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Introduction

Anatomy of the eye
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Introduction

Vitreous characteristics and functions

Vitreous composition

The main constituents are

Water (99%);

hyaluronic acid (HA);

collagen fibrils.

Its structure consists of long, thick, non-branching collagen fibrils suspended in hyaluronic acid.

Normal vitreous characteristics

The healthy vitreous in youth is a gel-like material with visco-elastic mechanical properties,
which have been measured by several authors (Lee et al., 1992; Nickerson et al., 2008;
Swindle et al., 2008).

In the outermost part of the vitreous, named vitreous cortex, the concentration of collagen
fibrils and HA is higher.

The vitreous cortex is in contact with the Internal Limiting Membrane (ILM) of the retina.

Physiological roles of the vitreous

Support function for the retina and filling-up function for the vitreous body cavity;

diffusion barrier between the anterior and posterior segment of the eye;

establishment of an unhindered path of light.
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Introduction

Vitreous ageing

With advancing age the vitreous typically undergoes significant changes in structure.

Disintegration of the gel structure which leads to vitreous
liquefaction (synchisys). This leads to an approximately
linear increase in the volume of liquid vitreous with time.
Liquefaction can be as much extended as to interest the
whole vitreous chamber.

Shrinking of the vitreous gel (syneresis) leading to the
detachment of the gel vitreous from the retina in certain
regions of the vitreous chamber. This process typically occurs
in the posterior segment of the eye and is called posterior
vitreous detachment (PVD). It is a pathophysiologic
condition of the vitreous.

Vitreous replacement
After surgery (vitrectomy) the vitreous may be completely
replaced with tamponade fluids:

silicon oils water;

aqueous humour;

perfluoropropane gas;

. . .
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Introduction

Partial vitreous liquefaction
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Introduction

Motivations of the work

Why research on vitreous motion?

Possible connections between the mechanism of retinal detachment and
the shear stress on the retina;
flow characteristics.

Especially in the case of liquefied vitreous eye rotations may produce effective fluid mixing.
In this case advection may be more important that diffusion for mass transport within the
vitreous chamber.
Understanding diffusion/dispersion processes in the vitreous chamber is important to predict
the behaviour of drugs directly injected into the vitreous.
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Introduction

Retinal detachment

Posterior vitreous detachment and vitreous
degeneration:

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure and in
vitreoretinal interface → possibly
mechanical reasons.

If the retina detaches from the underlying
layers → loss of vision;

Rhegmatogeneous retinal detachment: fluid
enters through a retinal break into the
subretinal space and peels off the retina.

Risk factors:
myopia;
posterior vitreous detachment (PVD);
lattice degeneration;
...
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Introduction

Scleral buckling

Scleral buckling is the application of a rubber band around the eyeball at the site of a retinal tear
in order to promote reachtachment of the retina.
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Introduction

Intravitreal drug delivery

It is difficult to transport drugs to the retina from ’the outside’ due to the tight blood-retinal
barrier → use of intravitreal drug injections.
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Introduction

Saccadic eye rotations

Saccades are eye movements that rapidly redirect the eyes from one target to another
The main characteristics of a saccadic eye movement are (Becker, 1989):

an extremely intense angular acceleration (up to 30000 deg/s2);

a comparatively less intense deceleration which is nevertheless able to induce a very fast
arrest of the rotation

an angular peak velocity increasing with the saccade amplitude up to a saturation value
ranging between 400 - 600 deg/s.

The maximum amplitude of a saccade is about 50◦ though
most eye rotations have amplitudes smaller than 20◦.
Saccade duration and amplitude are related and the
duration is at most of the order of a tenth of a second.
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A simple irrotational model

A simple irrotational model

Non-sphericity of the domain

The antero-posterior axis is
shorted than the others;

the lens produces an anterior
indentation.

This effect may have important fluid
dynamics consequences.
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A simple irrotational model

Formulation of the problem I

Repetto et al. (2005), Meccanica.

Assumptions

We consider a Newtonian fluid of small viscosity. This applies to the case of liquefied
vitreous.

We assume the vitreous is not moving at the initial time.

Fast short-duration eye rotations.
In this case the thickness ∆ of the boundary layer generated at the wall is of order

∆ ≈
√
νt,

where ν is the kinematic viscosity and t is time.

If for the considered duration of the eye movement we have

∆ ≪ R0,

with R0 characteristic size of the domain, then the motion in the core can be considered
irrotational
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A simple irrotational model

Formulation of the problem II

The velocity potential Φ∗ is defined as

u∗ = ∇Φ∗,

where u∗ denotes velocity. Fluid incompressibility implies that the velocity potential must be a
harmonic function, i.e.

∇2Φ∗ = 0.

Considered geometry

Equation of the boundary of the
domain

r∗ = R∗(ϑ, φ, t∗)
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A simple irrotational model

Formulation of the problem III

The mathematical problem is formulated referring to a fixed frame and employing a system of
polar spherical coordinates (r∗, ϑ, φ).

Boundary conditions impose vanishing flux through the eye wall.

