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SUMMARY 
 

The aim of this work is to develop a control model able to minimize the kinetic energy of a viscous boundary layer bounded between 

a steady and a moving wall. The physic of the problem is based upon the one dimensional homogenous viscous Burger’s equation, 

which represents the motion of the fluid. The proposed method to evaluate the upper moving wall velocity able to minimize the 

kinetic energy is based on the Lagrangian multipliers approach. At first the problem is solved in an approximate way, that is to say 

solving the linearized Burgers' Equation. Successively the problem is solved by employing the non-linear homogenous Burgers’ 

Equation. Numerical examples are presented to illustrate the effectiveness of the method. 

NOMENCLATURE 

�, �, �, � Lagrangian multipliers 

� Matrix of the direct problem 

� Matrix of the adjoint problem 

�	, �
 Constants of integration 

� Cost function 

� Identity matrix 

 Lagrangian operator 

� Distance between the two flat walls 

� Search direction 

� Weight function 

�� , ��  
Slope of the left and right segment in the 

smoothing procedure 

� Time 

� Time of simulation 

�� Forcing term 

� Velocity � at  � � � 

� Control function 

� Solution of the linearized direct problem 

�� Initial solution for the direct problem 

��  Solution for the direct problem 

� Solution of the stationary Burger’s Equation  

�, � Coordinate system 

 

Greeks 

  Exponential parameter 

∆� Spatial interval 

∆� Time interval 

" Small perturbation coefficient 

# Kinematic viscosity of the fluid 

$ Step length 

 

Apex  

% Time index 

& Upper bound of time index 

 

Subscripts 

' Spatial index 

( Upper bound of spatial index 

 

INTRODUCTION 

We consider the problem of a boundary layer velocity 

profile bounded between two flat walls. The problem can 

be sketched as in Fig. 1: 

 
(a) (b) 

Figure 1 – Problem representation at initial 

condition (a) and at time t (b)  

 

The lower wall is stuck, while the upper one is moving 

with a time dependent speed �)�*, which is assumed as 

the control function of the problem. The coordinate 

system �, � is setted as in Fig. 1, with the � direction 
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bounded between 0 and �, and the y coordinate directed 

along the flat plane. The profile velocity is indicated with �, and it depends on both time and spatial coordinate �. 

The study of this kind of problem is motivated by flow 

control problems where the control action is located on 

the walls ,1., ,2., ,3.. A similar approach, but based on 

the optimal feedback law derived from distributed 

parameters, has been developed in ,4., while in this paper 

we will focus on the minimization of boundary layer 

kinetic energy through the Lagrangian multipliers 

approach ,5.. 
 

MATHEMATICAL MODEL 

In order to represent the motion inside boundary layer we 

consider the viscous Burgers’ Equation: 

3
3� ��)�, �* � # 3


3�
 ��)�, �* 4 3
3�

1
2 ��)�, �*
 

(1) 0 5 � 5 � 0 5 � 6 � 

with homogeneous boundary condition at � � 0 

��)� � 0, �* � 0 (2) 

and the Dirichlét boundary control at � � �: 

��)� � �, �* � �)�* (3) 

The initial condition is given by: 

��)�, � � 0* � ���)�* (4) 

The constant parameter # represents the kinematic 

viscosity of the fluid. As a first approach, in order to 

simplify the problem solution and to increase the rate of 

convergence and stability, the homogeneous viscous 

Burgers’ Equation has been linearized. The linearization 

is made by applying a small perturbation in the 

neighbourhood of the stationary solution of the following 

problem: 

# 3

3�
 �)�* 4 3

3�
�
)�*

2 � 0 (5) 

0 5 � 5 � 

With the boundary conditions: 

�)� � 0* � 0 (6) 

�)� � �* � � (7) 

The general solution of  Eq.(5) is: 

�)�* � 72�	 tanh <4 7�	�
#√2 > �
? (8) 

By imposing boundary conditions of Eq.(6) and Eq.(7) 

the two constants �	 and �
 are: 

tanh <4 7�	
√2#? 72�	 4 � � 0 (9) 

�
 � 0 (10) 

If we consider that: 

��)�, �* � �)�* > "�)�, �* 
(11) 

" @ 1 

the linearization of problem (1) can be obtained as: 

3
3� ,�)�* > "�)�, �*. � 

(12) 

