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Abstract 

The viscous flow around rectangles defined by afterbody length, B, and cross-stream dimension, A, is 

investigated through a hybrid discrete vortex method. For uniform flow conditions the effects of varying the side 

ratio, BIA, the angle of incidence, a, and the Reynolds number, Re, are all considered. Pulsating flow results are 

reported for rectangular cylinders with BIA values of 0.62, 1.0, 2.0 and 3.0, a BIA=1.0 cylinder inclined at 45° 

and a circular cylinder. 

At a fixed Reynolds number, Re=200, the variation of drag coefficient with side ratio shows CD increasing with 

decreasing BIA. This contrasts with the known result at higher Reynolds number, 1 04::;;Re::;; 1Q5, for which a 

maximum drag occurs close to BIA=0.6. A peak is observed in both the Strouhal number and lift coefficient 

close to BIA=0.30. This is explained by the afterbody suppression of the shear layer interaction. In the case of 

the square cylinder, results are presented for the variation of drag coefficient and Strouhal number with Reynolds 

number, 50::;;Re::;;5x1Q3. Good agreement with experiment is shown although for Re~500 the calculated Strouhal 

number is dual valued. 

The 'lock-in' characteristics under pulsating flow are shown to be highly dependent on body geometry. All the 

cylinders are shown to exhibit an asymmetric resonant mode within which the shedding frequency is controlled 

at half the forcing frequency and the mean forces increase. Several different shedding patterns are predicted across 

this asymmetric synchronisation range. A 'quasi-symmetric' mode is also observed for some cylinders 

characterised by near wake symmetry and a substantial reduction in mean forces. A pseudo-phase lag is defined 

which relates a moment of the lift cycle to a moment of the forcing oscillation. This is shown to change across 

the synchronisation range of each cylinder considered and the change is found to be greater at lower forcing 

amplitude. 
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Roman: 

A Cylinder diameter. 

B Cy linder length 

CD Drag coefficient. 

CL Lift coefficient. 

C p Pressure coefficient. 

d Maximum cross-stream dimension 

fe Forcing frequency. 

fs Shedding frequency. 

fo Natural shedding frequency 
(Uniform flow). 

F x,F y Drag, lift components of force. 

g ij Metric tensor. 

J Jacobian of transformation. 

K Keulegan-Carpenter number. 

NV Number of vortices. 

N X Size of mesh in S direction. 

MY 

P 

P 

Size of mesh in TJ direction. 

Fluid pressure. 

Total pressure. 

Re Reynolds number. 

S t Strouhal frequency. 

t Time. 

lI, v Components of velocity 
in physical plane. 

Vo Upstream flow velocity. 

VA Velocity amplitude of upstream flow 
pulsations. 

Vs Velocity at separation point. 

W(z) Complex potential. 

X
f 

Cylinder displacement amplitude. 

x ,y Co-ordinates in physical plane. 

Notation 

Greek: 

a Angle of incidence. 

r Circulation. 

J1 Kinematic viscosity. 

v Fluid viscosity. 

P Fluid density. 

(J' Cut-off strength of vortices. 

l' Period of forcing oscillation. 

OJ Vorticity. 

Q( S' TJ) Complex co-ordinate in 
computational plane. 

i,j 

k 

Co-ordinates in computational plane. 

Stream function. 

Velocity potential. 

Subscripts: 

Value at (i,j)th mesh point. 

Value of kth discrete vortex. 

~(x, ,,) Complex co-ordinate in physical plane. 
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Chapter 1 

Introduction 

1.1 Motivation 

Flows past cylindrical obstacles, such as the circular and rectangular cylinders examined in this study, may be 

considered to lie within the general research area of bluff body aerodynamics and a vast amount of literature has 

been devoted to this field. The practical impetus for such research ranges from evaluation of the aerodynamic 

loading exerted on aerofoils to the simulation of wind-induced oscillations experienced by large structures. 

The flow past a streamlined body, such as an aerofoil at low incidence, remains attached over the majority of the 

body surface and only separates towards the aerofoil trailing edge. This contrasts with the flow around a bluff 

obstacle for which separation occurs over a large portion of the surface area and where the wake is usually 

characterised by regions of high vorticity. Morton (1984) has described how the generation of vorticity results 

from the tangential motion of a boundary relative to a fluid and from the pressure gradients acting along that 

boundary. Viscous diffusion and convection then work to spread the vorticity into the fluid interior. 

For uniform flow past two-dimensional bodies, the creation, diffusion and subsequent convection of vorticity 

results in the formation of large-scale vortices shed periodically into the wake region. As these vortices are shed 

alternately from opposite faces of the body they exert an oscillatory force on the obstacle normal to the 

freestream. Since the vortical regions of the flow are associated with low pressure values the base pressure, or 

pressure at the rear of the obstacle, will be low inducing a high value of drag. A more detailed description of the 

physical processes behind vortex shedding is contained within Chapter 2. 

Buildings, bridges and ocean pipelines are all examples of bluff obstacles which, when exposed to strong winds 

or heavy seas, might be susceptible to structural damage. When an oscillatory, upstream flow component is 

present further complications may result. At certain oscillatory amplitudes and frequencies resonance can occur 

between the shedding frequency and upstream flow frequency. As a result the stresses exerted on the obstacle may 

be further increased or other undesirable side effects might be induced. An example of this is in the application 

of vortex flowmeters to the measurement of flowrate. These meters measure volumetric flowrate proportional to 

shedding frequency but for pulsating or pumping flows the shedding frequency can resonate, or 'lock-in', with 

the pulsation frequency resulting in inaccurate measurements. 
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Engineers are therefore interested in being able to predict what kinds of stresses are likely to occur, under what 

circumstances, and how the design can be adapted in order to minimise the possibility of structural failure. It is 

thus the job of the fluid dynamicist to assist in the design process by building numerical or laboratory models to 

simulate the complex fluid-structure interactions which take place. Fluid dynamicists are also interested in these 

flows from a more fundamental point of view as even the flows about the most simple geometries are not yet 

fully understood. They wish to gain a greater understanding of phenomena such as flow separation, reattachment 

and transition to turbulence, and to understand how the frequency and strength of vortex shedding varies with 

Reynolds number, body geometry, freestream turbulence and other defining parameters of the flow. 

1.2 Methods for the simulation of bluff body flows 

In the laboratory, wind tunnel or water tank experiments can be devised to study the flow characteristics. 

Loadings can be estimated from pressure tappings on the body surface or load bearings. Velocity measurements 

in the wake region are usually made by Hot-Wire Anemometry (HWA) or Laser Doppler Anemometry (LDA). 

Dominant frequencies in the wake can then be extracted by looking at the power spectrum of velocity samples 

although this is more difficult with LDA techniques since the sampling rate is low and non-uniform. Flow 

visualisation by introduction of smoke or dye, upstream of the body, is frequently used in experimental analysis. 

The graphical output cannot give much quantitative description but useful qualitative observations of the wake 

formation processes and phenomena such as separation can be extracted. 

Laboratory experiments are costly, time-consuming and involve factors such as wall effects and probe intrusion. 

It is thus inevitable in the age of the computer that numerical techniques are being widely used to simulate bluff 

body flows. The Navier-Stokes equations (1.1) are a set of non-linear partial differential equations derived from 

the principle of conservation of linear momentum [see for example Acheson (1990)]. These are given below 

together with the continuity condition (1.2) for an incompressible fluid: 

au 1 2 - + (u . "Y)u = - - "Y p + v"Y u + g , 
at p 

(1.1 ) 

"Y·u =0. (1.2) 

In the above u is the velocity vector and p the fluid pressure. g is the gravitational acceleration and the 

kinematic viscosity is defined as v=j.J/p, p being the fluid density and J1 the viscosity of the fluid. These 

equations cannot be solved exactly but a variety of numerical schemes have been developed which model the 

equations of motion in order to obtain approximate solutions. These schemes are now widely used for research 

and development within both academia and industry in the form of CFD (computational fluid dynamics) codes. 

The major advantage in using CFD as a tool for solving the Navier-Stokes equations is that detailed analysis of 

the flow can be obtained since values for all calculated parameters are deduced throughout the computational 

domain at each time step. 
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An important non-dimensional parameter is the Reynolds number Re which represents the ratio of inertial to 

viscous terms. For bluff body flows Re is normally defined as 

Vad 
Re=--, 

v 
0.3) 

where d is the maximum cross-stream diameter of the bluff body under consideration and Va the freestream 

velocity. Roughly speaking as Re increases the scales of fluid motion present in the flow reduce in size. To 

obtain adequate solutions the numerical schemes must resolve or model the smallest scales of motion and 

therefore the computational power required to solve the problem increases with increasing Reynolds number. 

Most numerical schemes are mesh-based in nature. Direct numerical simulations (DNS) ensure that the grid is 

refined enough to include the smallest scales of motion in the calculations. At present DNS calculations are 

restricted by computational power to low Reynolds number flows below Re= 1 03
. Most bluff body flow 

applications occur in the range 104<Re< 105
• Higher Reynolds numbers (Re> 103

) can be modelled by adding a 

suitable scheme to the simulation, usually called a turbulence model, which parameterises the smaller scales of 

motion. 

An irrotational flow is defined as a flow for which no vorticity is present. Mathematically, irrotational flows 

past arbitrary objects can be simply represented by what are known as potential solutions. The flow around bluff 

obstacles can in general be characterised by concentrated areas of vorticity contained within largely irrotational 

motion. This property is fundamental to the discrete vortex method (DVM) which models the irrotational part of 

the flowfield as a potential solution and introduces many discrete packets of vorticity, or vortex particles, to 

simulate the wake and boundary layer region. By solving the vorticity transport equation (or using the Biot­

Savart Law) the transport and interaction of these vortical regions can be effectively simulated. In contrast direct 

numerical simulations of the flowfield approximate the equations of fluid motion by mesh-based finite-difference 

or finite-volume relations which solve for pressure and velocity over the entire flowfield at each time step. 

Unless the mesh is exceptionally small the finest scale fluid motions will not be adequately simulated. Thus the 

discrete vortex method is advantageous in concentrating computational effort on the complex wake and boundary 

layer region and in its ability to simulate the smallest scale fluid motions by many vortex particles. 

Many typical bluff structures can be approximated as long cylinders, and for simulation purposes two­

dimensional cylindrical cross-sections are often used. In numerical simulations the effects of span wise or three­

dimensional fluctuations in the flow are often ignored and a two-dimensional model is devised which treats each 

plane of flow as identical. This has the advantage of mathematical simplicity and saves valuable CPU time. 

Although a 2-D representation of the flowfield will not be exact, good approximations of the aerodynamic 

loadings can be obtained and the dominant features of the flow will still be apparent. Of course in the laboratory 

the simulation can never be fully two-dimensional but there are other benefits to pursuing 2-D simulations. A 
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two-dimensional solution may often be considered as the limiting solution to a more complex 3-D problem. In 

addition flow visualisations have played an important role in the study of fluid dynamic processes and their 

interpretation is greatly eased by the use of a 2-D configuration. 

1.3 Scope of the present study 

The primary objective of the present study is the numerical investigation of flows about rectangular cylinders. In 

particular the 'lock-in' characteristics under pulsating flow conditions past these obstacles are examined. Other 

studies have been initiated to determine the effects of pulsating flow on the vortex shedding behind triangular and 

T-shaped geometries. The initial stimulus for this research stems from a series of laboratory experiments 

conducted by AI-Asmi and Castro (1992) on the effects of pulsating flow past typical vortex shedding flowmeter 

geometries. They studied the effects of shape and blockage ratio on 'lock-in' characteristics over a range of 

oscillation amplitudes and frequencies at a typical Reynolds number of Re=1.5x104
• 

However the main topic of this thesis concerns the flows past rectangular cylinders. An outline of the physical 

appearance of vortex shedding is given at the beginning of Chapter 2 followed by an overview of relevant bluff 

body aerodynamics literature. A review of the rectangular cylinder literature is preceded by a section on circular 

cylinders. The added complications involved when there is an upstream oscillatory flow component present or 

when the body itself is undergoing vibration are discussed in section 2.4. Chapter 2 concludes with a summary 

of the main findings for flows past rectangular cylinders and identifies those areas which require further research. 