Governing equations

∂

∂r∗

(

r∗2
∂Φ

∂r∗

)

+
1

sinϑ

∂

∂ϑ

(

sinϑ
∂Φ∗

∂ϑ

)

+
1

sin2 ϑ

∂2Φ∗

∂φ2
= 0, (1a)

− ∂R∗

∂t∗
+
∂Φ∗

∂r∗
− 1

r∗2

∂Φ∗

∂ϑ

∂R∗

∂ϑ
− 1

r∗2 sin2 ϑ

∂Φ∗

∂φ

∂R∗

∂φ
= 0 [r∗ = R∗(ϑ, φ− α(t∗))] (1b)

p∗ = −ρ∂Φ
∗

∂t∗
− 1

2
ρ

[

(

∂Φ∗

∂r∗

)2

+

(

1

r∗

∂Φ∗

∂ϑ

)2

+

(

1

r∗ sinϑ

∂Φ∗

∂φ

)2
]

, (1c)

where α(t∗) denotes the angle of rotation of the globe with respect to a reference position.
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A simple irrotational model

Formulation of the problem IV

Scaling

(r ,R) =
(r∗,R∗)

R
, Φ =

Φ∗

ΩpR2
, p =

p∗

ρΩ2
pR2

, t = Ωpt
∗, (2)

where

R: radius of the sphere with the same volume as the actual domain;

Ωp: peak angular velocity of the saccadic movement.

Change of coordinates
We introduce the coordinate

ϕ = φ− α(t), (3)

so that the position of the eye wall is no longer time-dependent.
Using the above scalings and (3) equations (1a), (1b) and (1c) can be written as

∂

∂r

(

r2
∂Φ

∂r

)

+
1

sinϑ

∂

∂ϑ

(

sinϑ
∂Φ

∂ϑ

)

+
1

sin2 ϑ

∂2Φ

∂ϕ2
= 0, (4a)

α̇
∂R

∂ϕ
+
∂Φ

∂r
− 1

r2

∂Φ

∂ϑ

∂R

∂ϑ
− 1

r2 sin2 ϑ

∂Φ

∂ϕ

∂R

∂ϕ
= 0 [r = R(ϑ, ϕ)], (4b)

∂Φ

∂t
− α̇

∂Φ

∂ϕ
+ p +

1

2

[

(

∂Φ

∂r

)2

+

(

1

r

∂Φ

∂ϑ

)2

+

(

1

r sinϑ

∂Φ

∂ϕ

)2
]

= 0, (4c)

where the superscript dot denotes derivatives with respect to the dimensionless time.
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A simple irrotational model

Formulation of the problem V

Shape of the domain
We describe the eye globe of as a slightly deformed sphere writing

R(ϑ, ϕ) = 1 + δR1(ϑ, ϕ),

where δ ≪ 1 represents the maximum departure of the domain from the unit sphere.
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A simple irrotational model

Formulation of the problem VI

Expansion
The function R1(ϑ, ϕ) can be expanded in terms of spherical harmonics

R1 =
∞
∑

m=0

∞
∑

n=m

amn cos(mϕ)P
m
n (cos ϑ), (5)

where Pm
n are the associated Legendre functions, defined in terms of the Legendre polynomials

Pn as follows

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x).

Note: as the domain is symmetrical with respect to the plane y = 0, only the symmetrical
Fourier modes (cosmϕ) have been included in the expansion (5).

Taking advantage of the orthogonality properties of the associated Legendre functions, the
coefficients amn appearing in (5) can be computed as

amn =
km(2n + 1)(n −m)!

4π(n +m)!

∫ 2π

0

∫ π

0
R1(ϑ,ϕ) cos(mϕ)P

m
n (cos ϑ) sinϑ dϑ dϕ,

k0 = 1, km = 2 (m > 0).
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A simple irrotational model

Solution I

Expansion in terms of δ
In physiological conditions 0.15 / δ / 0.2. This suggests to expand Φ and p in powers of δ

Φ = Φ0 + δΦ1 +O(δ2), (6a)

p = p0 + δp1 +O(δ2). (6b)

Leading order problem O(δ0)
At leading order we find the trivial solution

Φ0 = 0, p0 = const.

No motion is generated in a fluid filling a rotating sphere if the no slip condition at the wall is not
imposed.
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A simple irrotational model

Solution II

Order δ problem
At order δ the governing equations (4a), (4b) and (4c) reduce to

∇2Φ1 = 0, (7a)

∂Φ1

∂r
= −α̇ ∂R1

∂ϕ
(r = 1), (7b)

p1 = −∂Φ1

∂t
+ α̇

∂Φ1

∂ϕ
. (7c)

Equation (5) and the boundary condition (7b) suggest to expand the function Φ1 as follows

Φ1 =
∞
∑

m=0

∞
∑

n=m

Φmn(r) sin(mϕ)P
m
n (cos ϑ).

Substituting into the equations (7a) and (7b), we obtain the following ODE

d

dr

(

r2
dΦmn

dr

)

− n(n + 1)Φmn = 0,

dΦmn

dr
= amnα̇m, (r = 1),

with regularity conditions at the origin.