# 3
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 ,�)�* > "�)�, �*. 4 3

3�
1
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And thus, neglecting the higher order terms, we obtain: 

3
3� �)�, �* � # 3


3�
 �)�, �* 4 3
3� ,�)�*�)�, �*. (13) 

With the boundary conditions: 

�)� � 0, �* � 0 (14) 

�)� � �, �* � �)�* (15) 

And the following initial condition: 

�)�, � � 0* � ��)�* (16) 

In order to minimize the kinetic energy of the boundary 

layer, the following cost function � is chosen ,4.: 
� � A BCD EA �)�*�

�
��)�, �*
�� > �)�*
F ��G

�
 (17) 

That for the linearized equation becomes: 

� � A BCD EA �)�*�
�

�)�, �*
�� > �)�*
F ��G
�

 (18) 

The constant α is a positive number, and  q)x* is a user 

defined weight function. When α is a positive number, 

there is an additional performance requirement ,6., ,7., ,8.. 
 

LAGRANGIAN APPROACH 

If we consider Eq. (13), the Lagrangian approach leads to 

the expression: )�, �, �, �, �, �* � 

� � 4 A A � M 3
3� �)�, �* 4 # 3


3�
 �)�, �* >N�
�

G
�

 

N> 3
3� ,�)�*�)�, �*.O ���� > 

4 A �,�)�, 0* 4 ��)�*.�
�

�� > 

4 A �,�)0, �* 4 0.G
�

�� > 

4 A �,�)�, �* 4 �)�*.G
�

�� 

 

(19) 

where �, �, �, � are the Lagrangian multipliers. Thus, 

setting the gradient of  equal to zero, we obtain the 

necessary conditions for the problem resolution: 

P 3
3� � 0 

3
3� �)�, �* � # 3


3�
 �)�, �* 4 3
3� ,�)�*�)�, �*. (20) 

P 3
3� � 0 

�)�, 0* � ��)�* (21) 

P 3
3� � 0 
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�)0, �* � 0 (22) 

P 3
3� � 0 

�)�, �* � �)�* (23) 

P 3
3� � 0 

4 3
3� �)�, �* 4 �)�* 3

3� �)�, �* > 

4# 3

3�
 �)�, �* 4 BCD,2�)�*�)�, �*. � 0 

(24) 

�)0, �* � 0 (25) 

�)�, �* � 0 (26) 

�)�, �* � 0 (27) 

�)�* � �)�, 0* (28) 

�)�* � # N 33� �)�, �*QRS� (29) 

�)�* � 4# N 33� �)�, �*QRS� (30) 

P 3
3� � 0 

�)�* � #
2BCD N 33� �)�, �*QRS� (31) 

 

As one can note: 

− the derivative with respect to � leads to the definition 

of the direct problem; 

− the ones with respect to �, � and � leads to the 

definition of the direct problem boundary and initial 

conditions respectively; 

− the one with respect to � leads to the definition of the 

adjoint problem ,9., of its boundary and initial 

conditions and of the Lagrangian operator �, � and �; 

− the one with respect to � leads to the definition of the 

optimal condition for control �)�*. 

 

Furthermore, the adjoint equation Eq.(24) has to be 

integrated backward in time, because of the negative sign 

of the time derivative. Thus, the “initial” condition of the 

adjoint problem is intended at time t � T. 
 

DISCRETIZATION METHOD 

In this paragraph the discretization methods for the 

analysis of both original and linearized model are 

presented. The discretization approach employes for both 

cases an implicit finite difference scheme. 
 

Non linearized model discretization 
Starting from Eq. (1), if we choose an implicit finite 

difference scheme, with first order approach in time and 

second order approach in space, we have for the direct 

problem: 

�WXY	 4 �WX∆� � # �WY	XY	 4 2�WXY	 > �WZ	XY	
∆�
 > 

4 [�WY	XY	\
 4 [�WZ	XY	\

4∆�  

(32) 

This scheme leads to the system: 

�	XY	 4 0 � 0 

 

�WXY	 4 ∆� #
∆�
 [�WY	XY	 4 2�WXY	 > �WZ	XY	\ > 

> ∆�
4∆� ][�WY	XY	\
 4 [�WZ	XY	\
^ 4 �WX � 0  

 ' � 2, … ( 

 

�`Y	XY	 4 �XY	 � 0 
 

(33) 

Where: 

% � 1, … & 

This non-linear system can be solved for example 

through a Levenberg-Marquard method ,10.. 
 