As with most computational methods the discrete vortex method started out as a simple model but rapidly 

developed into a diverse multitude of models as the numerous researchers constructed their own theoretical 

schemes, interchanging ideas and discarding or incorporating methods according to the needs of their particular 

simulation. Essentially vortex methods originated as inviscid Lagrangian models which neglected the diffusion 

of vorticity. To reduce computational expense hybrid Eulerian-Lagrangian schemes were developed. These solve 

the velocity field on a mesh before interpolating back to individual vortices for convection purposes. According 

to Morton (1984) the decay of vorticity can only take place within the fluid interior and results from the cross­

diffusion of vorticity of opposite signs. Viscous diffusion of vorticity has usually been incorporated by splitting 

the vorticity transport equation into diffusion and convection parts. The development of these theoretical 

concepts is outlined in Chapter 3 in conjunction with a review of DVM literature. Chorin (1973) and Clements 

(1973) were amongst the first to model bluff body flows using discrete vortex methods but many have followed 

in their footsteps since. Papers which study the uniform flow past circular and sharp-edged bodies have been 

reviewed along with some papers which examine oscillatory flow past bluff bodies. A more concise review can 

be found in Sarpkaya (1994). 

A hybrid vortex-in-cell method with a finite difference scheme to solve the VISCOUS diffusion equation was 

chosen for all simulations in this study. This method was first developed by Graham (1988) although a similar 
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hybrid scheme was independently developed by Chang and Chern (1990). Subsequent applications include the 

work of Meneghini (1994) who used the discrete vortex method to simulate cross-flow oscillations past circular 

cylinders at Re=200. Meneghini's results clearly showed the 'lock-in' characteristics for oscillation frequencies fe 

close to the natural shedding frequency fa and the 'lock-in' boundary was determined. A version of Meneghini's 

code was obtained in the initial stages of this research. The modifications made to the DVM code chosen for this 

study took up a considerable part of the research time. A description of the code together with those 

modifications made are given in Chapter 4. 

A major part of the code development included the derivation and implementation of a surface pressure 

calculation scheme. To calculate force coefficients the DVM has previously either used the Blasius theorem, 

which relates the force on the body to the rate of change of momentum in the fluid travelling across the body, or 

related the gradient of vorticity normal to the body to the surface pressure gradient. As vortices leave the 

computational domain, results from the Blasius theorem become excessively noisy and for sharp edged bodies 

the vorticity gradient is noisy near corners, resulting in erroneous surface pressure calculation. A new method of 

finding the surface pressure was therefore required here. Manipulation of the momentum equations in a 

generalised co-ordinate format leads to an integral expression for the surface pressure which is applicable for any 

co-ordinate transformation. Evaluating the surface pressure by this integral method is more accurate for sharp­

edged bodies and the derived pressure integral expression should therefore provide a good basis for estimating 

surface pressures around other shapes in future studies. 

Uniform flows past rectangular cylinders are discussed in Chapter 5. Results were obtained for the effects of 

variation of side ratio, angle of incidence and Reynolds number. These effects are discussed in relation to changes 

in the mean measured parameters such as force coefficients and vortex shedding frequency as well by 

observations from flow visualisations of the vortex particles. 

In-line oscillatory flow results past a series of circular and rectangular cylinders at Re=200 are presented in 

Chapter 6. The lock-in regimes for a range of oscillation amplitudes and frequencies are discussed and simulated 

flow visualisation is presented for the different modes of shedding. Under both uniform and oscillatory flow 

conditions comparison is made with existing numerical and experimental data. Finally conclusions and 

suggestions for future work directions are discussed in Chapter 7. 
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Chapter 2 

Bluff Body Aerodynamics 

A large quantity of literature exists in the field of bluff body aerodynamics. Some recent reviews of the general 

topic include the papers by Oertel (1990), Roshko (1993) and Laurence and Mattei (1993). A review of 

oscillatory flow topics has been conducted by Bearman (1984). It is fair to state that flows past circular cylinders 

have received the most attention in the literature and this is particularly true for flows of an oscillatory nature. In 

this Chapter the literature review will concentrate on papers which examine the flow past rectangular cylinders. 

However some papers on the flow past circular cylinders are included since many analogies can be drawn. Some 

introductory material will first be given to explain why vortex shedding is a dominant feature of such flows. 

2.1 Background Theory 

To begin, some simple definitions must be made and the potential solution for flow past a circular cylinder will 

be presented. This will be of use later on when the discrete vortex method theory is described since it may be 

used to simulate the irrotational regions of flow. In a Cartesian (x,y) co-ordinate system, the velocity vector in 

two dimensions is defined as u=(u, v). The introduction of a stream function l.fI is mathematically beneficial, as 

will be shown later on, but l.fI exists only for two-dimensional and incompressible flows. Velocity can be 

expressed in terms of the spatial gradients of the stream function as written in (2.1): 

dl.fl dl.fl 
u=- v=--. 

Jy' (]x 
(2.1) 

Streamlines are lines of constant l.fI and for a steady flow are equivalent to the paths which fluid particles will 

follow. Vorticity, OJ, is a measure of the local angular velocity or spin of a fluid element. Mathematically it is 

defined as the curl of velocity, 

OJ="'Vxu. (2.2a) 
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In two dimensions the vorticity becomes a scalar quantity, 

dv du 
OJ=---. ax ()y 

(2.2b) 

Poisson's equation for the stream function follows directly from the definitions of stream function and vorticity, 

(2.1) and (2.2), and is 

(2.3) 

When there is no vorticity present, i.e. V x u = 0, the flow is termed irrotational. For an irrotational flow a 

velocity potential cp can be introduced such that 

u = Vcp 
acp acp 

I.e. U = ax' v = ()y (2.4) 

If the flow is two-dimensional, incompressible and irrotational then the velocity field can be represented by both 

(2.1) and (2.4) and a complex potential function W can be defined as 

W ( z) = W ( x + iy) = cp + i lfI (2.5) 

Scalar quantities such as lfI, cp and W remain invariant under a conformal transformation of the body geometry. 

This means that if we are able to determine the complex potential in one plane of geometry, say the z-plane, and 

there exists a transformation to another plane of geometry, z', then the complex potential at points in z will 

remain the same at the corresponding points in z' under the conformal transformation. 

The complex potential for the flow about a circular cylinder of radius a is well documented (see for example 

Acheson (1990» and is given as 

W(z) = Uo(z + a 2 
/ z). (2.6) 

From (2.5), with a conversion to polar co-ordinates, the stream function can be written as 

(2.7) 

From (2.7) the solution of the velocity field in irrotational flow can be obtained. Furthermore substitution of 

the surface values of velocity into Bernoulli's equation yields Cp , the surface pressure coefficient: 
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C P - p~ 1 4' 2 e 
p = = - SIn . 

q~ 

(2.8) 

This result, derived in most elementary texts on fluid dynamics, e.g. Kuethe and Chow (1986), shows that the 

surface pressure attains a maximum value at the forward and rear stagnation points. Over the rear portion of the 

body the flow travels from a region of low pressure to a pressure maximum; the importance of this adverse 

pressure gradient will be seen in the following section. 

2.1.1 Boundary layer and flow separation 

In reality viscous effects are important. The fluid viscosity causes the flow to stick to solid surfaces and at the 

interface a no-slip condition exists such that the fluid velocity there is zero. Outwards from the boundary is a 

thin layer known as the boundary layer in which the velocity gradient is very high. The velocity rises from zero 

on the body to approximately the mean flow speed within a short distance. Separation can be described by 

considering the impulsive start of the fluid motion from rest. At the instant that the fluid motion is started the 

flow contains no circulation, i.e. the motion is irrotational and can be described by the potential flow solution. 

Potential flow theory predicts an adverse pressure gradient on the rear surface of the cylinder. It is possible to 

show that the fluid within the boundary layer is slowed in regions where ap/as>o (s being the direction along 

the body surface). A mathematical argument for this statement is given in Kuethe and Chow (1986, p326). If 

this adverse pressure gradient is sufficiently intense then the direction of flow will be reversed forcing the fluid 

to separate. Generally we say that separation tends to occur where there is an adverse pressure gradient or the 

fluid flows from a low pressure region to a high one. 

Initially the irrotational flow solution shows this point to be the rear stagnation point but as the flow 

progresses this point moves quickly towards the front of the cylinder reaching a steady separation angle of 

around 80°. For a symmetrical bluff object, such as a circular cylinder, this separation process will initially be 

symmetrical with two separation bubbles forming a symmetrical vortex pair as shown in Figure 2.1. 

2.1.2 Onset of vortex shedding 

In the case of the flow about a bluff symmetrical body we can consider the flow to start from rest and assume 

the initial motion to be irrotational. As vorticity diffuses out from the body surface the boundary layer thickens 

until a short time later the flow separates. This will occur almost instantaneously at the leading edge corners for 

a sharp-edged obstacle, but for an obstacle of continuous curvature, such as a circular cylinder, the separation 

will begin at the rear stagnation point before moving forward until a stationary position is reached. Meanwhile 

the vorticity diffuses out from the body surface and two thin vortex layers form symmetrically and curl up on 

themselves. As more vorticity is shed from the surface this vortex pair grows in strength and size, extending 

itself further downstream as seen in Figure 2.1. 
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For small Reynolds numbers, up to about Re=50, this arrangement is stable and the vortex pair grows until 

reaching some steady point at which time there is a balance between the vorticity being added to the vortex pair 

from the shear layer and the vorticity diffusing out from the vortex pair into the main body of fluid. As the 

Reynolds number is increased beyond Re=50 this stability cannot be upheld. An asymmetry develops and one 

vortex rolls up over the other and is shed into the wake as a starting vortex. Vortices of opposite sign are then 

shed alternately into the wake resulting in the Karman vortex street pattern shown in Figure 2.2. It should be 

noted that even at lower Re any asymmetrical disturbance may trigger an instability in the vortex pair 

arrangement. 

The frequency of vortex shedding is regular and is denoted is in the literature although under uniform flow 

conditions this frequency is sometimes called the natural shedding frequency fo. The Strouhal number is defined 

as the non-dimensional frequency of vortex shedding under uniform flow conditions and is given by 

(2.9) 

Varying the Reynolds number may alter the Strouhal number significantly and these effects are discussed for 

both circular and rectangular cylinders in Sections 2.3.1 and 2.4.1 respectively. 

2.2 Flows past circular cylinders 

The flow about a circular cylinder is by far the most studied of all flows about bluff bodies due to its importance 

in engineering and the ease with which mathematical and laboratory models can be implemented. A concise 

review of flows about circular cylinders is given by Williamson (1996a). An overview is presented here since 

many of the findings have analogous results in the flows past bluff obstacles of other geometries. 

2.2.1 Effect of Reynolds number 

The plot of base pressure coefficient, Figure 2.3, clearly demonstrates that the nature of the flow is highly 

dependent on Reynolds number. Strouhal number vs. Reynolds number is plotted in Figure 2.4 for Re<450. 

The discontinuities in the Strouhal number and base pressure curves are attributable to the appearance and 

growth of instabilities in the flow which may alter the flow pattern. Various regimes have been identified and 

the different instabilities associated with the transition between these regimes are now receiving much attention. 

