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A Single Formula for the
“Law of the Wall”

D. B. SPALDING!

Summary

It is shown that experimental velocity distributions may be
well fitted, in the laminar sublayer, the transition region, and
the turbulent core, by the formula:

y*t = ut 4 0.1108{e0 " — 1 — 0.4u* — (0.4u%)2/21
— (0.4u)3/3! — (0.4ut)4/41}

Omission of the (0.4u*)* term gives an equally good fit. The
corresponding expressions for the ratio of turbulent shear stress
to total shear stress agree with the measurements of Laufer [8]2
quite closely.

Nomenclature
u = time-mean velocity of fluid in z-direction
ut = u \/ p/T

distance along the wall in the direction of flow
distance from the wall

3 =
y =

]/+ =y '\/TP/Mmoleculnl

et = #totnl/ﬂmolacuh\r

Hmolecular = absolute viscosity of fluid in laminar motion
Mtotal = ratio of shear stress to gradient of time-mean
velocity
Mturb = [total — Mmolecular
p = density of fluid
¢ = density of fluid divided by density of fluid adjacent
to wall
7 = shear stress in fluid, assumed independent of ¥
Introduction

Purpose of note. Numerous formulas have been proposed to de-
scribe the universal turbulent velocity profile, called by Coles [1]
the “law of the wall.” The present note discloses a new formula
which is valid over the whole range of dimensionless distance y*+.?
The new formula has a form which, on the one hand, permits
analytical determination of several important boundary-layer
parameters, and, on the other, may provide the vantage point
for a new look at the theory of the turbulent boundary layer.
These matters are only touched on briefly in the following.

The universal turbulent velocity profile. Prandtl’s [12] postulate,
that the velocity in the neighborhood of a wall should obey the
relation:
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ut = ut(y*) (1

has been confirmed experimentally by Nikuradse [10], and subse-
quently by many other authors.

The experimental relation has been described analytically in
various ways, some of which are listed in Table 1. It will be

Table 1
Author
Prandtl [11]®

Formulas for the "law of the wall'"®
Range of validity Formulas
02 y*<11.5 ut = y+

Taylor [18]" 11.5 € y+ ut = 25Inyt + 55
0Z y*<5 ut =yt
von Karman (7] {5 € y* <30 «ut = 5Ilny*t — 3.05
30 £ g+ ut = 25Iny* + 55
Reichardt [15] 0<%yt ut = 25In (1 + 0.4y*)

+ 78{1 — e~/
— (y+/11)e-o.aau"}

¥
02 yt<26 u*=
0
Deissler (2] dy* —
1+ n2uty™(1 — en™'v)
n = 0.124
26 2 yt ut =278yt 4 3.8
yé
0%yt ut = f
it 0
van Driest [19] 2dy+
1+ {1 + 0.64y**[L — exp (—y*/26)]2}"/

¢ y+ + = +
Rannie [13] 2 Lyt <275 u 14.54 tan h(0.0688y™*)

7.5 2 yt ut = 25Iny* + 5.5

% See also Hofmann [5], Reichardt [14], Rotta [16], Miles [9],
Elrod (3], and Frank-Kamenetsky [21].

b These authors did not, at the dates in question, state the formulas
attributed to them in the table. However, they did introduce the
idea of a sharp division between a laminar sublayer and a fully turbu-
lent core; when compared with experimental data, this idea leads
directly to the formulas given.

noted that all the authors mentioned, except Reichardt [15] and
van Driest [19], have found it necessary to use at least two ex-
pressions, valid for different ranges of y¥, in order to deseribe the
profile adequately.

The problem. A single formula, expressing the u*(y*) relation
over the whole range of the variables, is both more satisfying
aesthetically and more convenient practically than the two-point
formulas of Table 1. However, Reichardt’s formula is rather com-
plex in form, whereas van Driest’s involves a quadrature requiring
numerical evaluation. There is need for a simpler, easily evalu-
ated formula.

Such a formula would preferably fit the experimental data
closely, contuin suflicient adjustable constants to permit modifi-
cation in the light of new experimental data, and have an analyti-
cal form permitting easy integration of the various functions of the
velocity distribution which arise in, for example, the theory of
heat transfer through a turbulent boundary layer.