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 19 / 82



A simple irrotational model

Solution III

Order δ solution

Φmn = amnα̇
m

n
rn.

Hence, the order δ velocity components read

ur1 =
∞
∑

m=0

∞
∑

n=m

amnα̇mrn−1 sin(mϕ)Pm
n (cos ϑ),

uϑ1 =
∞
∑

m=0

∞
∑

n=m

amnα̇
m

n
rn−1 sin(mϕ)

d

dϑ
Pm
n (cos ϑ),

uϕ1 =
∞
∑

m=0

∞
∑

n=m

amnα̇
m2

n
rn−1 cos(mϕ)Pm

n (cos ϑ)

sinϑ
.

From the linearised Bernoulli equation (7c) we find the pressure as

p1 =
∞
∑

m=0

∞
∑

n=m

−amnα̈
m

n
rn sin(mϕ)Pm

n (cos ϑ) + amnα̇
2 m

2

n
rn cos(mϕ)Pm

n (cos ϑ).
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A simple irrotational model

Results I
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A simple irrotational model

Results II
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A simple irrotational model

Results III
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A simple irrotational model

Some preliminary conclusions

This simple model suggests that, especially in the case of low viscosity fluids, the shape of
the vitreous chamber plays a significant role in vitreous motion.

The flow field is complex and significantly three-dimensional.

A circulation is likely to form in the anterior part on the vitreous chamber, close to the lens.
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Motion of a viscous fluid in a periodically rotating sphere

The effect of viscosity

Main working assumptions

Newtonian fluid
The assumption of purely viscous fluid applies to the cases of

vitreous liquefaction;
substitution of the vitreous with viscous tamponade fluids .

Sinusoidal eye rotations
Using dimensional analysis it can be shown that the problem is governed by the following
two dimensionless parameters

α =

√

R2
0ω0

ν
Womersley number,

ε Amplitude of oscillations.

Spherical domain
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Motion of a viscous fluid in a periodically rotating sphere

Theoretical model I

David et al. (1998)

Scalings

u =
u∗

ω0R0
, t = t∗ω0, r =

r∗

R0
, p =

p∗

µω0
,

where ω0 denotes the angular frequency of the domain oscillations, R0 the sphere radius and µ
the dynamic viscosity of the fluid.

Dimensionless equations

α2 ∂

∂t
u+ α2u ·∇u+∇p −∇2u = 0, ∇ · u = 0, (8)

u = v = 0, w = ε sinϑ sin t (r = 1), (9)

where ε is the amplitude of oscillations. We assume ε≪ 1.

Asymptotic expansion

u = εu1 + ε2u2 +O(ε3), p = εp1 + ε2p2 +O(ε3).

Since the equations and boundary conditions for u1, v1 and p1 are homogeneous the solution is
p1 = u1 = v1 = 0.
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Motion of a viscous fluid in a periodically rotating sphere

Theoretical model II

The leading order azimuthal component of the velocity w1 satisfies the equation

∂w1

∂t
=

1

α2

[

1

r2

∂

∂r

(

r2
∂w1

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂w1

∂ϑ

)

− w1

r2 sin2 ϑ

]

,

w1 = sinϑ sin t (r = 1).

Separate variable solution

w1 = g1(r)e
it sinϑ+ c.c.

Ordinary differential equation

r2g ′′
1 + 2rg ′

1 −
(

2 + ir2α2
)

g1 = 0.

Solution

w1 = g1(r)e
it sinϑ+ c.c., g1(r) = − i

2r2

(

sin kr − kr cos kr

sin k − k cos k

)

, k = e−iπ/4α.

where c.c. denotes the complex conjugate.
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Motion of a viscous fluid in a periodically rotating sphere

Theoretical model III

Velocity profiles on the plane orthogonal to the axis of rotation at different times.

Limit of small α: rigid body rotation;

Limit of large α: formation of an oscillatory boundary layer at the wall.
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Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus I

Repetto et al. (2005), Phys. Med. Biol.
The experimental apparatus is located at the University of Genoa.

Perspex cylindrical
container.

Spherical cavity with
radius R0 = 40 mm.

Glycerol (highly viscous
Newtonian fluid).
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Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus II

The eye model is mounted on the shaft of a computer controlled motor.
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Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus III
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Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements I

PIV (Particle Image Velocimetry) measurements are taken on the equatorial plane orthogonal to
the axis of rotation.

Typical PIV setup

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 32 / 82



Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements II

Typical PIV image
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Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements III

In the PIV technique

the image is subdivided in small interrogation windows (IW);

cross-correlation of the image in each IW at two successive time instants yields the most
likely average displacement s within the IW;

in each IW the velocity vector is obtained as

u =
s

∆t
,

with ∆t time step between the two images.
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Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements IV

Typical PIV flow field
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Motion of a viscous fluid in a periodically rotating sphere

Comparison between experimental and theoretical results

Radial profiles of ℜ(g1), ℑ(g1) and |g1| for two values of the Womersley number α.
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Motion of a viscoelastic fluid in a sphere

The case of a viscoelastic fluid I

As we deal with an sinusoidally oscillating linear flow we can obtain the solution for the
motion of a viscoelastic fluid simply by replacing the real viscosity with a complex viscosity.