Williamson (1996a) has taken results from researchers who have been careful with the set-up of the experiment 

since upstream turbulence levels, cylinder roughness, aspect ratio and end conditions can all have a significant 

effect on the exact location of these transitions. Recently stability analysis has become an area of research used 

to identify the flow instabilities and how they are responsible for changing the shedding patterns. A small 

disturbance can grow either locally at its point of generation, in which case it is termed absolutely unstable. or 
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can be convected downstream growing in time but leaving the point of generation undisturbed in which case it is 

referred to as a convective instability. Von Karman was the first to interpret the vortex street as an intrinsic 

property of the wake structure and analysed the stability of vortex streets as early as 1912. The growth rates of 

these instabilities are very small which is why an obstacle wake may stretch for a considerable distance 

downstream. Equivalently the high levels of vorticity associated with the wake region may persist long after an 

obstacle has passed through that location. In the case of aircraft it is important to ensure suitable time periods 

elapse between aircraft landings on account of this phenomenon. 

The steady laminar regime, Re<49, consists of a symmetric vortex pair whose length grows with increasing 

Reynolds number. As described earlier the steady regime cannot be sustained with increasing Re since the vortex 

pair cannot grow indefinitely. An instability develops at approximately Re=49. This primary wake instability, 

known as a Hopf bifurcation, is amplified with increasing Re and induces periodic two-dimensional vortex 

shedding which can be sustained up to a Reynolds number of around 200 provided care is taken in the 

experiment to ensure that the end conditions induce parallel shedding. Three-dimensional instabilities develop 

beyond Re=200; these give a discontinuity in the curve as local vortex dislocations form along the span of the 

cylinder. Henderson and Barkley (1996) used a stability analysis technique to try and determine where these three­

dimensional instabilities develop. A direct numerical simulation of the 2-D flow was solved and stored before a 

stability analysis was carried out by applying an infinitesimal 3-D disturbance to the 2-D solution. Henderson 

and Barkley found a critical value of Rec=187.5 and an instability wavelength of 4 cylinder diameters which 

agrees well with the experimental observations of Williamson (1996b). This secondary instability has been 

termed 'mode A' by Williamson and is known to be hysteretic (see Figure 2.4) since if the Reynolds number is 

gradually decreased the instability can be sustained down to Re= 170. Observations of the base pressure plot, 

Figure 2.3, show that the base pressure reaches a local peak value at the end of regime BC and this looks similar 

to the peak which would have been reached had the straight line region of AB been extended. From the Strouhal 

number curve a second discontinuity can be seen at Re=240. This is associated with a further instability, known 

as 'mode B', of a wavelength similar to the bluff dimension. The 'mode A' and 'B' instabilities are clearly 

captured in Figure 2.5. As the Reynolds number increases 'mode B' shedding gradually becomes more dominant 

but there appears to be a range of Reynolds number for which both modes are present. 

Thereafter in region CD (Figure 2.3) there is a sudden and sustained decrease in base suction up to Re=103
, 

associated with an increase in the vortex formation length. Williamson accounts for this decrease by stating that 

the small scale 3-D structures become increasingly disordered in this regime; however current research is unable 

to provide a satisfactory explanation for the exact mechanism. Regime DE covers a wide range of Reynolds 

number, Re= 103 to Re=2x 105
, and most practical applications of bluff body flows would fall within this range. 

The base pressure gradually rises across the Re range, although on a less steep curve than in the AB regime, and 

as expected this is associated with a decrease in the formation length. This regime is known as the shear layer 

transition regime since the turbulent transition point in the shear layer moves upstream as Re is increased. 
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In regime EO the boundary layer becomes turbulent and this is associated with a reattachment of the separation 

bubble and a secondary separation at approximately 140 degrees. As a result the wake width is now very much 

reduced and hence the base suction drops considerably. 

2.3 Flows past rectangular cylinders 

Structures which may be of rectangular cross section include buildings, bridges, vortex flowmeters and design 

features such as beams and fences. A basic understanding of the aerodynamics past such objects is necessary 

since we wish to understand the loadings to which they will be exposed and how susceptible they are to 

aeroelastic instability. 

The defining flow and body geometry parameters for 2-D uniform flow past rectangular cylinders are shown in 

Figure 2.6. Parameters which vary the geometry of the problem are the afterbody length or side ratio BI A and 

the angle of attack a. The Reynolds number Re and Strouhal number St are usually non-dimensionalised 

according to d, the maximum cross-stream dimension, as in equations (1.3) and (2.9). However some researchers 

have used the rectangle width A to non-dimensionalise, in which case 

(2.10) 

Drag, D, and lift, L, act parallel and normal respectively to the free stream and their respective coefficients are 

defined as 

(2.11) 

In contrast with the flow past smooth obstacles, for sharp-edged objects the separation will occur almost 

instantaneously at the comer point since the pressure gradient will be so large there. However if the body is 

symmetrical and cylindrical then the vortex pair will still grow in the wake until, as described earlier, the 

balance of vorticity diffusion cannot be maintained and the Karman vortex street results. If the rectangle is placed 

at an angle of attack then asymmetry is observed immediately and we expect the vortex street to appear much 

sooner after an impUlsive start. The vortices in this case will no longer be of equal magnitude and hence the 

mean lift will be non-zero. 

Much work has already been done in an attempt to describe the effect of changing side ratio, angle of attack and 

Reynolds number on the two-dimensional flow past rectangular cylinders and in particular how the strength and 
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frequency of vortex shedding vary. A summary of the main findings accumulated from past research follows and 

this has been split into laboratory and numerical data. 

2.3.1 Laboratory measurements on the effect of BfA and Re variation 

Bearman and Trueman (1972) were amongst the first to investigate the effect of varying the side ratio. Their 

study consisted of laboratory experiments conducted over a Reynolds number range Re=2xl04 to Re=7x1Q4, 

with side ratios varying in the range 0.2:S;BIA:S;1.2. The high drag which occurs at a side ratio of BIA=0.6 had 

been a surprise result at the time of its discovery. Prior to that it had been thought that all bluff bodies had a 

roughly uniform drag coefficient since CD had been found to be close to 2.0 for both a flat plate placed normal to 

the stream and for a square sectioned cylinder. Bearman and Trueman's (1972) experiments were thus an attempt 

to shed some further light on the origin of this high drag and of the interaction taking place between the 

separated flow and the afterbody surface downstream of separation. 

Figure 2.7 shows drag and base pressure plotted against side ratio. The most striking feature is the sharp drag 

peak which occurs at BIA=0.62 with CD=2.94. By introducing a splitter plate at the base Bearman and Trueman 

were able to demonstrate that the high drag could be controlled. The wake splitter plate increases the size of the 

separated region behind the body, delaying the interaction between the two shear layers until much further 

downstream, and hence vortex formation takes place much further from the body base. Since a vortex represents 

a low pressure region, the further the vortices form from the rear of the body the higher the base pressure and 

hence the lower the drag. An examination of surface pressure distributions for 3 different afterbody lengths 

showed the base pressure distribution to be fairly uniform for cases where BIA=1.0 and 0.2 but for BIA=0.6 the 

base pressure is markedly lower towards the centre of the base which suggests that the vortices from upper and 

lower surfaces have their formation centres along the base centre line. The major conclusion from this work is 

that for a flat plate placed normal to the oncoming stream the vortices are forming quite far from the body but as 

we increase the afterbody length this distance decreases, resulting in lower base pressure and higher drag. 

However this cannot continue indefinitely and we reach a critical depth, at which time the separating layers 

begin to interact with the downstream comer and vortices start to form further from the body again. 

Laneville and Yong (1983) offered a slightly different perspective on the same problem, concentrating on flow 

visualisation of the vortex shedding. They used an oil film visualisation technique to obtain time-averaged flow 

patterns and as a result were able to identify various geometrical parameters of the flow such as length of 

separation bubble, distance between centres of vortices, and distance of vortex centre from trailing edge. Their 

qualitative findings could then be compared with the quantitative results of Bearman and Trueman (1972). Figure 

2.8 outlines what the general time-averaged flow pattern looks like. Vortices are shed asymmetrically into the 

wake but the time averaged flow pattern is symmetrical and two new parameters are defined, v c the distance 

between vortex centres, and v p the distance of a vortex centre from the body base. The variation of these 

parameters with side ratio, as found by Laneville and Yong, is given in Figure 2.9 and plates of the averaged 

flow visualisation in Figure 2.10 give a clearer indication of how the vortex positions vary. At low and high 
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side ratio the distance between vortex centres is quite large but for intermediate side ratio the vortex centres are 

almost indistinguishable. The authors note that for 0.3<8IA<0.8 there is a serious variation in the drag with the 

drag maximum occurring at around 0.6. As expected the lowest base pressure corresponds to the point where 

vortices are forming tightly behind the trailing edge giving high base suction in that region. The front face 

pressure distribution remains almost identical over this range while the base pressure shows a large variation 

with afterbody length. The smaller vp is, the closer vortices are forming to the rear of the body and the lower the 

base pressure. With smaller v c the vortices are forming very close together and hence the base pressure 

distribution will no longer be linear on the rear surface. A physical description of the processes behind the drag 

variation has been attempted by the authors. For BIA<0.5 the side wall is too short to allow for any interaction 

between the afterbody and the separating flow. However as the afterbody length increases the separation bubble 

grows and begins to exert a down wash effect on the vortex formation. This forces the vortices to form nearer to 

the body, pulling them in behind the body and closer together. Beyond BIA=0.625 the separation bubble is 

roughly 60% of the side length and as it is now further from the trailing edge its influence on the vortex 

formation diminishes and the vortices are free to again form further apart from the wake centre line and further 

back from the rear surface. It is suggested that intermittent reattachment may occur for 1.0<BIA<3.0 but beyond 

3.0 reattachment is fully established with vorticity shed periodically from the separation bubble. 

Ohya (1994) conducted base pressure measurements for rectangular cylinders with side ratios BIA=O.4, 0.5 and 

0.6 in an attempt to demonstrate that a discontinuity in the wake pattern close to the 'golden ratio' could explain 

the peak in the drag curve. Two different wake patterns were found as clearly indicated in Figure 2.11. At 

BIA=O.4 the vortices form far from the body and thus base pressure is high and drag low. At BIA=0.6 the 

vortices form close to the body and along the wake centreline corresponding to low base pressure and thus high 

drag. At BIA=0.5 there is a discontinuity in the flow structure with vortex shedding intermittently changing 

between these two modes. This jumping of modes is an important result but it is peculiar that neither Bearman 

and Trueman (1972) nor Laneville and Yong (1983) have reported this in their earlier works. Indeed both of these 

earlier papers suggest a smooth and continuous variation in drag coefficient and wake pattern with no mention of 

any discontinuity. Laneville and Y ong in particular were interested in the wake visualisation paying close 

attention to the vortex formation positions and would surely have discussed this intermittency had it been 

present in their experiments. No clear description of the reason behind the appearance of this critical flow pattern 

is given by Ohya other than it 'appears to be caused by an interaction between the separated shear layers and the 

body downstream of separation' which mimics almost word for word what Bearman had said twenty two years 

earlier. 

Reynolds number effects of flows past rectangular cylinders have received attention in a series of papers. In the 

earliest study, by Okajima (1982), a comprehensive experimental investigation was undertaken to determine the 

vortex shedding frequencies of rectangular cylinders with side ratios BI A= 1.0, 2.0, 3.0 and 4.0 over the range 

70<Re<2xI0". Okajima's preliminary statement reads, 'In the case of a sharp edged body, like a rectangular 

cylinder, separation is fixed at the leading edge and the aerodynamic characteristics are said to be relatively 
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insensitive to Reynolds number.' However, 'at extremely low Re, the separation takes place at the trailing edge, 

due to immediate reattachment of the flow at the leading edge. As Re increases, steady reattachment becomes 

impossible and the leading edge separation develops. Furthermore transition to turbulent flow occurs as the 

Reynolds number is increased.' Hence Okajima reports that for a certain range of Re the Strouhal number is 

likely to be highly dependant on Re. A water tank was used to conduct experiments where Re<300 and a wind 

tunnel for higher Re. In each set of experiments a hot-wire probe measured velocity fluctuations and hence the 

shedding frequencies. 

