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“That we have written an equation does not 

remove from the flow of  fluids its charm or 

mystery or its surprise.”

Richard Feynman
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Additional equations to close the system

• In the absent of models (turbulence, multiphase, mass transfer, combustion, particles interaction, chemical 

reactions, acoustics, and so on), this set of equations will resolve all scales in space and time.

Source terms

Relationships between two or more thermodynamics variables

Additionally, relationships to relate the transport properties
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• I like to write the governing equations in matrix-vector form.

• Where q is the vector of the conserved flow variables,

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation

CE

ME

EE
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• I like to write the governing equations in matrix-vector form.

• The vectors ei, fi, and gi contain the inviscid fluxes (or convective fluxes) in the x, y, and z 

directions,

CE

ME

EE

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation
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• I like to write the governing equations in matrix-vector form.

• The vectors ev, fv, and gv contain the viscous fluxes (or diffusive fluxes) in the x, y, and z 

directions,

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation

CE

ME

EE
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• The heat fluxes q in the vectors ev, fv, and gv can be computed using Fourier’s law of heat 

conduction as follows,

• If we assume that the fluid behaves as a Newtonian fluid (a fluid where the shear stresses are 

proportional to the velocity gradients                    ), the viscous stresses can be computed as 

follows,

Where k is the thermal conductivity
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• In virtually all practical aerodynamic problems, the working fluid can be assumed to be 

Newtonian.

• In the normal viscous stresses                        , the variable      is known as the second viscosity 

coefficient (or bulk viscosity).

• If we use Stokes hypothesis, the second viscosity coefficient can be approximated as follows,

• Except for extremely high temperature or pressure, there is so far no experimental evidence 

that Stokes hypothesis does not hold.

• For gases and incompressible flows, Stokes hypothesis is a good approximation.
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• By using Stokes hypothesis and assuming a Newtonian flow, the viscous stresses can be 

expressed as follows,

• In our discussion, it is also necessary to relate the transported fluid properties               to the 

thermodynamic variables (temperature and pressure).

• We will discuss this later.
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• If you examine closely the equations we have seen so far, you will notice that we have five 

equations and seven variables. 

• To close the system, we need to find two more equations by determining the relationship that 

exist between the thermodynamics variables                      .   

Source terms
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• Choosing the internal energy       and the density     as the two independent thermodynamic 

variables, we can find equations of state of the form,

• Assuming that the working fluid is a gas that behaves as a perfect gas and is also a calorically 

perfect gas, the following relations for pressure p and temperature T can be used,

• Now our system of equations is closed.  

• That is, seven equations and seven variables.
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• To derive the thermodynamics relations for pressure p and temperature T, the following 

equations where used,

Equation of state

Ratio of specific 

heats

Specific heat at 

constant volume

Specific heat at 

constant pressure
Internal energy Enthalpy

Total energy

Recall that Rg is the 

specific gas constant
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• In our discussion, it is also necessary to relate the transported fluid properties               to the 

thermodynamic variables.

• The molecular viscosity (or laminar viscosity) can be computed using Sutherland’s formula with 

two coefficients (one of the many models available),

• The thermal conductivity k can be computed as follows,

Molecular Prandtl number of the working fluid
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• If you are working with high-speed compressible flows, it is useful to introduce the Mach 

number.

• The Mach number is a non-dimensional parameter that measures the speed of the gas motion 

in relation to the speed of sound a,

• Then, the Mach number M can be computed as follows,
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• And never forget the definition of the Reynolds number,

Convective effects

Viscous effects

• Where U is a characteristic velocity, e.g., free-stream velocity.

• And L is representative length scale, e.g., length, height, diameter, etc.

• It is well known that the Reynolds number characterizes if the flow is laminar or turbulent.

Kinematic viscosity

Dynamic viscosity
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Governing equations of fluid dynamics

• In the previous set of equations, we introduced two non-dimensional numbers, namely, the 

Mach number (M) and the Reynolds number (Re).

• In many situations, when simulating or experimenting with scaled models we want to maintain 

the dynamic similarity between the Mach number and the Reynolds number.

• To do so, we need to adjust the physical properties of the fluid (the fluid density or the fluid 

viscosity) or the reference pressure in order to maintain dynamic similarity.

• Doing so when conducting CFD simulations is relatively easy.

• However, in physical experiments, this not so easy because it requires specialized pressurized 

winds tunnels that can maintain the temperature at a constant level, or test facilities that can 

use different working fluids, e.g., nitrogen, R-134a, and so on.

• In Appendix 1, we go thru some of the algebra used to maintain dynamic similarity when 

working with the Mach number and the Reynolds number with scaled models.
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Governing equations of fluid dynamics

• The previous equations, together with appropriate equations of state, thermodynamics closure 

models, boundary conditions, and initial conditions, govern the unsteady three-dimensional 

motion of a viscous Newtonian compressible fluid.

