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Background

Far from the coast the influence of surface waves on the bottom layer is insignificant.
As the waves move closer to the coast the shear stress in the boundary layer increases
and destabilizes the upper layers of sediment. Even closer to the coast the boundary
layer changes from laminar to turbulent and sediment transport becomes even more
intense. This is due to the large vortical structures that ”picks” up sediment from the
bottom to a level where the local velocity is higher and consequently enhance
transport.

The main differences between laminar and turbulent flow when it comes to sediment
transport are

Laminar flow : forces act locally on the sediment and the grain ”diameter”
becomes the important length scale

Turbulent flow : large vortices ”picks” up sediment, mixing, transport

It is therefore of importance to understand in what circumstances (parametrically) the
flow transitions



Motivation Transition Boundary layer Stability Results Conclusions

Why study laminar-turbulent transition ?

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  

increase our understanding in a field of study which
is still not completely understood

fluid forces (lift, drag, ...) increase when the flow
becomes turbulent

mixing is enhanced due to turbulence

sediment transport increases due to coherent
structures (vortices)



Motivation Transition Boundary layer Stability Results Conclusions

Routes to transition : highly dependent on Tu

	  

Tu ∼ 0.1%

Tu ∼ 10%

	  

	  
	  
	  
	  

	  



Motivation Transition Boundary layer Stability Results Conclusions

Classical route to transition : low Tu, Modal analysis

	  

1 Receptivity: Initial amplitudes of unstable waves
need to be estimated to capture transition
”location”

2 Disturbance growth is initially linear and accurately
predicted by Linear Stability Theory (LST)

3 Breakdown of disturbances, nonlinear process,
finally leading to turbulence	  

	  
	  
	  
	  
	  

	  



Motivation Transition Boundary layer Stability Results Conclusions

Transition scenario in solitary wave boundary layer

Few investigations exist concerning the common ”route” to transition in solitary wave
boundary layers.

We don’t know

The receptivity mechanisms (environmental Tu, wall roughness, ...)

If the dominant linear growth is modal or nonmodal

...consequently if the dominant waves are 2D or 3D

The late stages in the transition process (nonlinear, saturation, ...)

Where do we start ?

Classical Modal analysis Compare with DNS & Exp.
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Definition of the basic flow : surface
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Assume
H = H∗/h∗ << 1
µ = h∗/L∗ << 1 (Boussinesq)

with H ∼ µ2, neglecting the wave damping
and H2 terms one obtains (Grimshaw, 1971)
the free surface elevation and wave
propagation velocity as

η∗(X∗1 , t
∗) = H∗sech2

(√
3H

4
ζ

)

V ∗1 (X∗1 , t
∗) = H

√
g∗h∗sech2

(√
3H

4
ζ

)
where

ζ = (X∗1 −
√
g∗h∗t∗)/h∗ = X1 − t

Note that:
U∗ref = H

√
g∗h∗ L∗ref = H∗ and Re = U∗ref L

∗
ref /ν

∗ = H
√
g∗h∗H∗/ν∗ ∼ (H/δ)2
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Definition of the basic flow : bottom boundary layer
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Reδ = H
√

g∗h∗δ∗/ν∗ =
√
Re

The upper (air) boundary layer is neglected
(τxy small)

In the bottom boundary layer viscous and
inertial effects should balance

∂

∂t∗
∼
√

g∗h∗/h∗, ν∗
∂2

∂X∗2
2
∼ ν∗/δ∗2

→ δ∗ ∼
√
ν∗h∗/

√
g∗h∗

Here : δ∗/h∗ << 1, consequently we can use

Boundary Layer Approximation

v∗b2 is negligible (continuity equation)

∂p∗/∂X∗2 = 0 (y momentum equation)

v∗b1 is then obtain by solving

∂v∗b1

∂t∗
=

∂V ∗1
∂t∗

∣∣∣∣
X2=0

+ ν∗
∂2v∗b1

∂X∗2
2

b.c : v∗b1 = 0 at X∗2 = 0 and
∂v∗b1
∂X∗

2
→ 0 as

→∞
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Definition of the basic flow : solution

Following Mei, ”The applied dynamics of ocean surface waves” (1989), the solution
can be written as

vb1(X2, ζ) = sech2

(√
3H

4
ζ

)
−

2
√
π

∫ ∞
0

sech2

[√
3H

4

(
1

2

X 2
2

ξ2
+ ζ

)]
e−ξ

2
dξ, with ζ = X1−t

Case : Sumer et al. (2010), H = 0.12, δ = 0.0005

Movie 1


bl_m10_10.mov
Media File (video/quicktime)
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Definition of the basic flow : solution contd.

Case : Sumer et al. (2010), H = 0.12, δ = 0.0005
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Definition of the basic flow : solution contd.

Case : Sumer et al. (2010), H = 0.12, δ = 0.0005
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Governing equations

We consider analyzing 2D perturbations and assume a decomposition as

(v1, v2, p) = (vb1, 0, pb) + ε(vp1, vp2, pp) where ε << 1,

and U∗ref = H
√
g∗h∗, L∗ref = δ∗, t∗ref = L∗ref /U

∗
ref , p∗ref = ρ∗Hg∗δ∗. It is further

imposed a non-slip condition at the bottom wall and the perturbations are assumed to
decay far from the bottom (free stream)

The system is further reduced using the stream function such that vp1 = ∂ψ/∂x2 and
vp2 = −∂ψ/∂x1 which, by definition, satisfies continuity. Introducing the

decomposition, stream function, and dropping ε2 terms (linearising) gives the following
equation

∂

∂t
(∆ψ) +

H

δ

[
vb1

∂

∂x1
(∆ψ)−

∂2vb1

∂x2
2

∂ψ

∂x1

]
=

1

2
∆2ψ,

where ∆ = ∂/∂x2
1 + ∂/∂x2

2

Reδ ∼ H/δ.
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Governing equations contd.