The measurements from various investigations on the Re dependence of rectangular cylinders has been compiled 

by Norberg (1993). The compilation includes laboratory investigations by Okajima (1982), Igarishi (1985) and 

Norberg (1993) in addition to the numerical studies of Davis and Moore (1982), Franke et al (1990), Okajima et 

al (1990) and Ohya et al (1990). Figure 2.12 has been reproduced from his paper and indicates the Re dependence 

of the BIA=1.0, 2.0 and 3.0 cylinders. Quite different Reynolds number dependent characteristics are observed in 

each case. 

Figure 2.12(a), BIA=l.O: The Strouhal number curve is continuous and roughly constant for Re>1000 but 

shows some variation below this value with an experimental peak of 0.14 for 120<Re<250. Those values found 

from numerical simulations are generally found to be higher than the laboratory values. 

Figure 2.12(b), BI A=2.0: The Strouhal number increases linearly up to Re=400 but then a discontinuity arises 

where there are two apparent values. For Re>600 the Strouhal number again increases but above a Reynolds 

number of 2000 there is considerable scatter in the results. 

Figure 2.12(c), BIA=3.0: Initially St increases linearly up to Re=600. This is followed by a discontinuous 

region, 600<Re<5000, within which 3 different frequencies can be seen; a large amount of scatter is present in 

this region as the results were dependent not just on Reynolds number but on actual model size since this 

affected the end conditions. This suggests that three-dimensional motions become dominant within this Re range 

and that these are highly dependant on the model end conditions. Above Re=5000 the Strouhal number remains 

roughly constant at St=0.16. 

In general it is noticed that the scatter in the results appears to increase with higher side ratio; this is perhaps 

because the vortex shedding from longer bodies is more susceptible to the experimental set-up. 

Okajima's (1982) research includes some hot-wire measurements of the mean and turbulent components of 

velocity across the wake for the BIA=2.0 and 3.0 cylinders at several different Reynolds numbers. These results 

give an indication of the variation in wake width and vortex formation position with Reynolds number. For the 

BIA=2.0 cylinder the wake is narrow at Re=300 and widens with increasing Re. At low Reynolds number there 

is reattachment along the side surfaces with separation again from the trailing edge and hence the vortices fom1 



Chapter 2 Bluff Body Aerodynamics 15 

further downstream. At higher Reynolds number the flow becomes fully separated from the leading edge without 

reattachment to the side surface. Clearly one can conclude from this work that discontinuities in the Strouhal 

number curve occur at values of Re which are strongly dependant on the value of BIA. For the square cylinder no 

such discontinuity, or critical Re, has been observed. For the BIA=2.0 cylinder the critical Re is shown to be 

around 500; it is about 1000 for the BIA=3.0 cylinder. However this effect does not occur for the BIA=4.0 

cylinder since the flow remains reattached to both upper and lower surfaces throughout the Re range. Okajima 

notes that the freestream turbulence level of 0.5% may have had a significant impact on the detachment and 

reattachment of the flow. This implies that a change to the value of free stream turbulence may incur a 

significant alteration to the way in which the Strouhal number depends on Re. 

In summary, for Re below the critical region the flow detaches from the leading edge and reattaches on either the 

upper or lower surface during a period of vortex shedding, but for Re above this critical value the flow becomes 

fully detached from the cylinder. However at BIA=l.O the afterbody length is too short for reattachment and at 

BIA=4.0 the afterbody is long enough to ensure the separated flow is always reattached regardless of the 

Reynolds number. 

An experimental investigation of the flow past rectangles of greater side ratio has been performed by Nakamura 

et at (1991). Measurements were made for side ratios 3<8IA<16. Four main regimes have been identified by the 

authors at Reynolds numbers in the range, 1.5x 104~Re~3.1 x 104
: 

(1) BIA <3.2: The flow is fully separated from the leading edge and shear layer interaction takes place without 

reattachment. 

(2) 3.2< BIA <7.6: The shear layers reattach periodically and a regular vortex street is formed in the wake. 

(3) 7.6< BIA <16: The separation bubble is always fully attached. Its length varies periodically and, at its 

maximum, the bubble divides in a random manner shedding vortices into the wake but no regular street is 

apparent. 

(4) BI A > 16: The plate is long enough for a turbulent shear layer to develop and a regular vortex street results 

from the interaction of the two turbulent shear layers. The limiting case of a flat plate parallel to the flow is of 

fundamental interest to fluid dynamics but remains outside the scope of the present study. 

However at lower Reynolds numbers, 100O<Re<3000, regular vortex shedding is found throughout the range of 

side ratios as can be seen from Figure 2.13. If the Strouhal number based on afterbody length is determined, 

stepwise increases can be observed at side ratios BIA=6, 9 and 12. Each mode of shedding corresponds to a 

number of vortices forming along the side of the body. Near the jumps between the modes both frequencies can 
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be observed as illustrated in Figures 2.14(a),(b) for a BIA=8.0 cylinder. Three vortices form along the side of the 

rectangle in (a) and two vortices form along the side in (b). 

2.3.2 Numerical simulations on the effect of BIA and Re variation 

Numerical models, quite understandably, have a much shorter history and have been confined mainly to two­

dimensional laminar situations. Davis and Moore (1982) were the first to model the flow past rectangles with a 

two-dimensional direct numerical simulation at Reynolds numbers between 100 and 2800, and with side ratios 

BIA=0.6, 1.0 and 1.7. Their studies were conducted at low Re in order to minimise the effects of turbulence. 

Some experimental runs were also made for comparison although only the Strouhal frequencies were estimated. 

In a subsequent paper, Davis et al (1983), they follow on from their previous work by including the effects of 

adding an outer boundary to the flow. Since wind tunnel experiments must invariably be conducted within 

confining walls it makes sense to include the effects of blockage within the numerical simulation as a test of 

their influence. The Reynolds number varies from 100 to 1850 and blockage ratios of 0.25 and 0.17 are studied 

at the same side ratios as before. The presence of a confining boundary was found to increase both the drag and 

Strouhal number. What is striking about the results is that they did not make further calculations of the flow for 

values of BI A less than 0.6. They were aware of the critical drag found by experiment at higher Reynolds 

number but did not model this numerically. The authors have noted that even though the model is rather crude 

and certainly unable to examine small scale motions in turbulent regions it has still been able to give a fair 

indication of the drag and Strouhal number in comparison to the experiment. These early numerical results are 

rather limited in scope but problems which still hinder current simulations can be identified. A two-dimensional 

model will not be able to simulate the effects of any three-dimensional instabilities on the flow. This is 

apparent in the calculated values of Strouhal number which are consistently higher than experiment for Re>500. 

In the experiment the addition of blockage tended to increase Strouhal number with increasing blockage. Since 

blockage is known to enhance a two-dimensional flow profile this further verifies what has previously been 

stated, i.e. that Strouhal number should be expected to be overestimated in a two-dimensional simulation at 

Reynolds numbers for which three-dimensional instabilities are inherent in real flows. 

A high Reynolds number, Re=2xl04
, simulation of the effects of afterbody length has been conducted by 

Nagano et al (1982) with a discrete vortex method. In this study the side ratio is varied in the range 

0.5<BIA<2.0 and a drag maximum was found which has not been observed in any other numerical results. The 

peak was not nearly as sharp as that determined experimentally and the Strouhal number was consistently higher 

across the range. The high Strouhal numbers can again be attributed to the two-dimensional nature of the 

simulation. In two-dimensional space spanwise vortex stretching cannot occur, so all the vorticity is convected 

in the downstream direction; this leads to more rapid vortex development and hence a higher Strouhal number 

results. This is readily observed when confining walls are introduced as they tend to increase the two­

dimensional nature of the problem. However this does not account for the drag peak being so undistinguished. It 

is possible that the numerical method removed too much vorticity for the lower side ratio cases as the drag 



Chapter 2 Bluff Body Aerodynamics 17 

coefficient is clearly much lower than that found experimentally, i.e. the circulation reduction scheme needed 

some adjustment according to side ratio. 

Franke et at (1990) have calculated numerically the laminar vortex shedding flow past a square cylinder for 

Re:5300 with a 2-D direct numerical simulation. Their work is geared towards the creation of a fully tbree­

dimensional turbulent code capable of modelling more practically applicable situations. They state that the 

accuracy of the numerical results will depend strongly on the near-wall grid resolution. They also started their 

simulations with a gradual increase of free-stream velocity up to the final value as impulsive starts were found 

to generate long time disturbances which damped out only slowly. They further suggest that fully periodic 

vortex shedding is reached faster if the fluid is slowly accelerated from rest. In comparing these results with other 

numerical and experimental data, namely the Strouhal numbers obtained by Davis and Moore(1982) and 

Okajima( 1982), the authors point out that a large discrepancy in the data exists, perhaps because of the treatment 

of the sharp edges which can influence the vortex shedding. They also find that for Re< 150 the separation occurs 

on the rear corners and that up to this Re, the vortex size decreases with increasing Reynolds number and thus 

there is a reduction in CD. However beyond Re=150 the opposite effect occurs. At Re=250 and Re=300 

additional frequencies are reported in the drag coefficient spectrum, although for the square cylinder this has not 

been reported experimentally. 

In an extension to his earlier laboratory based work, Okajima (1990) has examined numerically the flows about 

cylinders of side ratio in the range 0.6~/A:58.0. A finite difference method was used for low Reynolds number 

simulation, 150:5Re:5800, and a discrete vortex method was chosen to model a high Reynolds number flow, 

although the exact Re is not given since the method is inviscid, i.e. it does not incorporate a viscous diffusion 

scheme. Comparison is made with results from a series of laboratory experiments in which base pressure (see 

Figure 2.15) and Strouhal number were measured for bodies of different side ratio over a large Re range, but it is 

not stated how these were performed. 

At low Reynolds numbers the aim was to identify for each cylinder a critical Re range for which the Strouhal 

number jumped due to some interaction between shear layers and trailing edge taking place. Below this Re 

value, which varies for different BIA, Okajima states that the flow can generally be said to separate from the 

leading edge of the cylinder and reattach on both upper and lower surfaces, with the Karman vortex street 

observed in the wake. However one must assume that there exists a range of Re over which the flow is 

intermittently separating and reattaching. Beyond the critical Re the flow remains fully detached for BIA<2.S. 