Linearized model discretization 
Starting from Eq.(20), if we choose, as for the non-

linearized model, an implicit finite difference scheme, 

with first order approach in time and second order 

approach in space, we have for the direct problem: 

�WXY	 4 �WX∆� � # �WY	XY	 4 2�WXY	 > �WZ	XY	
∆�
 > 

> �WY	�WY	XY	 4 �WZ	�WZ	XY	
2∆�  

(34) 

This scheme leads to the system: 

�XY	 4 �X
∆� > ��XY	 4 �� � 0 (35) 

where: 

�� � 

a�	XY	 b #
∆�
 > �	2∆�c 0 … 0 �`Y	XY	 b #

∆�
 > �`Y	2∆� cdG
 

and the matrix � is a three-diagonal matrix with the 

elements: 

�W,e � 2#
∆�
 'f ' � g 

�W,e � 4 #
∆�
 4 �W2∆� 'f ' � g > 1 

�W,e � 4 #
∆�
 > �WY
2∆�  'f ' � g 4 1 

 where we have indicated: 

' � 2, … , ( 

% � 1, … , & 

∆� � �
( 

∆� � �
& 

Since the scheme is implicit, its resolution leads to: 

�XY	 � h� > ∆��iZ	 [�X > ∆���\  % � 1, … , & (36) 
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For the adjoint problem resolution, starting from Eq.(24), 

if we choose a coherent implicit finite difference scheme, 

with first order approach in time and second order 

approach in space, we have: 

4 �WXY	 4 �WX∆� � # �WY	X 4 2�WX > �WZ	X
∆�
 > 

>�W
�WY	X 4 �WZ	X

2∆� 4 ��jke  

(37) 

This scheme leads to the system: 

4 �XY	 4 �X
∆� > � �X 4 ��jke � 0 (38) 

where: ��jke � 

� ,2�
�
X 2�l�lX     m    2�`Z
�`Z
X     2�`Z	�`Z	X .
BZC)XZ	*∆D

G
 

 

and the matrix � is a three-diagonal matrix with the 

elements: 

�W,e � 2#
∆�
 'f ' � g 

�W,e � 4 #
∆�
 4 �W2∆� 'f ' � g > 1 

�W,e � 4 #
∆�
 > �W2∆� 'f ' � g 4 1 

with the same spatial and time discretization of the direct 

problem. Since the scheme is implicit, its resolution leads 

to: 

�X � h� > ∆��iZ	 [�XY	 > ∆���jke\     % � &, … ,1 (39) 

 

APPLICATIONS 

The method previously shown has been written in an 

automatic calculation procedure in Matlab
®
 environment ,11.. It has been applied a smoothing procedure on the 

optimal condition of the control in order to keep the 

compatibility condition between the initial condition and 

the upper boundary condition. Such a algorithm is 

presented for case in which the first eight time step of the 

control are not calculated by the optimal condition. Since 

the first time step is given by the compatibility condition 

if one takes as unknowns  the control points between the 

second and the eighth time step one can proceed as 

indicated in the following expressions. 

 

�n � 4 ��o > ��o2 4∆� > �o 

�p � 4 ��n > ��o2 2∆� > �o 

�l � 4 ��p > ��n2 2∆� > �n 

�q � 4 ��o > ��p2 ∆� > �o 

�r � 4 ��q > ��p2 ∆� > �p 

�s � 4 ��l > ��r2 ∆� > �n 

�
 � 4 ��s > ��l2 ∆� > �l 

 In Fig. 2 a graphical representation of the smoothing 

procedure is shown. 

 
Figure 2 - Graphical representation of the 

smoothing procedure for the control determination 
 

As a first application the linearized model has been 

employed to simulate the problem. 

The values of   and �)�* have been chosen as variable 

parameters. In particular: 

 � 0, 0.4, … ,1.2 �)�* � u  where  u � 1, 11, … ,31 
(40) 

As a first result the stability of the method has been 

investigated in order to define the proper discretization 

method (implicit or explicit). The Euler circle ,12., 
which represents the stability zone of the scheme, is: 

 
Figure 3 - Euler circle for the linearized model 

 

Thus, an implicit scheme has been adopted. The 

calculated control law is presented. Firstly fixing �)�* to 

one and letting   to vary as indicated in Eq.(40) [Figure 4 

(a) and (b)], and then fixing α to zero and letting q)x* to 

vary as indicated in Eq.(40) [Figure 5 (a) and (b)]. 
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(a) 

 
(b) 

Figure 4 – Control law for the linearized problem 

letting w to vary: (a) global view, (b) zoomed view 

 
(a) 

 
(b) 

Figure 5 – Control law for the linearized problem 

letting x)y* to vary: (a) global view, (b) zoomed view 

 

As a second application the non linearized model has 

been simulated. The adjoint problem resolution is 

determined using Eq. (41) instead of Eq. (37). 