Consider that H∗ >> δ∗ which means that H/δ >> 1 Remember
Reδ ∼ H/δ.

The amplitude of the perturbation is assumed to grow on a time scale much faster
that the basic flow.

The modal form of the stream function can therefore be written

ψ(x1, x2, t) = f (x2, t) exp

[
iα

(
x1 −

H

δ

∫
c(τ)dτ

)]
,

which means that we seek an asymptotic solution at each instant in time for the basic
flow. The governing equation becomes

[vb1(x2, t)− c(t)]∆̂f (x2, t)−
∂2vb1

∂x2
2

f (x2, t) =
1

2iα(H/δ)
∆̂2f (x2, t),

Note that the viscous effect is accounted for in the term 1/(H/δ). Further, the
variables t and X1 appear only in the combination ζ = X1 − t.

This is an eigenvalue problem for the complex valued variable c(t). The solution c(t)
is the so called dispersion relation and we can note that c = c(H, δ, α, ζ) .

The real part cr is the phase speed and the imaginary part ci is the growth rate.
ci > 0 means un unstable solution, i.e. a solution which grows in time.
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Example result from LST (Absolut value)

Case : Sumer et al. (2010), H = 0.12, δ = 0.0005, α = 0.2

Movie 1


psi_a.mov
Media File (video/quicktime)
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Example result from LST (Real part)

Case : Sumer et al. (2010), H = 0.12, δ = 0.0005, α = 0.2

Movie 1


psi_r.mov
Media File (video/quicktime)



Motivation Transition Boundary layer Stability Results Conclusions

Outline

The results are presented in the following way

Experiments by Sumer et al. (2010)∗

U-shaped water tunnel excited by piston mechanism

L × H × B = 10 × 0.29 × 0.39m3

Flow visualization with color CCD camera (25 frames/second)

shear stress (hot film probe) and
free stream velocity (Laser doppler anemometer, LDA) measurements

Linear Stability Analysis : critical conditions (ζ, alpha)

Comparison with Direct Numerical Simulation

∗Sumer et al. (2010), ”Coherent structures in wave boundary layers. Part 2. Solitary motion”, Journal of Fluid Mechanics, 646, 207-231
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Video (plan view) from Sumer et al. (2010)

Video from experiments by sumer et al. (2010) where H = 0.12, δ = 0.0005, flow
from left to right. The video shows the vortex tubes in plan view.

Movie 1


movie1.mov
Media File (video/quicktime)
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Video (side view) from Sumer et al. (2010)

Video from experiments by sumer et al. (2010) where H = 0.11, δ = 0.00054, flow
from left to right. The video shows the vortex tubes in side view.

Movie 2


movie2.mov
Media File (video/quicktime)
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Video (plan view) from Sumer et al. (2010)

Video from experiments by sumer et al. (2010) where H = 0.199, δ = 0.00043, flow
from left to right. The video shows the vortex tubes in side view.

Movie 3


movie3.mov
Media File (video/quicktime)
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Linear stability results

From the linear stability results we obtain the phase velocity cr (or frequency ω = αcr )
and growth rate for a given set of parameters c = c(H, δ, α, ζ). It does not give the
whole transition scenario but at least the initial part (critical values) indicating the
physical mechanisms which later on lead to transition and turbulent flow. Parameters
in the figure taken from Sumer et al. (2010).
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Linear stability results

A worst case scenario can be assumed which requires to ”scan” the whole parameter
space, c = c(H, δ, α, ζ). In such a way critical conditions can be established as shown
in the figure. Here it is shown that the instability occurs for ζ > 0 which means the
deceleration phase.

In this case ζc = 1.0 and the corresponding wave number αc = 0.2.
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Comparison with DNS

In Direct Numerical Simulations (DNS) the flow is computed without any
approximations. It is therefore a ”numerical experiment” to compare the Linear
Stability (LST) results with. Two different DNS computations have been performed.

Given initial condition of the perturbations
Model of distributed wall roughness during the whole wave cycle

This gives different Receptivity scenarios and it is shown that the latter agrees better
with LST (worst case scenario).
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Summary of results : comparison between LST and experiments

Summary of experiments by Sumer et al. (2010) in comparison with Linear stability
results. A reasonable agreement is found regarding the critical wave number αc , while
the critical time (LST) is under estimated.

Exp. no : H δ αc LST αc exp ζc LST ζc exp
1 0.12 0.0005 0.2 0.21-0.3 1.01 3.18
2 0.108 0.00054 0.2 0.23-0.3 1.16 4.77
3 0.199 0.00043 0.21 0.23-0.27 0.53 2.23
4 0.096 0.0006 0.205 0.19-0.26 1.39 4.81
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Conclusions

The solitary wave boundary layer is unstable if the height H exceeds a certain
threshold, for a given boundary layer thickness δ.

The instability sets in during the deceleration phase (for the parameters
investigated).

The critical wave length found by LST is similar to the distance between the
vortex tubes found in the experiments by Sumer et al. (2010)

The threshold wave height is under estimated by LST

The discrepancy between DNS and LST might be explained considering different
receptivity scenarios.
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