This implies that, since the trailing edge no longer interacts in any significant manner with the separating shear 

layer, the Strouhal number should remain approximately constant above the critical Reynolds number and indeed 

this appears to be the case. Reattachment occurs for rectangles with side ratios greater than 2.5 even at higher 

Reynolds number. There were not really enough runs performed to give a proper comparison with the earlier 

experimental results, Okajima (1982). The discontinuity in the St vs. Re curve for the BI A=2.0 cylinder did 

appear to be predicted by the simulation, which leads to the assumption that the instabilities responsible for this 
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mechanism are two-dimensional in nature; i.e. the shear layer interaction with the trailing edge. No attempt was 

made to model flows at BIA<0.6 although the researchers were fully aware of the high Re critical drag 

phenomena. Base pressure variation with Reynolds number is also investigated in Okajima (1990) and the 

results are graphed in Figure 2.15 for the BIA=1.0 and BIA=2.0 cylinders. In each case the base pressure shows a 

very large variance with Reynolds number particularly in the Re<1000 region. The scatter in results is large but 

some of the trends appear to be analogous to those exhibited in the plot of base pressure variation for a circular 

cylinder, Figure 2.3. A local maximum in base suction is observed in the Reynolds number range 

1500<Re<2000 for the BIA=1.0 and BIA=2.0 cylinders. It was also shown that the base suction maximum 

occurs at around Re:::::400 for the BIA=6.0 and BIA=8.0 cylinders. In each case the base suction then falls but the 

Reynolds number for minimum drag varies widely from Re:::::800 when BIA=8.0 to Re:::::l04 when BIA=2.0. For 

the circular cylinder case a local maximum was reported at Re=260 and a minimum at approximately Re::::: 1 03
, 

but whether the mechanisms responsible for these extrema are similar remains to be investigated. 

The high Re DVM runs give good agreement with experimental results for the drag coefficient vs. BIA. The 

drag increases with decreasing side ratio down to BIA=0.6 as expected but no simulations were performed for 

lower values of BIA; this again is surprising as it would appear to be a natural progression to attempt to recreate 

the experimentally-determined golden ratio value. Vortex formation appears stronger and tighter (i.e. close to rear 

surface) for the 0.6 ratio but the lower side ratio cases are required to make significant comment on the vortex 

shedding and formation lengths. 

Two papers attempt a numerical examination of the work by Nakamura et at (1991) with the side ratio in the 

range 3<BIA<10 and Re$;1000. A study of vortex shedding from flat plates with square leading and trailing 

edges at Re=1000 has been undertaken by Ohya et at (1992). A direct finite-difference analysis of the Navier­

Stokes equations is used and although there is no turbulence model included in the simulation the jump in 

Strouhal number is still well observed at BIA=6.0 although the agreement with experiment is less satisfactory at 

higher values of BIA. A transitional mode is found at BIA=8.0 with two distinct shedding frequencies. 

Nakayama et at (1993), in a closely related study, then reduced the Reynolds number to Re=200 and 400. At 

Re=200 the Strouhal number shows a linear variation with BI A, whereas for Re=400 the Strouhal number 

increases stepwise with BIA in a similar manner to the experimental results for Re=1000. This implies that the 

impinging shear layer instability appears between Re=200 and 400. The impinging shear layer instability has 

been described as where the separating shear layer from the leading edge becomes unstable in the presence of a 

sharp trailing edge corner. 

2.3.3 Effect of angle of attack 

If the simulation is an attempt to model the flows about rectangular structures exposed to a true engineering 

environment then we would not expect the flow always to be aligned normal to the structure in question. 

Changing the angle of incidence is similar to changing the afterbody shape. The interaction between the 

separating shear layers may be delayed as the cross-stream dimension is increased and a reattachment bubble may 



Chapter 2 Bluff Body Aerodynamics 19 

form on the windward edge with secondary separation from the trailing corner. It is thus important to identify 

how the incidence effects the vortex formation and induced forces. 

Kniseley (1990) reviewed the findings on Strouhal numbers of rectangular cylinders at incidence and performed 

some experiments of his own on cylinders with BIA ranging from 0.04 to 2.0 and with angles of attack from 0 

to 90 degrees. A series of water tank and wind tunnel studies were conducted and Figure 2.16 shows Kniseley's 

findings for Strouhal number, drag and lift. The Reynolds number varies with angle of attack and from cylinder 

to cylinder between 0.46xl04 and 3.10xIQ4, since it is defined according to the maximum cross-stream 

dimension. Three side ratios are shown, BIA=0.25, 0.5 and 1.0 but since the angle of attack is extended to 90 

degrees in the two former cases these can also represent BIA=4.0 and 2.0 with the angle of incidence reversed. In 

each case the initial increase in angle of attack is associated with a sharp increase in Strouhal number and 

significant decrease in drag and lift coefficient. At some angle of incidence (approximately 13° for BIA=1.0 and 

approximately 20° for BIA=0.25 and BIA=0.5) the Strouhal numbers level off for each side ratio at around 

St=0.18-0.19. The lift coefficient continues to decrease, but at a lower rate, for BIA=0.25, increases a little 

before levelling off in the BIA=0.5 case and increases rapidly to CL=O in the range 300~~45° for the square 

cylinder. Since the BIA=1.0 cylinder is symmetric at a=45° we expect the lift coefficient to be zero at this 

incidence but it is perhaps surprising that the lift remains near zero over such a range of angles. This can 

however be explained by consideration of the difference in the afterbody shape between a=0° and a=45°. At 

a=0° only a small change in the angle of attack is required before the afterbody will start to interact with the 

separated shear layer. In contrast at a=45° a larger change is necessary. It can also be noted that at high incidence 

in the BIA=0.5 case which is equivalent to low incidence for BIA=2.0 there is a dual shedding frequency which is 

due to intermittent reattachment as described earlier. 

Zaki et al (1994) conducted some numerical and laboratory experiments on square cylinders over a range of 

Reynolds numbers and angles of attack. The numerical results are fairly limited and deal only with the Strouhal 

number of a square cylinder up to Re=250. The laboratory experiments were conducted in a gravity-fed water­

tunnel and the experimental set-up allowed a low level (0.2%) of freestream turbulence to be maintained. 

Velocity measurements in the wake were made by hot-film anemometry and hence the Strouhal frequencies could 

be extracted. Figure 2.17 outlines the different flow patterns expected around a square cylinder as the angle of 

attack is varied. According to Zaki the flow becomes attached along one side close to a::::. 1 0°. The separation 

bubble then shrinks with increasing incidence. Zaki's results for three different Reynolds numbers (Re=1790, 

2450 and 6140) are given in Figure 2.18. A similar trend to Kniseley's (1990) results for the square cylinder is 

observed with an initial increase in St followed by a shallower decrease and then a levelling off of St. The 

magnitude of the Strouhal number is somewhat different and this is caused in part because Kniseley's Strouhal 

number is based on the maximum cross-stream dimension. But at lower Re Zaki's experimental results are 

questionable. A comparison with Figure 2.12(a) raises serious doubt as to how Zaki's measurements could have 

generated such low St values. St::::.0.12 is the lowest value generally observed in this Re range. Zaki himself 

makes no comment on this large discrepancy in results but there must be some reason for the low values of St. 
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An explanation might perhaps be derived from the model aspect ratio, end effects, or the experimental 

(measurement) technique itself since a gravity-fed water tank is not commonly used. 

An experimental study was undertaken by Norberg (1993) with BIA=1.0, 1.62,2.5 and 3.0. Measurements were 

carried out in a wind tunnel with free-stream turbulence less than 0.06% over 5x103~Re~1.3x 104
• The Strouhal 

frequency, lift and drag were shown to vary with angle of attack in a similar manner to that described previously 

in the analysis of Kniseley's results. 

A recent series of numerical simulations has been made by Sohankar et al (1996) for low Reynolds number 

laminar flows. They implemented a DNS code to model the flow and the variation of the main parameters is 

given in Figure 2.19. Some fundamental differences can be detected between these results and those found at 

higher Re described above. At low angles of incidence the Strouhal number behaves in a similar manner to that 

observed at higher Reynolds number. St rises sharply until the reattachment point and then falls rapidly. In the 

studies at higher Re there was a plateau for middle incidences, 20°< a <70°, where the Strouhal number changed 

little but here the Strouhal frequency begins to rise again after an initial drop. The reasons for such contrasting 

behaviour remain unclear although one should not expect a change in the incidence angle to affect the flow 

characteristics in a similar manner at different Reynolds numbers. 

2.3.4 Free-stream turbulence 

Real atmospheric flows past buildings, bridges and other external structures will not have a fully uniform 

upstream flowfield. The upstream flow will contain a certain amount of free-stream turbulence and this 

approaching turbulence can have a direct effect on the flow past bluff obstacles. Classically it is known that for 

flows past smooth bodies, such as circular cylinders and spheres, the effects of upstream turbulence are to cause 

an early onset of the boundary layer transition to turbulence. This delays separation and decreases the wake 

width; hence base pressure increases and drag falls. This arrangement is more complex for flows past blunt 

obstacles and the type of turbulence as well as the bluff geometry will have a direct bearing on how the flow is 

affected. Free-stream turbulence is normally characterised by two parameters, an integral length scale, Lx, and an 

intensity u'/Uo where u' is the root mean square (rms) value of the free-stream velocity fluctuations. Although 

no study of the effects of upstream turbulence is to be made in this report it is interesting to note the dependency 

of certain flow features in particular with regards to turbulence length scale. Instabilities which develop in the 

bluff body wake with increasing Re are known to be of different scale and may have similar effects on the flow 

as those due to upstream turbulence. 

Gartshore (1984) studied the effect of upstream turbulence on fluctuating lift and base pressure values of 

rectangular cylinders. It had been thought at the time that turbulence scale was rather unimportant and that only 

the turbulence intensity was contributory to altering the flow. The results showed that small intensity 

turbulence could increase the loadings for rectangles with BIA<0.6, i.e. side ratio below the critical geometry. 

but decreased the loadings on longer rectangles. As the turbulence intensity is increased a threshold is reached 
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beyond which the aerodynamic forces no longer decrease for longer rectangles but for shorter rectangles the forces 

start to decrease back towards the zero turbulence value. The author points out the need for further studies to 

identify the effects of turbulence scale on the flow and, in a similar paper, Nakamura and Ohya (1984) have 

tackled this issue. They have performed detailed experiments on the effects of both scale and intensity but 

perhaps the easiest way in which to visualise the results is to see their plot of base pressure vs. side ratio, 

Figure 2.20. In smooth flow there is a drag peak at around BIA=0.62 but this peak and its intensity are decreased 

in small scale turbulence. It would be most useful to extend this graph to a series of curves so that we can 

identify further the effects of scale. It should be noted that, as has already been described, other factors such as 

Reynolds number, tunnel blockage and cylinder aspect ratio can affect the flow. Hence care must be taken when 

comparing different studies since they may represent quite different problems and this can often be the reason 

why different authors present contradictory results. The results are summarised between small scale and large 

scale effects. Small-scale turbulence leads to enhanced roll-up and stronger vortex shedding for short cylinders, 

but for longer cylinders the trailing edge interaction with the shear layer is enhanced, which results in weaker 

vortex shedding and hence higher base pressure. Large-scale turbulence weakens the vortex shedding behind 

cylinders of any dimension as it reduces the spanwise correlation; i.e. the fluid is freed to move along the span 

of the bluff obstacle and hence base pressure rises. 

In a more recent paper Nakamura (1993) has reviewed the main findings of freestream turbulence effects on bluff 

body flows. Figure 2.21 shows how turbulence scale has a different effect according to side ratio. On the right 

hand side of the figure the limiting values in smooth (low turbulence) flow are shown. The author describes the 

general bluff body flow as being composed of 'two basic flow modules'. Firstly the boundary layer separation 

and reattachment and secondly the Karman street formation. Reattachment will not occur for short bodies but 

there can still be interaction between the trailing edge geometry and the separating shear layer. Two length scales 

are proposed as being most relevant to the flow, the thickness of the separated shear layer and the distance 

between the shear layers or body size, although this author would consider the wake size as a more appropriate 

scale since the previous two in no way account for the afterbody geometry. Nakamura states that if one of the 

basic flow modules is affected by some upstream disturbance then the bluff body flow may be significantly 

altered. For rectangular cylinders the findings are identical to the previous paper but Nakamura has described 

small scale turbulence as being of the scale of the shear layer and large scale as the scale of the body width. This 

is a difficult conclusion to draw from the graphs presented by Nakamura. Certainly the base pressure appears to 

be maximal when LxIA::::2.0-3.0 for all cylinders and a minimum is attained at L./A::::0.5 for the BIA=O.4 

cylinder, but these do not really tie in with a shear layer scale of 0.1 and a body scale of 1.0. It would, therefore, 

seem that some other scales might be more appropriate. 