Looked at mathematically, our problem is to establish a
formula which:

(i) passes through the point: y* = 0, u* = 0;
(ii) is tangential at this point to: u* = y*;
(iii) is asymptotic at large y* to:!
ut=25my* 4+ 55 (2)

(iv) fits the experimental points at intermediate y* values.

4 Here the most popular constants for the logarithmic velocity pro-
file have been accepted.
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The New *Law of the Wall"

The simplest y* (u ) relati The previous efforts to find a single
formula fitting the foregoing specification «* has been sought ex-
plicitly in terms of y*. There is, however, no need to demand
this; a relation giving y* explicitly in terms of »* is just as good,
and indeed may even be better for some purposes.

Once this possibility is recognized, progress can be made

swiftly. We now seek a y+(u™) relation such that
near u* = Q:y+ = u*t (3)
and at large u*:y* = 0.1108¢- 4" (4)

the latter equation being derived directly from equation (2).
The equation which immediately suggests itself is:

y* = ut 4 0.1108(e™ " — 1 — 0.4u™) (5)

This satisfies requirements (3) and (4). Does it also fit the ex-
perimental data? This can be judged by reference to Ilig. 1,
which contains the experimental data of Laufer [8]. KEvidently,
equation (5) fits the data fairly well, but gives values of «* which
arc approximately 10 per cent low when y* lies between 10 and
50. Tig. 1 also contains, as broken curves, the asymptotic ex-
pressions (2) and (3).

Improved y "(u™*) relations. If we define a dimensionless “total”
(i.e., “molecular plus turbulent’’ viscosity) € * by

et = ﬂtotnl/ﬂmolccuhr (6)

then the assumption that the shear stress is independent of dis-
tance from the wall, when combined with the definitions of u*
and y*, leads to the relation:

dy*

+ =
€ du™* (7

Equation (5) therefore implies the e*(u*) relation:
et =1+ 04 X 0.1108(e™*" — 1)

(0.4ut)?
TR

1 + 0.04432 {0.411. 4 (8)

Now there are theoretical reasons (Reichardt, [15]; Hinze,
[4]) against a growth of e in the wall region with a power of y+
which is less than 3, if the shear stress varies along the wall, and
less than 4 if there is no such variation. Equation (8) satisfies
neither requirement.® However, it is easy to see what must be
done to the velocity distribution if either of these requirements is
to be satisfied: the distribution formula becomes, respectively:

_ (04wt (O.4u+)3}

y* = ut 4 0.1108 {ew‘ —1 —0.4u*

2! 3!
(9
or
"
yt =ut <+ 0.1108 {e"-"‘" -1 —-04ut — (042—1:)2
(0.4u*)% (0.4 *)4
3l 4] (10)

Curves corresponding to equations (9) and (10) are plotted in
Fig. 1. They fit the experimental data rather better than does
equation (5), but it is not possible to say which of the two gives
the more precise fit. Whether the (0.4u%)4 term should be in-
cluded or not will therefore probably have to be decided on other
grounds.

% Nor, incidentally, do the expressions of Reichardt and van Driest
which appear in Table 1.,
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Fig. 1 Experimental data of Laufer [8] for velocity distribution near the

wall in turbulent pipe flow, compared with various analytical expressions

CORRESPONDS TO THE
PRANDTL=TAYLOR MODEL

10 \\\f—_—'___'f_——_’_

Eq 9a) | \
LAUFER [8] RE=500,000

£q (10a)

40 50 60

Fig. 2 Experimental data of Laufer on turbulent-stress distribution near
the wall in turbulent pipe flow, compared with various analytical ex-
pressions

Laufer [8) has also made measurements of the ratio of the tur-
bulent shear stress divided by the total shear stress near the wall.
His measurements in a pipe flow, of Reynolds number 500,000,
are shown in Fig. 2 as a bold line; y* is the abscissa and the
viscosity ratio fturn/Mtotal 18 the ordinate. Also drawn in Fig. 2
are the corresponding relations deduced from equations (9) and

(10). These are, respectively:
:'“": = l/l:l + 1/0.04432 {9"""‘* -1 — O04u?

tota

(0.4u™)?
g (9a)

and
I':‘_‘“'ll = l/l:l + 1/0.04432 {e"-““‘ — 1 —04u*

tota

(0.4u1)2  (0.4u™)3
T T T al }] (10¢)
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Comparison of these relations with the experimental curves
shows that the former equation gives the better fit at low y™,
while the latter gives the better fit at high y*. However, it is
probable that both curves can be regarded as equally satisfactory
when experimental scatter is taken into account.