In terms of our dimensionless solution this implies introducing a complex Womersley
number.

Rheological properties of the vitreous (complex viscosity) can be obtained from the works of
Lee et al. (1992), Nickerson et al. (2008) and Swindle et al. (2008).

It can be proved that in this case, due to the presence of an elastic component of vitreous
behaviour, the system admits natural frequencies that can be excited resonantly by eye
rotations.

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 37 / 82



Motion of a viscoelastic fluid in a sphere

Formulation of the problem I

The motion of the fluid is governed by the momentum equation and the continuity equation:

∂u

∂t
+ (u · ∇)u+

1

ρ
∇p − 1

ρ
∇ · d = 0, (10a)

∇ · u = 0, (10b)

where d is the deviatoric part of the stress tensor.

Assumptions

We assume that the velocity is small so that nonlinear terms in (10a) are negligible.

For a linear viscoelastic fluid we can write

d(t) = 2

∫ t

−∞
G(t − t̃)D(t̃)dt̃ (11)

where D is the rate of deformation tensor and G is the relaxation modulus.

Therefore we need to solve the following problem

ρ
∂u

∂t
+∇p −

∫ t

−∞
G(t − t̃)∇2u dt̃ = 0, (12a)

∇ · u = 0, (12b)
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour I

We assume that the solution has the structure

u(x, t) = uλ(x)e
λt + c.c., p(x, t) = pλ(x)e

λt + c.c.,

where uλ, pλ do not depend on time and λ ∈ C.
It can be shown that the deviatoric part of the stress tensor takes the form

d(t) = 2

∫ t

−∞
G(t − t̃)D(t̃)dt̃ = 2D

G̃(λ)

λ
, (13)

where

G̃(λ) = G ′(λ) + iG ′′(λ) = λ

∫ ∞

0
G(s)e−λsds

is the complex modulus.

G ′: storage modulus;

G ′′: loss modulus;

This leads to the eigenvalue problem

ρλuλ = −∇pλ +
G̃(λ)

λ
∇2uλ, ∇ · uλ = 0, (14)

which has to be solved imposing stationary no-slip conditions at the wall and regularity
conditions at the origin.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour II

Expansion

We expand (uλ, pλ) in terms of vector spherical harmonics

uλ =
∞
∑

n=0

n
∑

m=−n

umn(r ; λ)Pmn(θ, φ) + vmn(r ; λ)Bmn(θ, φ)

+ wmn(r ; λ)Cmn(θ, φ), (15a)

pλ =
∞
∑

n=0

n
∑

m=−n

pmn(r ; λ)Ymn(θ, φ). (15b)

The vectors Pmn are radial;

The vectors Bmn and Cmn span the tangential directions with respect to the surface of the
unit sphere;

The vectors B0n and C0n are zenithal and azimuthal, respectively;

The vector spherical harmonics satisfy orthogonality conditions.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour III

Solution

Substituting the expansions (15a) and (15b) into (14), equation (14) can be solved and the
general solution reads

pmn = −C
(1)
mnλ

n
rn, (16a)

umn = C
(1)
mn r

n−1 + C
(2)
mn

Jn+1/2(ar)

r
3
2

, (16b)

vmn =
C

(1)
mn sn

n
rn−1 + C

(2)
mn

arJn−1/2(ar) − nJn+1/2(ar)

snr
3
2

, (16c)

wmn = C
(3)
mn

Jn+1/2(ar)

r
1
2

, (16d)

where Jn is the nth Bessel function of first kind, sn =
√

n(n + 1), a =
√

−ρλ2R2
0/G̃(λ) and C

(1)
mn ,

C
(2)
mn and C

(3)
mn are constants to be determined from the boundary conditions.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour IV

Enforcing no-slip boundary conditions on the solution (20a)-(20d) and looking for a non trivial
solution leads to the condition

Jn+3/2(a) = 0 or Jn+1/2(a) = 0. (17a, b)

We denote the lth positive root of equation (17a) by a
(1)
ln

and the lth positive root of

equation (17b) by a
(2)
ln

.

The complete set of eigenfunctions (u
(k)
lmn
, p

(k)
lmn

), for k ∈ {1, 2}, l ∈ N, n ∈ N0, m ∈ Z,
−n ≤ m ≤ n is given by:

u
(1)
lmn

= (
jn(a

(1)
ln

r)

rjn(a
(1)
ln

)
− rn−1)Pmn

+ (
a
(1)
ln

rjn−1(a
(1)
ln

r)− njn(a
(1)
ln

r)

snrjn(a
(1)
ln

)
− n + 1

sn
rn−1)Bmn,

p
(1)
lmn

=
λ

n
rnYmn,

u
(2)
lmn

= jn(a
(2)
ln

r)Cmn,

p
(2)
lmn

= 0.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour V

Meskauskas et al. (2011) J. Fluid Mech.
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Spatial structure of the eigenfunctions u
(1)
102 and u

(2)
101.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour VI

The corresponding eigenvalues λ
(k)
ln

are given by solutions of

λ
(k)
ln

=

√

√

√

√−
G̃(λ

(k)
ln

)

ρR2
0

a
(k)
ln
, (18)

and depend on how we model the complex modulus G̃ .