Wolochuk et a/ (1994, 1996) discuss the effects of turbulence in a study to test how the accuracy of vortex­

shedding flowmeters might be effected. For an accurate flowmeter the Strouhal number must remain constant 

over a range of Reynolds number and must give a good signal-to-noise ratio such that the reading is strong. 

Their work was concerned with looking at the Strouhal number dependency rather than lift and drag as in 
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previous research. Figure 2.22 shows that a 15% decrease in Strouhal number was achieved for a 2.5% level of 

turbulence intensity (Tu) but then the Strouhal number gradually rose again as Tu was increased further. The 

authors were unable to create Tu<2.5% in their tunnel so it remains unclear as to whether the Strouhal number 

suddenly drops or gradually drops to some minimum value with Tu<2.5%. The turbulence length scale had a 

more consistent effect, Figure 2.23. As the length scale was increased from 0.25 the Strouhal number dropped 

by as much as 25% at LjA=3.0 before rising again at larger length scales. This is consistent with the results of 

Nakamura who also found maximum disturbance to the flow at around LjA=3.0. Although a mixture of 

triangular and rectangular geometries were used it is not thought that this would greatly affect the trend of the 

results. The variation with Reynolds number was also examined as the flowmeter must remain accurate over a 

wide range. The Strouhal number remains roughly constant with Reynolds number for each turbulence length 

scale chosen. This contrasts with the work of Norberg (1986) who did similar studies on the flows past circular 

cylinders and found quite a variation in Reynolds number, probably because, as described earlier, for separation 

from a smooth surface the separation point can move and thus an early onset of turbulent transition in the 

boundary layer and wake weakens the vortex shedding and the loadings fall. In conclusion for a vortex-shedding 

flowmeter to be adapted for use in unsteady flows the flowmeter would need to be calibrated under turbulent 

conditions and the length scale of turbulence should be maintained at a constant value. The integral length scale 

could be controlled upstream of the bluff obstacle by some kind of mesh or shroud, generating the required 

turbulence. Alternatively the obstacle could be scaled much smaller than the length of the turbulence present in 

the application. 

2.4 Oscillatory flows 

The problems associated with flow-induced vibration and other oscillatory flow phenomena represent an area of 

major interest within engineering. It is thus not surprising that a large body of literature exists in this field. 

Reviews of oscillatory flow topics can be found in Sarpkaya (1979a) and Bearman (1984). Research has 

concentrated mainly on oscillatory flow past circular cylinders, an area which has been briefly reviewed by 

Griffin and Hall (1995), and on cross-flow oscillations. Recently however more attention has been focused on 

in-line oscillations and other body geometries. The following review will deal with research carried out since 

Bearman's (1984) review in which various problems were identified as requiring further research and clarification. 

These include the phase mechanism between the induced forces and the oscillatory component and the role of the 

afterbody shape. 

2.4.1 Introduction and definitions 

The addition of an oscillatory flow component to the flow past a bluff body can have dramatic consequences. 

Offshore structures are subject to the imposed oscillatory conditions of the wave and tidal motion. It is thus 

important that these structures are designed such that their natural frequencies lie outside the range of any wave 



Chapter 2 Bluff Body Aerodynamics 23 

frequencies. A recent application in this area is discussed by Borthwick and Herbert (1990) who have studied the 

wave response of offshore structures susceptible to damage and failure from resonant vibrations. 

Similarly buildings and bridges may be subject to large wind imposed forces. If these forces are large enough a 

structural oscillation may be induced. Bluff aircraft components attached to the fuselage will also generate 

periodic turbulence. When the natural vibration frequency of these components is similar undesirable oscillations 

may be induced which can lead to structural fatigue. A further area of importance is that of vortex shedding 

flowmeters which are susceptible to upstream disturbances. These instruments are based on bluff obstacles 

which generate periodic vortex shedding. By detecting the shedding frequency the flowrate can be deduced. 

However if the upstream disturbances are sufficiently intense and periodic they may alter the shedding frequency 

and hence the accuracy of the flowmeter. 

The addition of an upstream oscillatory flow component will be considered in these studies. The uniform 

component of the upstream velocity is Vo and the amplitude of the oscillatory component is VA'Thus an in-line 

oscillation is expressed as 

(2.l2a) 

and a cross-flow oscillation as 

(2.12b) 

where!e is the forcing frequency of the imposed oscillation, and ex and ey represent the unit vectors in the x and 

Y directions respectively. A cylinder displacement amplitude Ye or Xe defined by 

VA 
Ye or Xe =--

2rcJe 
(2.13) 

is more commonly used than a flow oscillatory amplitude since most studies of this nature are primarily related 

to flow-induced structural vibration problems. Ye is used to define cross-stream cylinder displacement and x. to 

define in-line cylinder displacement. 

As will be described later in this section and in Chapter 6, for a range of oscillation frequencies and oscillatory 

amplitudes resonance or 'lock-in' is expected for both these oscillatory motions. The 'lock-in' regime is defined 

as the range of oscillatory frequencies and amplitudes for which the vortex shedding frequency Is is directly 

controlled by the forcing frequency !e. Broadly speaking in the case of cross-flow oscillations we expect 'lock-in' 

to occur for values of ff close to the natural shedding frequency fo, while for in-line oscillations 'lock-in' is 

expected when!e is roughly doublefo. Figures 2.24 and 2.25 illustrate the difference between the 'lock-in' ranges 
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typically observed for both kinds of oscillation. Figure 2.24 is a reproduction of a plot by Griffin and Hall 

(1995) of the 'lock-in' boundaries found for cross-flow oscillations over a range of Reynolds numbers. 'Lock-in' 

is found to occur for O.55<jJfo<1.25 provided the oscillation amplitude is sufficient, but the 'lock-in' range is 

self-limiting in magnitude; i.e. an upper boundary for 'lock-in' is also shown. It should also be noted that 'lock­

in' occurs predominantly at frequencies less than the Strouhal frequency, Ie (fo<1.0. Barbi et al (1986) have 

accumulated the results from several studies and have plotted the 'lock-in' range for in-line oscillations past 

circular cylinders. In this instance 'lock-in' occurs over a wide range, 1.2<Jllo<2.6, again provided the amplitude 

of oscillation exceeds a critical value. It is clear from these figures that resonant modes can be sustained over a 

wide range of Reynolds number and forcing frequency. Even outside the ranges of synchronisation however the 

oscillatory effects may still be capable of influencing the flow. 

Under uniform flow conditions a pair of oppositely-signed vortices (positive vorticity being defined in an 

anticlockwise sense) are shed into the wake during each period of vortex shedding. As these vortices are shed 

asymmetrically and are of equal magnitude they exert an oscillatory lift force on the cylinder with a zero mean 

value. The difference between the 'lock-in' of in-line and cross-flow oscillations can be explained by considering 

how the flow velocity varies with time in each case. When the oscillatory component of velocity is normal to 

the stream, it is consistent that inside the 'lock-in' regime a pair of vortices can be shed into the wake with the 

same frequency as the forcing frequency and that these vortices will be of equal magnitude and oppositely signed 

as before. This may occur since the magnitude of the normal flow component oscillates at double the oscillatory 

frequency. 

For an in-line oscillation however the magnitude of the streamwise velocity oscillates with the same frequency 

as the imposed oscillation. This means that if 'lock-in' were to occur at h=!e for an in-line oscillation then the 

vortex shedding would have to be symmetric to ensure a mean lift force of zero. Alternatively asymmetric 'lock­

in' can occur at h=O.5!e such that vortices of equal magnitude are shed into the wake. This explained in more 

detail in Chapter 6 (section 6.8). 

2.4.2 Cross-stream oscillations 

A bluff obstacle exposed to an oncoming stream is subject to vortex shedding and an oscillatory force is induced 

normal to the free stream. The body may start to vibrate periodically and furthermore these vibrations may 

interact with the Karman vortex street. If resonance occurs between the structure and the vortex shedding the 

forces will be further increased. It is thus important to be able to model this scenario. In the laboratory cylinders 

are forced to vibrate with different frequencies and in computer simulations this is represented by the addition of 

an oscillatory component to the freestream fluid. 

A comprehensive laboratory study of the flow structure from an oscillating cylinder is documented in two parts 

by Ongoren and Rockwell (l988a and 1988b). Cylinders of circular, square and triangular cross-section were 

forced to vibrate in directions normal and transverse to the oncoming stream at Reynolds numbers between 584 
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and 1300. A sudden change in the near-wake dynamics was known to occur as the forcing frequency increased 

across the synchronisation range. Their study was therefore motivated by a desire to understand this phenomenon 

and how the vortex formation length is effected. 

Figure 2.26, which shows oscillatory flow past a circular cylinder, illustrates this phenomenon quite clearly. 

Each picture is taken at the same phase angle, the moment of maximum negative displacement of the cylinder. 

As fIfo is increased from 0.85 to 1.0 the vortex formation length shortens but the phase of the formation 

position is maintained. A shortening of the formation length would normally indicate an increased drag but this 

was not measured. Atflfo=1.05 there is an indication that the vortex shedding is switching to the upper surface 

and by f Ifo= 1.17 this phase switch is completed. It is also apparent that the wake is straight after the phase 

switch and no longer appears at an angle of inclination to the base region. This suggests that the lift oscillations 

may have a lower amplitude after the phase shift. Ongoren and Rockwell showed a similar phase shift through 

the synchronisation range for a triangular cylinder although the switch takes place in the opposite sense to the 

phase switch outlined for the circular cylinder. For the triangular cylinder there was no change in the wake 

inclination angle since the separation points are fixed on a blunt obstacle. In Figure 2.27 the flow past a square 

cross-sectioned cylinder is shown. An examination reveals that there is no phase switching for this body 

geometry but there is a substantial shortening of the vortex formation length and the optimum vortex street 

definition occurs atflfo=1.35 and not for values closer toflfo=1.0 as might be expected. 

Williamson and Roshko (1988) conducted a series of experiments in a towing tank with 300<Re<1000. Figure 

2.28, reproduced from their study, details the synchronisation patterns found near the fundamental 'lock-in' 

region. Three different patterns emerge. Mode 2S, found in the fundamental 'lock-in' range where the familiar 

Karman vortex street is observed, mode 2P, in which two pairs of oppositely-signed vortices are shed into the 

wake in each cycle, and an asymmetric mode P+S in which a single vortex is shed from one side of the cylinder 

and a pair from the other side in each cycle. The authors report that for Re<300 the 2 P pattern is replaced by 

P+S mode shedding. Two curves are seen, labelled I and II, which represent discontinuities in the phase of the 

lift force on the body. II is for increasing frequency and I for decreasing frequency. This shows that there is a 

hysteretic phenomenon occurring here. The phase shift was found to link in with the switch in shedding mode. 