Also plotted in Fig. 2, as a broken steplike curve, is the g/
Htotal distribution which corresponds to the assumption of a sharp
boundary between a laminar sublayer and a fully turbulent outer
region. Clearly this gives a very poor representation of the
data.

Further possible improvements. liquation (10) fits the require-
ment that e increases with the fourth power of »+, and so of y ¥,
close to the wall. However, even if this is correct, there is no
reason why the first nonzero term of the expansion should happen
to be that which appears in the expansion of 0.1108¢% 4", In
other words, it may be that further terms should appear inside
the braces of equations (9) and (10) which have the effect of only
partially canceling the corresponding terms in the exponential
expansion. Discussion of such further developments will be de-
ferred to a later publication.

Discussion

Practical use of the new formula. Fig. 1 shows that equations (9)
or (10) can be used to represent the “law of the wall’”’ within the
accuracy of the experimental data. Moreover, as just noted, the
general form of these equations is sufficiently flexible to accom-
modate any further modifications of constants which experiment
shows to be necessary. Of course, the constants 0.4 and 0.1108
must not be regarded as sacrosanct.

It should also be noted that the form of the equations is very
suitable for analytical work involving such expressions as fu*
dy*; for this integral can be written as S u*(dy*/du+*)du®,
which can be evaluated in closed form, since dy*/dut is easily
obtained by differentiating the y *(u+) relation. The way is there-
fore open to the analytical derivation of drag laws, for example,
without the approximations which are usually introduced (e.g.,
‘“seventh-power'’ profiles). These possibilities will be elaborated
elsewhere. (See, for example, Spalding [17].)

Theoretical implications. Iicuations (9) and (10) are presented
solely as useful interpolation formulas; they are not based on
any postulated mechanism of turbulent transport. Neverthe-
less, they provoke certain questions which it may be profitable
to investigate further. Some of these will now be listed.

(i) Does (10), for example, satisfly a differential equation in
which »+ and y* appear only as differentials?

The answer is readily seen; it is:

dsy+ dsy+
S A (11
du™’ dut® )
Similarly, equation (5) satisfies the differential equation:
d3y+ Ay
Vo =042 (12)
dut dut

(ii) Such differential equations are reminiscent of those derived
by Prandtl (12] and von Kuarman [7] as starting points for the
logarithmic velocity profile. Can a physical significance be at-
tached to these equations? Could they have been derived by
postulation of a physical model followed by dimensional analysis?

(iii) The von Karman differential equation is derived from the
consideration that the local “mixing length’ must be related to
local values of (0u/dy), (02:/dy?), and so forth. Is there any
reason why u should have been chosen as dependent and y as in-
dependent variable in this analysis, other than the irrelevant one
that we happen to perform experiments by fixing the position of
the Pitot tube first and then taking the reading? If not, a rela-
tion of the mixing length to (0y/dn), (d24/0u?), and so on, is
equally valid.
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(iv) When the density varies such that density ratio ¢ is a
known function of «*, is it reasonable to calculate the velocity
profile from a suitably modified version of (11)? Thix would
run:

dsy + dout

dut® du
which can be evaluated by numerical quadrature without dif-
ficulty. This thought might lead to more¢ satisfactory theories of
friction and heat transfer in compressible boundary layers. If
equation (13) is not as suitable a starting point for analysis as
that, for example, of van Driest [20], what is the physical reason
for this?

It is not intended to suggest answers to these questions here.
They are put forward solely to provoke thought and eriticism.

(13)

= 0:4¢(u*)-

Conclusions

(a) Formulas have been presented [equations (9) and (10)]
which represent adequately the experimental date for the uni-
versal turbulent velocity profile when the viscosity and density
of the fluid are uniform.

(b) The formulas are flexible enough to permit further adjust-
ment of constants in the light of new experimental data, and
simple enough in form to permit analytical integration in im-
portant cases of interest.

