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Abstract 

• Turbulent motions are ubiquitous and impact almost every aspect of 
our life, from the formation of hurricanes to the mixing of a 
cappuccino. The mathematical description of turbulent flows is 
established, and in the last four decades computational tools have 
been used extensively to increase our understanding of the basic 
physical processes as well as to improve the design of engineering 
devices. The multiscale nature of turbulence creates unique challenges 
for numerical simulations. Discretization methods must preserve the 
physical processes, reducing or eliminating artificial dissipation and 
dispersion. Moreover, the extreme computational effort required to 
capture all the temporal and spatial scales of motion leads to the 
introduction of physical models for unresolved features. How do you 
establish confidence in the numerical simulations of turbulent flows? 
The talk will describe how the concepts of verification, validation and 
uncertainty quantification are developed and used in the framework of 
turbulence simulations. Several applications of turbulent flow 
simulations will also be described ranging from turbulent combustion in 
jet engines to aero-acoustics. 
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Part 1 
Turbulence 



(2003 Estimate) 

CFD’s value for Boeing 
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The CFD Bottleneck in Industry 

(2005 Data) 

Why? 

 

More Computer Power, But # of Required Tests Plateaued. 

DOE CSGF HPC Workshop 5 



(2005 Data) 

Back to CFD Bottleneck in Industry 

• Industry standard RANS model predictions do not improve with more 

FLOPS or memory beyond 1990's levels. 

• Constrained by model form 

• High-fidelity first principles approaches, e.g. Large-Eddy Simulation (LES), 

provide a path to prediction 
 

More Computer Power, But # of Required Tests Plateaued. 
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Turbulence 

Turbulence is the chaotic state of fluid motion that 
arises when the flow speed is higher than just the 
creeping motion 

It is the rule, not the exception, in fluid dynamics 
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The Structure of Turbulence 
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Transition to Turbulence 
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Turbulence downstream of a swirler 

2.6 billion grid cells  
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Why is turbulence a stumbling block for CFD? 

 
The range of scales or eddy sizes in a turbulent flow 

increases with Reynolds number, N~Re9/4 

 

The computational grid should resolve the small eddies 
and should encompass the entire device 

 
For a transport airplane with a wing cord length of 5m, 

a 50m fuselage cruising at 250m/sec at an altitude of 
10km, about 1016  points are required to capture the 
turbulence near the surface.  

 
With a peta-flop machine, it would take several years to 

compute the flow for one second of flight time! 
 

DOE CSGF HPC Workshop 11 



Large Eddy Simulation 

• Effectiveness of the prevalent engineering tool for 
CFD (RANS) has reached a plateau 

• RANS performance does not improve with more 
computational power and more grid points 

• LES: Resolve the large scale motions and model the 
small ones 

• Direct path to first principles (more computer power, 
higher accuracy) 

• Must Contend With Greater Memory and I/O 
Requirements 
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LES and Filtering 

• Formally solve for large-scale motions by applying low-
pass filter to Navier-Stokes 
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mag., Ret =395 
channel flow 
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Part 2 
Success Stories 



Some Examples 

Flow Control 

Transition 

Multiphase flows 

Rotorcraft Dynamics 

Reacting Flows in real 
geometries 
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• Control with synthetic jet actuator 
 

• CDP’s unstructured grid capability 
 

• Spanwise vorticity (                               ) 

velocity BC 

synthetic jet actuator 

uncontrolled 

   controlled 

Flow Separation Control 
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uncontrolled 

controlled 

Uncontrolled Controlled 

LES 0.83 1.43 

EXP 0.82 1.41 

Lift coefficient 
Lines: LES 

Symbols: Experiments (Gilarranz et al., JFE, ’05) 

uncontrolled 

controlled 

Velocity in the wake Surface pressure 

Flow Separation Control 
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Interface 

Interface 

Turbine  

(SUmb/RANS) 

Fan/Compressor 

(SUmb/RANS) 

Combustor 

(CDP/LES) 

Integrated Jet Engine Simulations 
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20 

Predicted temperature on 
mid-plane of PW engine: 
cruise conditions 
 



R = 11 R = 12 

Temperature Inside the Combustor 
at 2 Different Radial Locations 



Automotive Cooling Fans Side View Mirror in a Wind Tunnel 

Noise Prediction for Low-Mach Flows 
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Flow visualization: Side view mirror 