Two-parameter model

dashpot: ideal viscous element

spring: ideal elastic element

G̃(λ) = µK + ληK ⇒ λ
(k)
ln

= −
ηK a

(k)2
ln

2ρR2
0

±

√

√

√

√

η2
K
a
(k)4
ln

4ρ2R4
0

−
µK a

(k)2
ln

ρR2
0

.

Four-parameter model

G̃(λ) =
ληmµm(µK + ληK )

(µm + ληm)(ληmµm/(µm + ληm) + µK + ληK )
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Motion of a viscoelastic fluid in a sphere

Some conclusions

For all existing measurements of the rheological properties of the vitreous we find the
existence of natural frequencies of oscillation.

Such frequencies, for the least decaying modes, are within the range of physiological eye
rotations (ω = 10− 30 rad/s).

The two- and the four-parameter model lead to qualitatively different results:
Two-parameter model: only a finite number of modes have complex eigenvalues;
Four-parameter model: an infinite number of modes have complex eigenvalues.

Natural frequencies could be resonantly excited by eye rotations.
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Motion of a viscoelastic fluid in a sphere

Periodic forcing I

Solution

Response to eye rotations: forced small amplitude sinusoidal torsional oscillations of an
angular frequency ω0.

Now the boundary condition reads

u = ǫω0R0 sin θ sin(ω0t)eϕ

The solution is then given by

u =

√

π

3

ǫR0ω0J3/2(ar)

iJ3/2(a)
√
r

e iω0tC01 + c.c.

The velocity field is purely azimuthal.
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Motion of a viscoelastic fluid in a sphere

Periodic forcing II

Normalised kinetic energy
We consider the time-average of the kinetic energy over a cycle

K =
2π

3
ρR5

0ω
2
0ǫ

2

∫ 1

0
|
J3/2(ar)

J3/2(a)
√
r
|2r2dr ,

and normalise it with the kinetic energy of a rigid sphere with the same density (2/15πρR5ω2
0ǫ

2).
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Motion of a viscoelastic fluid in a sphere

Periodic forcing III

Velocity profiles
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Azimuthal velocity profiles, (a) ω = 10, (b) ω = 19.1494, (c) ω = 28, and (d) ω = 45.
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Motion of a viscoelastic fluid in a sphere

Periodic forcing IV

Shear stress at the wall
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Motion of a viscoelastic fluid in a sphere

Some conclusions

If the eye rotates at certain frequencies resonant excitation is possible.

Resonance leads to large values of the stress on the retina.

Does resonant excitation really occurs in-vivo?
Need for in-vivo measurements of vitreous velocity (Ultrasound scan of vitreous motion).
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Echo-PIV measurement of vitreous motion (in collaboration with T. Rossi, A. Stocchino, G. Querzoli)

Are ev-vivo measurements of vitreous rheological properties reliable?

The possible occurrence of resonance has implications for the choice of tamponade fluids to
be used after vitrectomy.

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 50 / 82



Motion of a viscoelastic fluid in a weakly deformed sphere

The effect of the geometry I

Myopic eyes;
eye subjects to scleral buckling.

Myopic Eyes
In comparison to emmetropic eyes, myopic eyes are

larger in all directions;
particularly so in the antero-posterior direction.

Myopic eyes bear higher risks of posterior vitreous detachment and vitreous degeneration →
increased the risk of rhegmatogeneous retinal detachment.

The shape of the eye ball has been related to the degree of myopia (measured in dioptres D) by
Atchison et al. (2005), who approximated the vitreous chamber with an ellipsoid.
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width = 11.4− 0.04D,
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length = 10.04 − 0.16D.
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Motion of a viscoelastic fluid in a weakly deformed sphere

The effect of the geometry II

Scleral Buckling
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Motion of a viscoelastic fluid in a weakly deformed sphere

Formulation of the mathematical problem

Meskauskas et al., submitted to Invest. Ophthal. Vis. Scie.

Equation of the boundary
R(ϑ, ϕ) = R0(1 + δR1(ϑ, ϕ)),

where

R0 denotes the radius of the sphere with the same volume as the vitreous chamber;

δ is a small parameter (δ ≪ 1);

the maximum absolute value of R1 is 1.

Expansion
We expand the velocity and pressure fields in therms of δ as follows

U = U0 + δU1 +O
(

δ2
)

, P = P0 + δP1 +O
(

δ2
)

.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Solution I

Leading order problem O(δ0)
At leading order we find the solution in a sphere, discussed above.

Order δ problem
At leading order we find the solution in a sphere, discussed above.
To compute the solution at δ-order, we expand U1, P1 as a sum of spherical harmonics

U1 =

( ∞
∑

n=0

n
∑

m=−n

Umn
1 (r)Pmn(ϑ, ϕ) + Vmn

1 (r)Bmn(ϑ, ϕ)

+Wmn
1 (r)Cmn(ϑ, ϕ)

)

e iωt + c.c.