(¢) The formulas represent y+ explicitly in terms of 1+ instead
of vice versa. It appears possible that other aspects of turbulent
boundary-layer analysis may be profitably re-examined with
velocity as the independent variable.
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On Classical Normal Modes of a
Damped Linear System

MORRIS MORDUCHOW!

It uas BEEN essentially shown by Rayleigh [1]2 that if the
damping matrix of a linear vibrating system is a linear combina-
tion of the stiffness and inertia matrices, then the damped system
will have principal modes which are exactly the same as those of
the undamped system. Caughey [2] has recently developed more
general conditions for the existence of classical normal modes with
damping, including the above condition as a special case. In
both [1] and {2], the analysis is based on the use of normal co-
ordinates. The purpose of this Note is to demonstrate Rayleigh’s
condition (equation (2) below) in a straightforward manner with-
out the use of normal co-ordinates and hence without asssuming
a knowledge of the theory associated with transformations to such
co-ordinates. This procedure, in addition to being instructive,
will also lead to explicit results for the damping factor and
natural frequency in any principal mode, and will be seen to
yield some interesting implications. TFinally, the method of
analysis given here will be applied to a vibrating beam with
simultaneous internal and external damping.

Let a dynamical system be governed by the equations

{n} + [ {n} + (k1{R} =0 (1)

where [m], [¢], and [k] are square (inertia, damping, and stiffness,
respectively) matrices of order n. Moreover, suppose

[e] = a[m] + blk] (2)

To solve equations (1), let

where @ and b are any constants.
{r} = {H}e? (3)

where { H} is independent of the time ¢, and p is a constant. Then,
if equation (2) holds, equation (1) reduces to

L+b2\n -
(lm) + (,,2 = ap) kD{H} =0 (4

Equation (4) is scen to be the same as the equation for no damping
(¢ = b = 0), but with (1/p?) replaced by (1 4+ -bp)/(p? + ap).
Hence the characteristic normalized vectors {H} with damping
will be the same as those without the damping. Moreover, if in
the kth mode without damping p2 = —w,,2 (where w,, denotes
the undamped natural frequency in the kth mode), then for the
kth mode with damping

L + bp, 1
_T,_.J_ = 2 (5)
P —+ ap;. Wy
Thus
Py = —dp = 1w, (6a)
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where

dl.' =

2 27|/
s wk=wko[1—<d“)] (6b)
2 Wio

Equations (6a, b) give the damping factor d, and the natural fre-
quency w, for any principal mode with damping when condition
(2) holds. In the latter case, in fact, a necessary and sufficient
condition for dynamic stability of the system is that

a+ w2 0 (7

for each undamped natural frequency wy,. [It is interesting to
note that (7) can be satisfied even in cases when either a or b
(but not both) is negative. Equations (3) through (6b) are valid
whether [¢] is positive definite or not.]

Consider, finally, a beam subjected to an external damping
load f(z)0Y /0t and an internal damping load (g/w)0/oi(EIY")"
(cf., e.g., [3]) per unit length, where '=0/0z. Moreover, suppose
f(z) = cp(z), where ¢ is a constant,® and p(z) is the mass per unit
length of the beam. Let Y(z, ) = y(z)e?*. Then the equation
for the free bending vibrations reduces to:

cp + p?
14+ Lp
w

(EI(z)y")" + p(x) =0 (8)

Hence the principal mode shapes y(z) will be the same as without.
any damping, and the value of » in any mode will be such that

cp + p?

g
I A =9
Wy,

= —wy’ (9)

where w,, is the undamped natural frequency in the kth mode-:
Setting p = —d,. + iwy, equation (9) implies

_C U
dy = = + 2 (10a)
where

4ot + (¢ — 4w Dw? + 2eqwi2m. + gt = 0 (10b)

To first powers of ¢,

g wkoz

W, = Wpe — —— — 11
: k 4wt (11)

where w;, = [w,,2 — (¢/2)2)'/* = the natural frequency in the kth
mode for ¢ = 0. In the case of internal damping only (¢ = 0),
equations (10e) and (10b) yield:

= 1]y
&, = % [1 + (1 - y’)'/’] = % 1 — (1 — g7y
(12a)

Wio
W = —F—

=y L+ -7 (12b)
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