Transition to turbulence at the bottom of a solitary wave

Jan Pralits

In this presentation a recent analysis made by Blondeaux, Pralits and Vittori will be presented in which a linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave has been made to determine the conditions leading to transition and turbulence appearance. The Reynolds number of the phenomenon is assumed to be large and a 'momentary' criterion of instability is used. The results show that the laminar regime becomes unstable, during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of [1] supports the analysis

References

 B.M. Sumer, Jensen P.M., L.B. Sorensen, J. Fredsoe, P.L.F. Liu, and S. Carstensen. Coherent structures in wave boundary layers. part 2. solitary motion. J. Fluid Mech., 646:207–231, 2010.