 

4 �WXY	 4 �WX∆� � # �WY	X 4 2�WX > �WZ	X
∆�
 > 

>�'%
�WY	X 4 �WZ	X

2∆� 4 ��jke  

(41) 

 

Eq.(41) is rigorous for the linearization of Eq. (32) in the 

neighborhood of the solution w{| and not for the adopted 

Eq. (32). For this reason the optimal control �}~D)�* from 

Eq. (31) is not used directly, but only to find out the 

descent direction and to calculate, through a proper 

choose of the step length ,13., the new value of the 

control law in the iterative process. 

 �X��)�* � �}�k)�* > $� 
 �X��)�* � �}�k)�* > $)�}~D)�* 4 �}�k)�** 

(42) 

 
 

The values of � and x)y* have been chosen as variable 

parameters taken as just written in Eq. (40). The 

calculated control law is presented. Firstly fixing x)y* to 

unity and letting � to vary as indicated in Eq.(40), then 

fixing w to zero and letting �)�* to vary as indicated in 

Eq.(40). 
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(a) 

 
(b) 

Figure 6 – Control law for the non-linearized 

problem letting w to vary: (a) global view, (b) zoomed 

view 

 

 
(a) 

 
(b) 

Figure 7 – Control law for the non-linearized 

problem letting x)y* to vary: (a) global view, (b) 

zoomed view 
 

In the last two applications the step length has been 

chosen respectively equal to 0.03 and 0.2. Finally the 

solution ��)�, �* resulting from the found control law is 

shown. 

 
Figure 8 - Solution  ��)y, �*: q(x) equal to 1 and α 

equal to 0 

 
Figure 9 - Solution  ��)y, �*: q(x) equal to 1 and α 

equal to 0, detailed view 
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Figure 10 - Solution  �� )y, �*: q(x) equal to 1 and α 

equal to 1.2, detailed view 
 

 
Figure 11 - Solution  �� )y, �*: q(x) equal to 31 and α 

equal to 0, detailed view 
 

CONCLUSIONS 

A control model, able to minimize the kinetic energy of a 

viscous boundary layer, has been developed. The 

mathematical problem, based on the control of Burgers’ 

Equation, has been solved through the employ of  

Lagrangian multipliers approach. The model, developed 

in Matlab environment, has been applied to the study of a 

boundary layer bounded between two walls. As a first 

application the Burgers’ Equation has been linearized by 

applying a little perturbation in a neighborhood of a 

stationary solution in order to simplify the problem of 

minimizing the kinetic energy. In fact, for this case the 

kinetic energy is due to only the speed associated to the 

small perturbation.  As one can notes the control begins 

to modify the solution for low values of the weight 

function �)�*, while the exponential coefficient    

contribution is relevant on the control only for values 

greater then unity. As a second case the control model 

has been applied to the control of the non linear Burgers’ 

Equation. For this case the sensitivity of the control with 

respect to the weight function is higher for lower values 

of  �)�*, while the influence of coefficient    begin for 

lower values with respect to the first application. The 

smoothing procedure on control law (Fig. 2) allows to 

respect the compatibility condition, which is not a strictly 

imposed condition in the Lagrangian approach. 

Furthermore, the values of control law, as indicated in 

Figures from 4 to 7, strongly decreases from the initial 

condition till a negative peak, which amplitude depends 

on both exponential coefficient and weight function. This 

kind of behavior, unexpected in a first analysis of the 

problem, means that in order to strongly reduce the 

kinetic energy associated to the boundary layer velocity 

profile, it is necessary to have in the first instants of 

control, a reverse motion of the upper bounding wall, that 

successively start to increase till the value of zero. Thus, 

the only decrease of upper bounding wall speed till the 

value of zero should not be sufficient to minimize the 

kinetic energy of the problem.   
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