An encouraging numerical study of the high Reynolds number turbulent flow past a square cylinder forced to 

oscillate normal to the freestream is presented by Launder and Kato (1993). They used a k-£ model to simulate 

turbulence effects. Their preliminary results are encouraging in that they predict the phase switch across the 

'lock-in' range (Figure 2.29(a)) and show the lift to be greater within this regime (Figure 2.29(b)). However few 

quantitative results are presented and the lift time histories shown in their paper appear far too regular for a 

turbulent flow. One would expect that the turbulent wake which develops downstream would manifest itself as 

noise in the drag and lift time histories. 
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Low Reynolds number computations have been performed by Okajima and Kitajima (1993). Their initial 

numerical study consists of a two-dimensional direct numerical simulation of the oscillatory flow past circular 

and rectangular cylinders at Re=103
, with the oscillatory amplitude set at 14% of the body diameter. The results 

are graphed in Figures 2.30. The Strouhal numbers under uniform flow conditions are not given but there is a 

definite 'lock-in' range for the circular cylinder, 0.2< Ste <0.25. For the rectangular cylinders however the flow 

remains locked-in once the frequency is greater than some lower limit. These limiting values are St. =0.06, 

St. =0.07 and Ste =0.1 for cylinders with BIA=1.0, BIA=2.0 and BIA=3.0 respectively. It is peculiar that no 

upper limit on the frequency for resonance of the rectangular cylinders was found in this study. For the circular 

cylinder the lift force is higher within the synchronised regime but for the rectangular cylinders the lift force 

initially rises as the 'lock-in' region is first entered but then falls before rising sharply throughout the rest of the 

calculations made. 

In a continuation of the above study Okajima (1995) has extended the computations to three dimensions since 3-

D instabilities are known to develop beyond the laminar shedding regime. He also presented some experimental 

results for cross-flow oscillations past square cylinders at Re= 1 000. Figure 2.31 presents results from the 2-D, 

3-D and experimental simulations. Only a few 3-D cases were considered since the code is computationally 

expensive. The experimental results verify the existence of a large 'lock-in' boundary and show that the 2-D 

simulation predicts 'lock-in' for smaller frequencies than expected. This is improved by the 3-D simulation 

although the calculated lift forces are still far higher than the experimental results. The agreement of both 

simulations is better within the 'lock-in' regime and this is probably because the flow tends to exhibit more 

two-dimensional behaviour under resonance. 

Meneghini and Bearman (1993) have simulated the cross-flow oscillations past circular cylinders at low 

Reynolds number, Re=200, by a hybrid discrete vortex method. Their 'lock-in' chart is shown in Figure 2.32 

and indicates a 'lock-in' range of 0.75<1110<1.05 provided the amplitude of oscillation is sufficient. More 

significantly they were able to predict the P+S shedding mode visualised in Figure 2.33, previously described by 

Williamson and Roshko (1988), under high amplitude oscillatory motion. The nature of the vortex method is 

such that graphical output of the wake structure can be readily obtained in the simulation, an advantage which 

highlights its potential to examine the wake structures of other geometries. 

A direct numerical simulation of 2-D laminar flows, Re=200, past transversely oscillating cylinders is described 

by Copeland and Cheng (1995). Figures 2.34(a) and (b) show how lift and drag vary as the frequency changes 

throughout the synchronisation regime. The oscillation amplitude is fixed at 10% of the cylinder diameter and 

resonance occurs for 0.7<1//0<1.1 which is a larger range than observed by Meneghini and Bearman who found 

resonance over the range 0.9<1110< 1.05 at the same amplitude. Near 1110= 1.0 there are seen to be two solutions 

for the lift and drag. These two solutions correspond to two slightly different modes of shedding [see Figures 

2.34(c) and (d)] although both would be categorised as 2 S modes since two oppositely signed vortices are shed 

in each cycle. The phenomenon is hysteretic since as the frequency is gradually increased the force curves follow 
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the upper segment associated with type (i) shedding before jumping down to the lower curve associated with 

type (ii) shedding but if the frequency is then gradually decreased the lower curve is followed and type (ii) 

shedding can be maintained down to a lower frequency. This hysteresis effect is known as a saddle node 

bifurcation. 

2.4.3 In-line oscillations 

Structural oscillatory motions induced in line with the free stream are not as common as cross stream 

oscillations. This is essentially because the oscillatory component of the forces induced by vortex shedding is 

considerably greater in the cross-stream direction. Hence studies of in-line oscillatory nature are more important 

in the context of an imposed upstream unsteadiness to the flow. 

The results from a number of laboratory based studies for the in-line pulsating flow past circular cylinders have 

been plotted by Barbi et ai, (1986), see Figure 2.25. The plot demonstrates that, provided a sufficient amplitude 

of oscillation is surpassed, 'lock-in' can be induced over a frequency range 1.2<1/10<2.6 for in-line oscillations. 

However Barbi has found evidence for 'lock-in' at Re=40000 with 1110=1.0 provided xID>OA and this is 

attributed to a higher Reynolds number increasing the size of the 'lock-in' boundary. 

In a continuation of their cross-flow oscillation study Ongoren and Rockwell (1988b) have analysed the mode 

competition which can occur between antisymmetric and symmetric shedding modes in pulsating flows. A 

circular cylinder was subjected to forced oscillations at an angle a with respect to the free stream. When a=0° 

the oscillations are in-line. The flow is synchronised into antisymmetric shedding for 1110=2.0 and to a 

symmetric shedding pattern for 1110=3.0. Outside these synchronisation regimes there was found to exist 

competition between the two modes. Figure 2.36 demonstrates how the mode competition varies across the 

range of forcing frequencies examined. NA and Ns are the numbers of antisymmetrical and symmetrical shedding 

cycles measured over a long period such that when the ratio Ni(NA +Ns)=1.0 shedding is purely antisymmetric 

and when the ratio equates to zero the shedding is of symmetric type. For pulsations at a=0° one may observe 

that anti symmetric synchronised shedding dominates at 1110=2.0 but for greater values the shedding mode 

becomes predominantly symmetric and is fully synchronised at 1110=3.0. For 1110=1.0 there is intermittency 

between the two. The competition between these two modes is further highlighted by examination of Figure 

2.35 which shows flow visualisation of the different modes at various forcing frequencies. At 1110=3.0 only the 

symmetric mode is found. It would certainly be interesting to compare this mode competition with results from 

obstacles of differing geometry and perhaps identify how afterbody geometry and obstacles with fixed separation 

points may alter the mode competition or perhaps suppress it completely. 

An experimental study of the effects of in-line, periodic flow oscillations on vortex shedding from sharp-edged 

bodies has been made by AI-Asmi and Castro (1992). Their work was primarily concerned with how the 'lock­

in' range was dependant on body geometry and in particular those geometries which are frequently used in vortex 

shedding flowmeters. A good vortex flowmeter should generate strong periodic vortex shedding over as wide a 
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flowrate as possible and it is important that Reynolds number effects are minimised by keeping the separation 

points fixed i.e. choosing a sharp-edged obstacle. Thus the afterbody geometry is perhaps the most important 

single factor affecting performance. Five geometries were studied systematically over a range of forcing 

frequencies and amplitudes. Figure 2.37 shows the minimum displacement amplitude required to induce 'lock-in' 

as a function of forcing frequency. At xld=0.05 the triangular and T-shaped obstacles exhibited 'lock-in' over 

1. 5 <;flfo<2. 1, compared with 1.9<;flfo<2.3 for the rectangular cylinder; the flat plate had an even smaller range 

of 1.9<;flfo<2.05. At higher displacement amplitudes the range of 'lock-in' increases and for the flat plate and T­

shaped bodies a symmetrical shedding mode could be induced when xld>0.07. This was observed by a paraffin 

smoke visualisation technique. However this mode always appeared in competition with the antisymmetric 

mode. The greater susceptibility to resonance of the triangular and T-shaped geometries is perhaps surprising 

since vortex flowmeters commonly employ these shapes as they produce strong and regular shedding under 

uniform conditions. Some further investigations were made showing that an increased blockage ratio tended to 

widen the size ofthe 'lock-in' boundaries. 

The numerical study of Okajima and Kitajima (1993) described earlier also examined oscillations of an in-line 

nature at Re=103
• Their results are plotted in Figure 2.38. In the circular cylinder case, 'lock-in' with fJ.fs=2.0 is 

observed for 0.3<Ste<0.45. A natural shedding frequency of fo=0.227 is given by the authors and thus their 

'lock-in' boundary corresponds to 1. 3 <;flfo<2.0. For the rectangular cylinders 'lock-in' of two distinct kinds is 

observed. In one f/.fs=2.0 and in the other !el.fs= 1.0. The lift force is reduced for both types of resonance and is 

near zero over certain ranges for the BIA=2.0 and 3.0 cylinders which is indicative of symmetric shedding. There 

is even some indication that there may be symmetric shedding for the BIA=1.0 cylinder at high oscillatory 

frequencies, Ste >0.4. Although no experimental data exists against which to compare these results, Okajima 

(1995) showed for the cross-flow case that 2-D calculations do not agree well with experiment at Re=103 and it 

would be expected that a 3-D calculation would also be required to gain reasonable accuracy for in-line 

oscillations at this Reynolds number. 

A more appropriate Reynolds number, Re=200, for 2-D calculations was chosen by Minewitsch et al (1994) in 

their study of square cylinders forced to oscillate in-line. Figure 2.39 reproduced from their paper shows that 

'lock-in' was attainable over the range 1.6<;flfo<2.4 above a threshold oscillation amplitude. This is compared 

with the 'lock-in' boundary of Griffin and Ramberg (1976) for a circular cylinder. A strong similarity between 

the two boundaries is seen for flfo<2.0 but above 2.0 the circular cylinder appears more susceptible to 'lock-in'. 

Figure 2.40 gives a clear indication of how the 'lock-in' response varies for a series of fixed oscillatory 

amplitUdes. The frequency range for synchronisation initially increases as the forcing amplitude increases. 

However the authors reported that there appears to exist an amplitude limit to 'lock-in', similar to that 

demonstrated in Figure 2.24 for cross-flow oscillations, above which there is competition between symmetric 

and antisymmetric modes. However the boundaries of this region remain undefined at present. Minewitsch et al 

suggested that symmetric shedding is induced where the minimum Reynolds number at the point of maximum 

negative displacement of the cylinder, can attain a value less than 50 since, under uniform flow conditions, 
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asymmetry only arises beyond this Re. If this could be verified then symmetric regimes would be expected for 

similar frequencies and amplitudes of other cylinders but analysis of Okajima and Kitajima's (1993) results for 

several different cylinders shows that the onset of symmetric modes is highly dependant on body geometry and 

was not observed at all for the circular cylinder. Another mechanism is more likely to be responsible. A 

possible suggestion is that the phase of shedding may change in a similar way to the phase change in cross-flow 

oscillations noted by On goren and Rockwell (1988a). Analysis of the vortex shedding process under in-line 

oscillatory flows may provide greater insight into the symmetric mode and how it relates to the phase change 

phenomenon. 

Further works examine the effects of oscillating bluff obstacles at an angle of attack to the freestream. Xi-yun et 

at (1994) presented a numerical study closely associated with the work of Ongoren and Rockwell (1988b). Their 

direct numerical simulation modelled the flow past circular cylinders at Re=103
• As already discussed this is 

perhaps a little high for 2-D DNS simulations but they did manage to obtain evidence of competition between 

symmetric and antisymmetric shedding modes at certain frequencies and amplitudes. Utsunomiya et at (1995) 

made an experimental study of the yaw angle effects on vortex-induced oscillations of rectangular cylinders. 

Most wind tunnel tests of bridge aerodynamics are carried out with the wind normal to the bridge since it is 

considered that this scenario should give the most stringent test of the bridge stability. However since the 

natural wind is not always aligned normal to the bridge it was felt necessary to perform some experiments with 

a yaw angle. The findings showed that a strong wind-induced response could still be maintained at a yaw angle 

as high as 70°. 

2.5 Summary of geometrical and upstream effects in flows past rectangular 

cylinders 

2.5.1 Afterbody length and Reynolds number 

At high Re a critical side ratio, BIA=0.62, exists at which vortices form close behind the body and the base 

pressure is minimum (Figure 2.7). The shedding pattern is thought to be discontinuous (Figure 2.11) at slightly 

lower values of side ratio. It is not known how this critical side ratio depends on Reynolds number and in 

particular how the base pressure varies under laminar flow conditions. For bodies longer than BIA=2.0 there 

exists a critical Reynolds number for which the separating shear layer intermittently reattaches and this is 

associated with dual Strouhal frequencies (Figure 2.12). The square cylinder has too short an afterbody for 

reattachment at any Re. 