Speed = 34 mph = 55 km/h, Re = 200,000, Mesh Resolution: 25M grid cells 

 



Supersonic Jet Noise 

Supersonic Round Jet, Ma=1.7 
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Temperature in a 
pressure-matched 

isothermal jet, 
Ma=1.5 



Sound Propagation to the Far-Field 

Data-Intensive Post-Processing Step (Acoustic Analogies) 26 



Sound Propagation to the Far-Field 

Data-Intensive Post-Processing Step (Acoustic Analogies) 27 



Experiment 
LES (medium mesh, 13M) 

LES (fine mesh, 30M) 

Supersonic jet (M
j
 = 1.5),Inlet angle = 150o 

Effect of mesh resolution 
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LES of Supersonic Jet Exhaust 
with Jet Blast Deflector and Carrier Deck 
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LES of Supersonic Jet Exhaust 
with Jet Blast Deflector and Carrier Deck 
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LES of Supersonic Jet Exhaust 
with Jet Blast Deflector and Carrier Deck 
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Part 3 
Numerical Methods 



Numerical Methods for LES 

• It is important for LES calculations to predict 
accurately the quantities that led to choosing LES in 
the first place (e.g., turbulent fluctuations, acoustic 
sources, mixing, …) 

• Numerical dissipation present in most RANS codes is 
inadequate for LES (c.f. flow over cylinder) 

• Dispersion errors important for compressible flow and 
prediction of aerodynamic noise 
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Re = 3,900 
Mittal & Moin (AIAA J., 1997) 

 

 

Vertical lines indicate the grid cutoff: 

           central difference 

           upwind biased  

ω-5/3  

ω / ωst 

experiment  

(Ong & Wallace) central difference 

upwind biased 

Numerical Dissipation in LES of Cylinder 
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One-dimensional streamwise velocity spectra E11 along the wake centerline 

 



Numerics: Low dissipation/dispersion grid-
sensitive operators for unstructured grids 

• Developed novel grid-sensitive operators for 
minimizing dissipation and dispersion on 
unstructured grids 
• Dispersion reduced by using nominally 4th-order 

reconstruction in the face-normal direction 

• Dissipation minimized by assessing skew-symmetry of local 
differencing operator and introducing local dissipation scaled 
by the local lack of skew-symmetry 
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Example problem: Euler vortex 

• Heuristic: Identify the non-SBP regions by computing                         
and modify the operators just in those regions to 
ensure operator stability.  

• This is not a solution-dependent fix like WENO. It is 
done as a pre-processing step 



Naively trying to introduce more neighbors 
fails on “bad” grids   

• E.g. Use polynomial reconstruction to consistently 
introduce more neighbors and increase the “accuracy” 

• Euler vortex problem, grid with transitions and periodic 
boundaries: 
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Application to complex mesh: Compressible 
subsonic flow in an augmenter 

• Sub-sonic flow in an augmenter with complex flame-
holder 

• Block structured mesh with many grid transitions in 
size and skewness  

Mesh detail in plane through flameholder 
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Center plane through 
full domain (top) and 

detail (bottom) 
showing temperature 

Application to complex mesh: Compressible 
subsonic flow in an augmenter 
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Discrete Conservation Principles 

• Important for numerical algorithms to abide by 
higher Conservation Principles 

• Low-Mach number flows: Conservation of kinetic 
energy in the inviscid limit 

• Compressible flows: Conservation of 1st and 2nd 
moments of entropy (Honein and Moin, JCP, 2004) 

• “Implicit LES” approaches such as “Miles” 
questionable 
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Comments on MILES/ILES 

• Dissipation in MILES/ILES (where the truncation error 
is assumed to represent the sub-grid physics) can be 
very solution and grid-dependent, and often 
excessive 

• Need to capture the turbulent fluctuations that led us 
to LES in the first place  

Liu et al. AIAA J. 
2009, MILES 
 
Need to do better 
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Temperature in a 
pressure-matched 

isothermal jet, 
Ma=1.5 



Part 4 
Verification & Validation 



Moin and Kim (1981,1985) 

Simulation 

Experiment 

Unsteady Visualizations 
Make an Impact! 

