ܶ)ݔଷߛ

ܾ =  (0)ݔߜ ∀              (0)ܽ

 

DISCRETE OPTIMALITY SYSTEM  

In order to implement an algorithm to solve the problem numerically the equations have to be discretized 
in the time domain. Regarding the state equation a Backward Euler method is used. 

௜ାଵݔ − ௜ݔ

ݐ∆
= ௜ାଵݔ ܣ + ௜ߜܤ ⟹ ௜ାଵݔ = ௜ݔ൫ܮ + ݅  ൯    forݐ∆௜ߜܤ = 0,1, … ,ܰ − 1 

 

where ܮ = ቀܫ − ቁݐ∆ܣ
ିଵ

 and ܰ = ଴ݔ The initial condition is .ݐ∆/ܶ =  .଴ݔ

Using the discrete adjoint approach and starting from the adjoint identity one gets 

൫ܽ௜ାଵ൯
் ቀݔ ܮ௜ቁ = ቀ்ܽܮ௜ାଵቁ

்
݅  ௜    forݔ = 0,1, … ,ܰ − 1 

By imposing 

௜ାଵ்ܽܮ = ቀܽ௜ − ଵ
ଶ
݅  ቁ    forݐ∆௜ݔଵߛ = 0,1, … ,ܰ − 1 

and substituting in the previous identity one gets 

൫ܽ௜ାଵ൯
் ቀݔ௜ାଵ − ቁݐ∆௜ߜܤ ܮ = ൬ܽ௜ −

1
2
൰ݐ∆௜ݔଵߛ

்

௜ݔ  

൫ܽ௜ାଵ൯
்
௜ାଵݔ − ൫ܽ௜൯

்
௜ݔ − ൫ܽ௜ାଵ൯

்
ݐ∆௜ߜܤ ܮ +

1
2
௜൯ݔଵ൫ߛ

்
ݐ∆௜ݔ = 0 

Since the last relation has to be valid for any  ݅ = 0,1, … ,ܰ − 1 one obtains an identity for evaluate the 
accuracy of the adjoint. Using the discrete approach the error has to be equal to the machine precision. 

ݎ݋ݎݎ݁ = อ൫ܽே൯
்
ேݔ − ൫ܽ଴൯

்
଴ݔ −෍൫ܽ௜ାଵ൯

்
ݐ∆௜ߜܤ ܮ

ேିଵ

௜ୀ଴

+ ෍
1
2
௜൯ݔଵ൫ߛ

்
ݐ∆௜ݔ

ேିଵ

௜ୀ଴

อ 

The optimality condition is found using both the adjoint identity and the definition of the objective 
function;  the latter has to be linearized before proceeding since is not linear with respect to x and δ. 

ܬߜ = ෍ߛଵ൫ݔ௜൯
்
ݐ∆௜ݔߜ

ேିଵ

௜ୀ଴

+ ଶߛ ෍ߜ௜ ∙ ݐ∆௜ߜߜ
ேିଵ

௜ୀ଴

+ ே൯ݔଷ൫ߛ
்
ேݔߜ = 0 
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൫ܽே൯
்
ேݔߜ − ൫ܽ଴൯

்
଴ݔߜ −෍൫ܽ௜ାଵ൯

்
ݐ∆௜ߜߜܤ ܮ

ேିଵ

௜ୀ଴

+ ෍ߛଵ൫ݔ௜൯
்
௜ݔߜݐ∆

ேିଵ

௜ୀ଴

= 0 

Since the initial condition is fixed then ݔߜ଴ = 0. 

෍ ቂߛଶߜ௜ + ൫ܽ௜ାଵ൯
்
ቃܤ ܮ ݐ∆௜ߜߜ

ேିଵ

௜ୀ଴

+ ேݔଷߛൣ − ܽே൧
்
ேݔߜ = 0 

The optimality condition on the control is 

௜ߜ = −
൫ܽ௜ାଵ൯

்
ܤ ܮ

ଶߛ
   for  ݅ = 0,1, … ,ܰ − 1 

Furthermore the terminal condition on the adjoint vector is 

ܽே = ேݔଷߛ  

Finally the discrete optimality system is 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ௜ାଵݔ = ௜ݔ൫ܮ + ൯ݐ∆௜ߜܤ

଴ݔ = ଴ݔ

ܽ௜ = ௜ାଵ்ܽܮ +
1
2
ݐ∆௜ݔଵߛ

ܽே = ேݔଷߛ

௜ߜ = −
൫ܽ௜ାଵ൯

்
ܤ ܮ

ଶߛ

 

The resolution scheme is the following: 

- Resolution of the state equation from t=0 to t=T, given the i.c.  ݔ଴ =  ଴ݔ

- Resolution of the adjoint equation proceeding backward in time, from t=T to t=0, given the terminal 
condition ܽே = ேݔଷߛ  

- Check of the accuracy and evaluation of the control ߜ௜ using the optimality condition. 