P1 =
∞
∑

n=0

n
∑

m=−n

Pmn
1 (r)Ymn(ϑ, ϕ)e

iωt + c.c.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Solution II

Scaling
We work in terms of the following dimensionless variables

r =
r∗

R0
, t = t∗ω, U =

U∗

ωR0
, P =

P∗

ρω2R2
0

, σ =
σ∗

ρω2R2
0

. (19a − e)

Boundary conditions at the wall

At δ-order the boundary conditions at r = 1 read

U1|r=1 =R1(ϑ, ϕ)

(

− ǫi sinϑ
2

− ∂W0

∂r

∣

∣

∣

∣

r=1

)

eϕ

=
∞
∑

n=0

n
∑

m=−n

(

V̂mn
1 Bmn(ϑ, ϕ) + Ŵmn

1 Cmn(ϑ, ϕ)
)

,

where V̂mn
1 and Ŵmn

1 depend on the shape of the domain.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Solution III

Solution at the order δ

Pmn
1 = −Cmn

1

iα2
c

n
rn, (20a)

Umn
1 = Cmn

1 rn−1 + Cmn
2

Jn+1/2(ar)

r3/2
, (20b)

Vmn
1 = Cmn

1

sn

n
rn−1 +

Cmn
2

snr3/2

(

−nJn+1/2(ar) + arJn−1/2(ar)
)

, (20c)

Wmn
1 = Cmn

3

Jn+1/2(ar)√
r

, (20d)

for n > 0, and P00
1 = U00

1 = 0, where Jk denotes the Bessel function of order k, sn =
√

n(n + 1),
and the boundary condition at the wall implies

Cmn
1 =

−snJn+1/2(a)V̂mn

aJn−1/2(a)− (2n + 1)Jn+1/2(a)
, (21a)

Cmn
2 =

snV̂mn

aJn−1/2(a)− (2n + 1)Jn+1/2(a)
, (21b)

Cmn
3 =

Ŵmn

Jn+1/2(a)
. (21c)
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Motion of a viscoelastic fluid in a weakly deformed sphere

Solution IV

Stress at the boundary

Order δ0

T0|r=1 =
1

α2
c

(

∂W0

∂r
− W0

r

)∣

∣

∣

∣

r=1

eϕ = − ǫi

2α2
c

(

(a2 − 3) sin a− a cos a

sin a− a cos a

)

sin ϑeϕ + c.c..

Order δ

T1|r=1 =

(

−P1 +
1

α2
c

(

2
∂U1

∂r
−
(

∂W0

∂r
−W0

)

∂R1

∂ϕ
cosecϑ

))∣

∣

∣

∣

r=1

er

+
1

α2
c

(

∂V1

∂r
− V1 +

∂U1

∂ϑ

)∣

∣

∣

∣

r=1

eϑ

+
1

α2
c

(

1

sinϑ

∂U1

∂ϕ
+
∂W1

∂r
−W1 + R1

(

∂2W0

∂r2
− ∂W0

∂r
+W0

))∣

∣

∣

∣

r=1

eϕ.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Myopic eyes I

Stress distribution on the retina

Spatial distribution of (a, c) the maximum dimensionless tangential stress and (b, d) normal stress. (a) and (b):

emmetropic eye; (c) and (d): myopic eye with refractive error 20 D.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Myopic eyes II

Maximum stress on the retina as a function of the refractive error
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Maximum (over time and space) of the (a) tangential and (b) normal stress on the retina as a function of the

refractive error in dioptres. Values are normalised with the corresponding stress in the emmetropic (0 D) eye.

The different curves correspond to different values of the rheological properties of the vitreous humour taken

from the literature.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Scleral buckling I

Stress distribution on the retina
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Motion of a viscoelastic fluid in a weakly deformed sphere

Scleral buckling II

Maximum shear stress (a) and normal stress (n)

in dependence of the ratio Ri/R̂.
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Motion of a viscoelastic fluid in a weakly deformed sphere

Some conclusions

The vitreous and the retina in myopic eyes are continuously subjected to higher shear
stresses than emmetropic eyes.

This provides a feasible explanation for why in myopic eyes vitreous liquefaction, PVD and
RD are more frequent than in emmetropic eyes.

Scleral buckling induced a significant change in the stress distribution on the retina.

In particular the pressure drop across the detached retinal flap might help reattachment.

In order to fully understand the mechanics of the reattachment process further models would
be required, accounting for the motion of the detached retina and of the fluid in the
subretinal space.
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Steady streaming in a periodically rotating sphere

Non-linear effects and implications for fluid mixing

Back to viscous fluids . . .

Flow visualisations on planes containing the axis of rotation.
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Steady streaming in a periodically rotating sphere

Theoretical model I

Second order solution

u = εu1 + ε2u2 +O(ε3), p = εp1 + ε2p2 +O(ε3).

We decompose the velocity u2 and the pressure p2 into their time harmonics by setting

u2 = u20 +
{

u22e
2it + c.c.

}

, p2 = p20 +
{

p22e
2it + c.c.

}

, u1 ·∇u1 = F0 +
{

F2e
2it + c.c.