A Simulation Milestone 
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V & V QUIZ 
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• Recast convective term with additional filter 

• Derived by including a part of the subgrid 
stress term in convective term  

• Assumes filtering and differentiation 
commute 
• Lack of commuting filters has prevented widespread 

adoption of explicit filtering  

Explicit Filtered LES 
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• Grid converged LES is a DNS 

• Limit of DNS never achieved 
in practice 

• Cannot verify LES this way 

 

Kobayashi et al., 2008, 
passive scalar, Sc =1 

Verification for traditional LES 
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Mesh independent LES 

• Introduce a filter into the governing equations through 
the convective term 

• If the filter commutes with differentiation, it becomes 
possible to formally decouple the filter and grid scales 
and produce grid-independent LES (with refinement) 

• Challenges for unstructured grids: 

• Unstructured commuting filters required – some progress here 

• Cost of this approach expected to be large for lower-order 
methods 

 

 

 

DOE CSGF HPC Workshop 48 



• Converged, grid-independent solutions obtained 
• Failure to converge to filtered DNS due to modeling errors 

Channel Flow (Ret = 395) Statistics 
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Conclusions / Explicit Filtering 

• Obtained grid independent statistics; true LES 
solutions  

• Formally separated filtering operator from 
numerics 

• Isolated errors due to  SGS modeling 

 

• Platform to characterize epistemic uncertainty 
in LES models 
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1. 

2. 

Cylinder, Re = 3900, Contours of instantaneous 
vorticity magnitude 

Which turbulence simulation is (more) correct? 
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1. 

2. Comparison of mean streamwise 
velocity to experiments: 

Quiz: Continued… 
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1. 

2. Comparison of mean streamwise 
velocity to experiments: 

Quiz: Continued… Nz=4 

Nz=48 
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 PIV Experiment of 
Chyu and Rockwell (1996) 

Numerical simulations with 
Nz = 48 

Answer: Number 2! 

• Early transition was occurring in both experiment 
(due to vibration) and the very coarse simulation. 

• Other experiments confirm the finer simulations. 

DOE CSGF HPC Workshop 54 



Lesson:  
Get the right results for the right reason. 
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Part 5 
Uncertainty Quantification 



Accounting for uncertainty in the simulations 

requires a new perspective on the computational 

paradigm 

Differences between real system and CFD model 
• Geometry definition 

• Boundary condition specification 

• Material properties 

 

 
Modeling 
• Effect of numerical errors (i.e. truncation errors) 

• Physical modeling errors (i.e. turbulence models) 

• Neglected physical processes (i.e. is buoyancy important?) 

 

 

Why do we have Uncertainty? 
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Validate predictions of flow-generated noise for a 

fan blade section 

 

Experiments are carried out 

In large facility (anechoic 

chamber) 
 

 

Need to represent the flow  

impinging on the airfoil accurately 

to perform meaningful comparisons 

 

It is not feasible to perform high-fidelity simulations of the 

entire chamber 

 

 

Example – Fan Noise Predictions 
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The strategy is to use low-fidelity simulations to 

provide boundary conditions to the high-fidelity ones 

 

 

The computational effort 

(grid resolution) is 

concentrated on the 

smaller LES domain 

 

 

Example – Fan Noise Predictions 
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How accurate are the LES results? Are they affected 

by uncertainties in the specification of the boundary 

conditions (RANS simulations)? 

 

 

Velocity profiles at the trailing edge show discrepancies 

Example – Fan Noise Predictions 
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Differences between“real” velocity profiles and 

RANS estimate  is assumed to be the uncertainty 

 

 

Example – Fan Noise Predictions 
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UQ of Turbulence Simulations 

Multiple realizations corresponding to different boundary 
conditions lead to both laminar and turbulent  boundary layers 
on the upper surface  
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UQ of Turbulence Simulations 

95% confidence intervals extracted from UQ/LES Simulations 
compared to experimental measurements (symbols) 

Wall pressure distribution 
Streamwise velocity profile 
@ xc/C=0.95 
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Noise Prediction 

Wall pressure fluctuations spectrum Sound pressure levels 

95% confidence intervals extracted from UQ/LES Simulations 
compared to experimental measurements (symbols) 
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Part 6 
Perspectives on Computer Science Aspects 

and Exascale 



Growth in supercomputing power 
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7 years 

100 times 

Growth in supercomputing power 

DOE CSGF HPC Workshop 67 



Summary 

• Turbulence 

• Success Stories 

• Numerical Methods 

• Validation and Verification 

• Future Trends 
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