This scheme is repeated until convergence is reached, starting with an arbitrary control ߜ௜, e.g. constant in 
time or null. 

RESULTS 

The previous scheme has been implemented in an algorithm using the Matlab environment. Before 
proceeding it is useful to recall the state equation, i.e. the dynamical system governing the problem, to 
understand the mathematical aspects and define the problems we want to optimize. 

(ݐ)ݔ݀
ݐ݀

= (ݐ)ݔ ܣ + ݐ   , (ݐ)ߜܤ ∈ [0,ܶ] 

Let us consider the related homogeneous equation, i.e. without the forcing term. As one can see it is a  
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linear, autonomous dynamical system, because the matrix A is constant in time. The point ݔ = 0 clearly is a 
stationary solution of the system. The stability of this point, as known, can be evaluated by inspecting the 
eigenvalues of the coefficients matrix A; if for all eigenvalues ߣ௜ ∈ ℂ, ܴ݁(ߣ௜) < 0 ൫1 ≤ ݅ ≤  ൯ the(ܣ)݉݅݀
point is said to be stable, otherwise, if at least one eigenvalue has positive real part, the point is said to be 
unstable. 

The goal now is to find the control law in order to minimize the objective function J, starting from two 
different initial conditions, both in the neighborhood of the stationary point ݔ = 0. The first is to study and 
control the evolution of the system starting with the wing slightly bended, without twist, the second with 
the wing slightly twisted, without bending. For each case two further conditions are considered; since the 
matrix A (and so the eigenvalues) depends on the problem properties, varying wind speed the stable and 
the unstable conditions can be made. For the first case a freestream velocity  ܷ = 12,5 is used, in Fig.1 (a) 
is shown that all the eigenvalues of the coefficients matrix are in the negative real side of the complex 
plane. In Fig. 1 (b), with a freestream velocity ܷ = 12,7, an eigenvalue has positive real part, that causes 
exponential growth and therefore the instability of the stationary solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Eigenvalues of the matrix A on the complex plane for the (a) stable case and (b) unstable case. 

(a)                                                                                           (b) 

Fig. 2 – Numerical stability of the 
discretized problem. For the 

backward Euler scheme all the 
eigenvalues modulus is less than 

one, therefore the numerical 
scheme is stable. 
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Fig. 3  – Control law, ‖(ݐ)ݓ‖ and ‖(ݐ)ߠ‖ in the stable case for two different initial conditions: 

(a) ݓ଴(ݕ) = 0,01 cos ቀగ
ଶ
௬
௅
ቁ − (ݕ)଴ߠ ;0,01 = 0; ܶ = 10, ଵߛ = 1, ଶߛ = 2 ∙ 10ହ , ଷߛ = 0 

(b) ݓ଴(ݕ) = (ݕ)଴ߠ ;0 = 0,1 cos ቀగ
ଶ
௬
௅
ቁ − 0,1; ܶ = 10, ଵߛ = 1, ଶߛ = 2 ∙ 10ହ , ଷߛ = 0 

(a)                                                                                             (b) 



7 
 

 

 

 
(ܶ = 1, ଵߛ = 1, ଶߛ = 0,8 ∙ 10ହ, ଷߛ = 0) 

Fig. 4 – Control law, ‖(ݐ)ݓ‖ and ‖(ݐ)ߠ‖ for the unstable case with the (a) and (b) initial conditions. 
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CONCLUSIONS 

In this paper it has been developed a control model able to reduce the oscillations of a wing due to 
aerodynamic effects. The mathematical model used for the description of the problem is a linear dynamical 
system and the cost function chosen takes in account the evolution of the system, the energy of the control 
and the final state of the system itself; the algorithm, implemented in the Matlab environment, has been 
tested in a neighborhood of the stationary point in the stable and unstable cases. As one can see from the 
results the control is able to minimize the cost function for all the cases. In particular, in the stable case the 
control acts in order to reach in less time the stationary condition. In the unstable case the control is not 
able to stabilize the system, nevertheless this unstable behavior is delayed. This fact is probably due to the 
definition of the cost function, defined over a finite time range and containing both a system evolution 
term and an energy control term, and then the optimal condition of the control acts in order to have a 
compromise between this two terms.  

Each term of the cost function is properly weighted through three coefficients; it is seen that, in order to 
have convergence, the weight of the energy control term has to be several order of magnitude greater than 
the system evolution term. Simulations not here reported, with the cost function taking in account only the 
final state of the system and the energy control term, has been performed and no appreciable differences 
with the previous cases were noticed. 
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 Fig. 5 –Schematic model of the wing section. 