}

,

where u20, u22, p20, p22, F0 and F2 are independent of time.

Governing equations for the steady component

∇2u20 −∇p20 = α2F0, ∇ · u20 = 0, (22a)

u20 = v20 = w20 = 0 (r = 1). (22b)

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 64 / 82



Steady streaming in a periodically rotating sphere

Theoretical model II

Expansion in terms of spherical harmonics

Using the orthogonality properties of the vector spherical harmonics it may be shown that

F0 = FP0(r)P
0
0(ϑ, ϕ) + FP2(r)P

0
2(ϑ, ϕ) + FB2(r)B

0
2(ϑ, ϕ)

where

FP0 = −8

3

√
π
g1g1

r
, FP2 =

8

15

√
5π

g1g1

r
, FB2 =

4

15

√
30π

g1g1

r
.

Owing to the special behaviour of the vector spherical harmonics under vector calculus, operators
u20 = (u20, v20,w20) and p20 can be expanded as

u20 = u20,0(r)P
0
0(ϑ,ϕ) + u20,2(r)P

0
2(ϑ, ϕ) + v20,2(r)B

0
2(ϑ, ϕ), (23a)

p20 = p20,0Y
0
0 (ϑ, ϕ) + p20,2Y

0
2 (ϑ, ϕ). (23b)

Notes:

the azimuthal velocity component w20 vanishes;

velocity vectors of the steady streaming lie on the planes containing the axis of rotation.
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Steady streaming in a periodically rotating sphere

Theoretical model III

By substituting the expansions (23a,b) into equations (22a) the following ordinary differential
problem in r is obtained

d2

dr2
u20,0 +

2

r

d

dr
u20,0 − 2

u20,0

r2
− d

dr
p20,0 = α2FP0, (24a)

1

r2

d

dr

(

r2u20,0
)

= 0, (24b)

d2

dr2
u20,2 +

2

r

d

dr
u20,0 − 8

u20,2

r2
+

2
√
6

r2
v20,2 −

d

dr
p20,2 = α2FP2, (24c)

d2

dr2
v20,2 +

2

r

d

dr
v20,2 −

6

r2
v20,2 +

2
√
6

r2
u20,2 −

√
6

r
p20,2 = α2FB2, (24d)

d

dr
u20,2 +

2

r
u20,2 −

√
6

r
v20,2 = 0. (24e)

This system is subject to homogeneous boundary conditions at r = 1 and regularity conditions
at r = 0.
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Steady streaming in a periodically rotating sphere

Theoretical model IV

Solution

The solution of (24) subject to the boundary conditions is

u20,0 = 0, (25a)

p20,0 = P20 +

∫ r

0
−α2FP0(r

′)dr ′, (25b)

u20,2 = c1r + c2r
3 + rI1(r) +

1

r2
I2(r) + r3I3(r) +

1

r4
I4(r), (25c)

v20,2 =
1√
6

(

3c1r + 5c2r
3 + 3rI1(r) + 5r3I3(r) −

2

r4
I4(r)

)

, (25d)

where P20 is an arbitrary constant, we omit the expression for p20,2 and

c1 = −I1(1)−
5

2
I2(1) −

7

2
I4(1), c2 =

3

2
I2(1) − I3(1) +

5

2
I4(1).

where

I1 = −α
2

10

(

rFP2(r) − 2

∫ r

0
FP2(r

′)dr ′
)

, I2 =
α2

10

(

r4FP2(r) − 5

∫ r

0
FP2(r

′)r ′3dr ′
)

, (26a)

I3 =
3α2

70

[FP2(r
′)

r ′

]r

0

, I4 = −3α2

70

(

r6FP2(r) − 7

∫ r

0
FP2(r

′)r ′5dr ′
)

. (26b)
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Steady streaming in a periodically rotating sphere

Theoretical model V

Steady streaming velocity and streamfunction

u20 =

(

1

4

√

5

π
u20,2(3 cos

2 θ − 1),−1

4

√

30

π
v20,2 cos θ sin θ, 0

)

,

ψ20 =
1

4

√

5

π
r2u20,2 sin

2 ϑ cos ϑ, where u20 = ∇×
(

ψ20

r sinϑ
ϕ̂

)

.

The integrals (26) do not admit an analytical solution and need to be computed numerically.
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Steady streaming in a periodically rotating sphere

Theoretical model VI

Limiting cases that allow for analytical solutions

Small α

ψ20 =
α6

415800
r3(1 − r2)2(2 + r2) sin2 ϑ cos ϑ+ O(α8),

u20 =
α6

415800

[

r(1− r2)2(2 + r2)(3 cos2 ϑ− 1) − 3r(1 − r2)(2 − 3r2 − 3r4) sinϑ cosϑ, 0
]

+ O(α8).

In the limit α→ 0 the fluid moves as a rigid body and the steady streaming tend to vanish.

As α→ 0w the intensity of the steady streaming is proportional to α6.

Large α

ψ20 =
1

8
r3(1− r2) sin2 ϑ cos ϑ+O

(

1

α

)

, (27a)

u20 =

(

1

8
r(1 − r2)(3 cos2 ϑ− 1),−1

8
(3r − 5r3 +

2

r3
e−

√
2α(1−r)) cos ϑ sinϑ, 0

)

+O
(

1

α

)

.

