
Matching Mach and Reynolds Number

In  cfd  solvers  freestream boundary condition can be  speci fied with Mach number , pressure , and 
temperature . The important nondimensional parameters we need to match are Mach number and Reynolds

number . Setting the  Mach  number  is obvious , but  what  pressure and temperature do we use inorder to
matchReynoldsnumber?

Let’s start with the definitions of Mach number and Reynolds number (based on chord in this case):

M∞ =
V∞
a
, Re =

ρV∞c

µ

How does temperature and pressure affect these equations? The speed of sound and the dynamic viscosity
are both functions of temperature, and the density is a function of pressure and temperature through a
thermodynamic equation of state (generally the ideal gas law). In other words:

M∞ =
V∞
a(T )

, Re =
ρ(P, T )V∞c

µ(T )

The freestream velocity appears in both equations, so solve for it in one equation and plug it into the other.

Re =
ρ(P, T )M∞a(T )c

µ(T )

We note that we have a degree of freedom. We can either choose a pressure and then solve for the
corresponding temperature that satisfies the equation, or we can specify temperature and then choose the
corresponding pressure that satisfies the equation. Intuitively that should make sense. We should be able to
match Mach and Reynolds Number at any condition by appropriately choosing the other variables.

The density has a simple relationship between pressure and temperature through the ideal gas law:

P = ρRT

where the specific gas constant R = 286.9 J/(kg-K) for air. Substituting that into our main equation:

Re =
PM∞a(T )c

RTµ(T )

The speed of sound also has a simple relationship with temperature:

a =
√
γRT

where γ = 1.4 for an ideal diatomic gases (and air is essentially entirely composed of diatomic gases).
Substituting in:

Re =
PM∞

√
γRTc

RTµ(T )
=
PM∞

√
γc

√
RTµ(T )

The only thing we haven’t substituted in is the dynamic viscosity dependence on temperature. We won’t
directly substitute in just because it is a little longer. For an ideal gas, the dynamic viscosity can be found
from Sutherland’s law:

µ = µref

(
T

Tref

)3/2
Tref + S

T + S
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where Tref = 273.15, S = 110.4, µref = 1.716× 10−5 kg/(m-s).
We can see that the easiest way to solve this equation is to choose T , and then compute P (note that the

units for T are Kelvin in all of these equations):

P =
Re µ(T )

√
RT

M∞c
√
γ

By choosing a T , we know everything on the right hand side and can directly solve for P .
The opposite approach is also possible, but is more work.

√
Tµ(T ) =

PM∞c
√
γ

Re
√
R

We actually can solve for T explicitly through a quadratic function, but it’s messy and is easier just to solve
the above numerically as a root finding problem:

f(T ) =
√
Tµ(T )−

PM∞c
√
γ

Re
√
R

= 0

We can use fzero in Matlab to find the T that satisfies f(T ) = 0 (where again T is in Kelvin).
Either approach is fine, but remember that when you set the temperature and pressure in your boundary

condition, you should also use them to set the initial conditions (or at least something close). If your initial
conditions are very far from the steady state solution, you may have numerical issues and a difficult time
converging. If you change pressure, it may be easiest to just change the reference pressure and then your
gauge pressure can remain at 0 elsewhere.
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