• These equations solve all the scales in space and time.  

• Therefore, we need to use very fine meshes and very small time-steps.

• Notice that besides the thermodynamics models (or constitutive equations) and a few 

assumptions (Newtonian fluid and Stokes hypothesis), we did not use any other model.

• Our goal now is to add turbulence models to these equations in order to avoid solving all scales. 

• This will allow us use coarse meshes and larger time-steps. 

• Therefore, we will be able to get economical solutions.

• With good accuracy (if good standard practices are followed).

• Before deriving the RANS/URANS equations, let us introduce a few simplifications to this 

beautiful set of equations.
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• In many applications the fluid density can be assumed to be constant.

• If the flow is also isothermal, the viscosity is also constant.

• This is true not only for liquids, but also for gases if the Mach number is below 0.3.

• Such flows are known as incompressible flows.

• If the fluid is also Newtonian, the governing equations written in compact (vector notation) 

conservation differential form and in primitive variable formulation (u, v, w, p) reduce to the 

following set of equations,
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• In expanded three-dimensional Cartesian coordinates, the simplified governing equations can 

be written as follows,

• It is worth noting that the simplifications added do not make the equations easier to solve. 

• The mathematical complexity is the same.  

• We just eliminated a few variables, so from the computational point of few, it means less 

storage.

• Also, the convergence rate is not necessarily faster.
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• We can write the simplified governing equations in matrix-vector form as follows,
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• Recall that the viscous stress tensor        can be written as follows,

• By using Stokes hypothesis and assuming a Newtonian flow, the viscous stresses can be 

expressed as follows,
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• The viscous stress tensor can be written in compact vector form as follows,

• Where S represents the strain-rate tensor and is given by the following relationship,

• Additionally, the gradient tensor can be decomposed in symmetric (strain-rate tensor) and skew 

parts (spin tensor) as follows,

• Where represents the spin tensor (vorticity), and is given by,
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• In the previous definitions, S represent the symmetric part of the gradient tensor and      

represents the anti-symmetric (or skew) part of the gradient tensor. 

• This decomposition is based on the fact that every second rank tensor A (e.g., the gradient of a 

vector), can be decomposed into symmetric and skew parts, as follows,

• A short note regarding the notation,

• We used S to denote the strain-rate tensor and       to denote the spin or vorticity tensor.

• This is the notation that we will consistently use.

• In the literature, some authors use a different notation.  

• For example, some authors use D to denote the strain-rate tensor and S to denote the 

spin tensor. 
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• For some non-Newtonian flows (e.g., polymers, blood, honey, chocolate), the non-Newtonian 

viscosity      can be written in terms of the strain-rate tensor         .        

• In general, the non-Newtonian viscosity depends on the shear rate magnitude (or the norm), 

• There are many models to compute the viscous stress tensor in non-Newtonian flows.

• For example, using the power law model, the non-Newtonian viscosity is computed as follows, 

• Therefore, the viscous stress tensor can be approximated as follows,

• Where k (consistency index) and n (power-law index) are input parameters of the model. 

• Notice that if you set n and k equal to 1, you get the Newtonian formulation.

where

This is the scalar product of two second rank tensors.

Non-Newtonian flow

Newtonian flow
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• From now on, and only to reduce the amount of algebra, we will use the 

incompressible, isothermal, Newtonian, governing equations.
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• We presented the governing equations in their conservative form, that is, the vector of 

conservative variables is inside the derivatives.

• From a mathematical point of view, the conservative and non-conservative form of the 

governing equations are the same.

• But from a numerical point of view, the conservative form is preferred in CFD. Specially if we 

are using the finite volume method (FVM).

• The conservative form enforces local conservation as we are computing fluxes across the faces 

of a control volume.

• The conservative form use flux variables as dependent variables, and the non-conservative 

form uses the primitive variables as dependent variables.

Conservative form Non-conservative form

• If you integrate this equation in a control volume, fluxes 

across the faces will arise.

• The FVM method is based on integrating the governing 

equations in every control volume.
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• Let us recall the following identity,

• From the divergence-free constraint                    it follows that                   is equal to zero.  Therefore,

• Henceforth, the non-conservative form of the momentum equation (also known as the advective or convective 

form) is equal to,

• And is equivalent to the conservative form of the momentum equation (also known as the divergence form),
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• The incompressible Navier-Stokes equations can also be written using index notation as 

follows,
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• Dust your notes on index notation* as from time to time I will change from vector notation to 

index notation.

↔

* In appendix 1, you will find a refreshment on index and vector notation.