(27b)

The final term in the ϑ-component of u20 decays rapidly far from the wall and ensures the no
slip condition is satisfied.

This means that the steady streaming flow also has a boundary layer at r = 1 for large α.
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Steady streaming in a periodically rotating sphere

Experimental measurement of the steady streaming

The steady streaming flow can be direclty measured experimentally by cross-correlating
images that are separated in time by a multiple of the frequency of oscillation.

This procedure filters out from the measurements the oscillatory component of the flow.
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Steady streaming in a periodically rotating sphere

Comparison between experimental and theoretical results I

Repetto et al. (2008), J. Fluid Mech.
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Steady streaming in a periodically rotating sphere

Comparison between experimental and theoretical results II

a) Intensity of the steady streaming flow versus the Womersley number α.
b) Comparison between experimental and theoretical results in terms of steady streaming intensity.
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Steady streaming in a periodically rotating sphere

Comparison between experimental and theoretical results III

a) Radial velocity profiles on the equatorial plane for different values of the Womersley number α.
b) Comparison between experimental and theoretical results in terms of radial velocity profiles.
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Perturbation of the steady streaming

Effect of the geometry on the steady streaming

Non-sphericity of the domain

The antero-posterior axis is
shorted than the others;

the lens produces an anterior
indentation.

What is the effect of the geometry
on the steady streaming?
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Perturbation of the steady streaming

Theoretical model I

Repetto et al. (2010), Biomech. Model. Mechanobiol.

We assume small amplitude sinusoidal torsional oscillations

β = −ε cos (ω0t
∗) ε ≪ 1.

Scaling

u =
u∗

ω0R0
, t = t∗ω0, (r ,R) =

(r∗,R∗)

R0
, p =

p∗

µω0
.

Dimensionless governing equations

α2

(

∂

∂t
− ε sin t

∂

∂ϕ

)

u+ α2 (u · ∇) u+∇p −∇2u = 0, (28a)

∇ · u = 0, (28b)

u = v = 0, w = εR sinϑ sin t [r = R(ϑ,ϕ)], (28c)

Shape of the domain
We write the function R(ϑ, ϕ) describing the shape pf the domain as

R(ϑ, ϕ) = 1 + δR1(ϑ,ϕ), δ ≪ 1.
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Perturbation of the steady streaming

Theoretical model II

Expansion
We seek a series solution to (28a-c) by expanding in ascending powers of the small parameters ε
and δ:

u = ε (u10 + δu11 + . . . ) + ε2 (u20 + δu21 + . . . ) + . . . ,

p = ε (p10 + δp11 + . . . ) + ε2 (p20 + δp21 + . . . ) + . . . .

Problem at O(ε): leading order flow in a sphere.

Problem at O(εδ): perturbation of the flow in the sphere due to the geometry.

Problem at order ε2δ0: steady streaming in a sphere.

Problem at order ε2δ
At this order we can write

u21 = u
(0)
21 + u

(2)
21 e

2it + u
(2)
21 e

−2it , p21 = p
(0)
21 + p

(2)
21 e2it + p

(2)
21 e−2it .

We consider here the perturbation in the steady streaming due to the geometry of the

domain, which is given by u
(0)
21 and p

(0)
21 . The details of the solution are skipped.
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Perturbation of the steady streaming

Theoretical model III

−1 −0.5 0 0.5 1
0

0.5

1(b)

x

y

Perturbation of the steady streaming flow on the equatorial plane
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Perturbation of the steady streaming

Experimental measurement of the steady streaming flow

α = 3.8

Steady streaming flow on the equatorial plane.
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Perturbation of the steady streaming

Conclusions

Eye movements during reading: ≈ 0.16 rad, ≈ 63 s−1 (Dyson et al., 2004).

Kinematic viscosity of the vitreous: ν ≈ 7× 10−4 m2s−1 (Lee et al., 1992).

Eye radius: R0 = 0.012 m.

Womersley number: α = 3.6.

Streaming velocity: U = ε2δmax(|u(0)21 |) ≈ 6× 10−5 m s−1.

Diffusion coefficient of fluorescein: D ≈ 6× 10−10 m s−1 (Kaiser and Maurice, 1964)

Peclèt number: Pe ≈ 1200.
In this case advection is much more important than diffusion!

Rodolfo Repetto (University of Genoa) Dynamics of the vitreous humour January 23, 2012 79 / 82



Work in progress

Work in progress

Julia Meskauskas

Steady streaming in a viscoelastic fluid.

Stress on the retina during real eye movements.

Non-homogeneous vitreous properties.

Andrea Bonfiglio

Experimental study of vitreous mixing.

Experimental study with viscoelastic fluids.

In collaboration with Amabile Tatone.

Motion of the vitreous after Posterior Vitreous Detachment.

The gel phase is modelled as a hyperelastic viscous solid, the liquefied vitreous as a viscous
fluid.

Quasi static shrinking of the vitreous.
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