2.5.2 Angle of attack 

Varying the angle of attack acts in a similar manner to extending the afterbody. At small angles of attack, 

a< 10°, and for short bodies, BIA<2.0, the Strouhal number increases and both the lift and drag decrease. A 
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reattachment angle is reached, dependant on BI A, beyond which Strouhal number and drag coefficient remain 

fairly constant but lift begins to rise (Figure 2.16). In the laminar Re range recent calculations suggest a 

somewhat different variation (see Figure 2.19) but this remains to be clarified. 

2.5.3 Freestream turbulence 

Small scale turbulence decreases the base pressure of short rectangles, BIA<0.5, but increases the base pressure 

on longer rectangles, as shown on Figure 2.21, hence shifting the critical side ratio phenomenon. Large scale 

turbulence appears to increase the base pressure for all rectangles. The effects of turbulence intensity are not as 

dramatic although the Strouhal number drops by as much as 15% for low intensity turbulence before making a 

slight recovery at higher intensities (see Figure 2.22). 

2.5.4 Cross-stream oscillations 

Primary 'lock-in' is found near 1110=1.0 and for some geometries a phase shift in the vortex shedding has been 

found across the synchronisation range. At higher oscillation amplitudes new shedding modes, P+S or 2P, can 

be excited (see Figures 2.28 and 2.33). The induced forces are greater within the 'lock-in' range. 2-D simulations 

are unsuited to flows at Re> 103
, although they give better agreement within the 'lock-in' range since the flow 

exhibits greater 2-D behaviour under resonant conditions. The degree to which phase shift is discontinuous and 

the effect of cylinder base geometry on the near wake structure requires clarification. 

2.5.5 In-line oscillations 

Primary 'lock-in' occurs near 1110=2. O. Symmetric shedding modes are possible over certain ranges of frequency 

and amplitude. Outside the primary 'lock-in' range there is competition between the symmetric and 

anti symmetric shedding (see Figures 2.35 and 2.36). The effect of the afterbody on the appearance of these 

symmetric modes needs to be identified. There may also exist a similar phase switching as found for cross-flow 

oscillations. 

2.6 Aims of the present study 

Several key aims of the present study can now be identified. A numerical study of the flows about rectangles 

will be undertaken. The calculations will be two-dimensional and so the Reynolds number should be restricted to 

Re<500. For uniform flow conditions the effects of side ratio, angle of attack and, to a lesser extent, the 

Reynolds number on the flow characteristics and mean measured parameters should be investigated. In particular 

the side ratio for which a drag maximum is found should be determined and compared with the known high 

Reynolds number result. In-line oscillations will be simulated past a selection of cylinders. The variation of the 

lock-in characteristics with side ratio should be determined. The relationship between the phase of the lift and 

drag to the phase of the oscillatory flow component will also be investigated. 
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Figure 2.1 Growth of vortex pair after impulsive start of fl ow, from Goldstein (1 965). 

Fi gure 2.2 Flow visuali sation of Kalm an vortex street behi nd a 
circular cy linder at Re=105, Van Dyke (1982) . 
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(a) Mode A instabilities, wavelength:=:: 4 body diameters . 

(b) Mode B instabilities, wave length :=:: 1 body diameter. 

Fi gure 2.5 Developme nt of spanwise instabilities , from Williamson (1996b). 



Chapter 2 Bluff Body Aerodynamics 

Lift 

Figure 2.6 Generalised geometry for flow past rectangular cylinders 
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Figure 2.8 Schematic of time averaged flow pattern around rectangular cylinder 
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(a) B/A=O.2S (b) B/A=O.64 

(c) B/A=1.7S 

Figure 2.10 Time-averaged flow visualisation behind rectangular cylinders, 

from Laneville and Yang (1982) 

Figure 2. 11 Di scontinuity in shedding mode fro m Ohya (1994) 
(a) B/A=O.4; (b),(c) B/A=O.S ; (d)B/A=O.62 
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(a) 
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Figure 2.14 Flow visualisation at BIA=8 .0, Re=IO" from Nakamura et al ( 1991) 
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Figure 2.23 Percentage decrease in Strouhal number with turbulence length scale, from Wolochuk et al (1996) 
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y 

Figure 2.26 Effec t of the ratio /I/v on the near wake structure of a circular cylinder. 
Al l images are taken at the moment of max imum negat ive displacement 

of the cylinder, from Ongoren and Rockwell (1988a). 
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Figure 2.27 Effect of the ratio fifo on the near wake structure of a sq uare cy li nder. 
All images are take n at the moment of maxi mum negative displacement 

of the cy linde r, from Ongoren and Rockwell (l988a). 
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Figure 2.29 Effect of reduced velocity on phase angle and rms lift; Flow-induced oscillations in 
turbulent flow around square cylinder (Re=22000); From Launder and Kato (1993). 
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Vortex methods have received considerable research attention over the past twenty five years and detailed reviews 

of the topic can be found in Leonard (1980), Sarpkaya (1994) and Lewis (1995). Their basis stems from the 

assertion that many flows exhibit largely irrotational motion with regions of high vorticity limited to small 

parts of the flow. This is particularly relevant to bluff body flows for which the wake and boundary layer regions 

contain high levels of circulation but the main body of fluid is nearly irrotational. These vortex methods were 

originally developed to simulate high Reynolds number flows past bluff bodies as direct numerical methods were 

inappropriate for such calculations. More recently hybrid vortex methods have been developed which incorporate 

viscosity and model low Re bluff body flows. The various schemes which are commonly used in vortex 

methods are introduced in the following sections before an analysis of their application to two-dimensional bluff 

body flows is given. Finally a short discussion of a few three-dimensional vortex method calculations is 

included. 

3.1 Definitions 
3.1.1 Circulation 

Circulation is a property closely associated with vorticity. If the fluid velocity along a line element dl joining 

the points A and B is given by u, then the circulation is defined as 

r AB = L~·dl; (3.1 ) 

by use of Stokes' theorem the circulation of a closed curve C enclosing surface S can be related to vorticity by 

rc = I u.dl = Iv xu.dS = I w.dS. (3.2) 
c s s 
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3.1.2 Biot-Savart Law 

The Biot-Savart law, as documented in Kuethe and Chow (1986), relates the velocity u induced at a point r in 

space to the net circulation strength r of a line element dl: 

rdlxr 
u = 3' 

4Jl'r 
(3.3) 

Biot and Savart originally deduced this law to determine the magnetic field intensity (corresponding to u) induced 

by an electric current (corresponding to D. For an infinite line vortex in three dimensions, the equation 

simplifies to the familiar form, 

r 
U =--

e 2nh' 
(3.4) 

where h is the perpendicular distance to the line element. A two-dimensional simulation considers each plane of 

flow identical, with point vortices replacing line vortices. 

3.2 Lagrangian vortex scheme 

In its simplest form the vortex method consists of many point vortices, or 'vortex particles', released into an 

otherwise irrotational and inviscid flowfield. At any spatial co-ordinate the velocity is obtained by a summation 

of the velocities induced by each discrete vortex together with the irrotational velocity u,p' so that 

NV r 
u(r,t)=u,p(r,t)+L I k I 

k=1 2n r - rk 

(3.5) 

where the flow is made up of NV vortex particles, of strength rk at position r k • From (3.5) particle velocities 

are obtained and the particles can then be convected to their new positions ready for the next time step. 

Introduction of these particles is at flow separation points, easily determined for sharp edged obstacles, and 

determined from experimental results for circular cylinders or smooth bodies. T k , the circulation of each vortex 

element, is kept constant throughout the computation and, in the simplest models, is the same for each vortex 

element. Clements (1973) obtained the relationship 

(3.6a) 

by differentiation of equation (3.1) with respect to time and subsequent integration with respect to velocity. Us 

represents the velocity at the edge of the boundary layer near to the separation point and thus (3.6) yields the rate 



Chapter 3 Theoretical Basis and Applications of Discrete Vortex Methods 56 

of change of circulation at the edge of the boundary layer. Since vorticity IS created at the body surface, the 

simplest vortex models introduce particles of strength 

r = O.5U;L1t (3.6b) 

at each time step, at the separation points. 

At a solid-fluid interface the condition of no flow through the body boundary must be maintained. By placing 

image vortices at suitable points within the body's interior the normal component of velocity induced on the 

body surface can be equated to zero. A conformal transformation takes all calculations into a computational 

plane in which image vortex positions and the irrotational potential flowfield are more easily determined. In a 

real flow viscous effects are important within the boundary layer region and imply the existence of a no-slip 

condition along the interface. However using image vortices does not satisfy the no-slip condition along the 

boundary; i.e. that the tangential component of velocity must also be zero. For this reason most vortex methods 

introduce vortices at the edge of the boundary layer and any vortices which subsequently creep too close to the 

body surface are reflected away from the body boundary. 

This fully Lagrangian method has several advantages over Eulerian grid-based schemes. There is no outer 

boundary and so no external boundary conditions need to be satisfied. The computations deal almost exclusively 

with the regions of flow dominated by vorticity and so no additional calculations are made in the irrotational 

flow regions. Since there is no mesh, and provided a sufficient number of vortices are introduced, even the 

smallest scale phenomena are represented in the simulation. 

With all the advantages of a fully Lagrangian method there are some shortcomings which must be accounted for. 

Each discrete vortex represents a singularity in the flow, i.e. the velocities induced near vortex positions are very 

large, and vortices that approach each other too closely will incur unrealistically large velocities and tend to orbit 

each other in a manner not associated with any physical phenomenon. The effects of viscous diffusion have been 

entirely neglected, and although the model is suitable for high Reynolds number flows of negligible viscosity, it 

is desirable that the model should be capable of examining a range of Re and in particular simulate the effects of 

viscous diffusion on the flow. Any model which realistically simulates the complex wake characteristics 

inherent in most bluff body flows requires the use of a large number of vortices (N V::::O ( 100,000)) which in turn 

implies that O(NV2) computations are necessary at each time step. Evidently this is unsatisfactory as even the 

most advanced computers will not be sufficient for long time runs. Finally, the introduction of vorticity is 

rather arbitrary. Vorticity generation results from the tangential acceleration of a boundary relative to a fluid and 

from the pressure gradients acting along that boundary which implies its creation all round the fluid-solid 

interface and not just at the separation points. Most of these problems can be resolved while adhering to the 

Lagrangian nature of the model and a description of the various methods used follows. 
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3.2.1 Vortex Blobs 

The use of point vortices implies that flow singularities will be present in the model. As suggested by Chorin 

(1973), the local vortex motion will then be poorly represented and to overcome this some researchers have 

introduced vortex blobs of finite radius. Most commonly used is the Rankine vortex; the velocity induced by 

such a vortex of radius ro and at distance r from its centre is given by 

Tr 
ue = --2 for r < ro, 

2nro 

T 
Ue = - for r > ro. 

2nr 

(3.7a) 

(3.7b) 

Solving the Navier-Stokes equations for a single vortex in an unbounded incompressible domain yields the 

velocity induced by a Lamb (or Gaussian) vortex, the core size of which grows in proportion to v, the fluid 

viscosity, and t, the time since the vortex was created; 

T(1- e -r' 14vt ) 

u e (r, t) = --------'-
2nr 

(3.7c) 

This Gaussian element is also commonly used in vortex methods. However although (3.7c) represents an exact 

solution for a single vortex, the velocity field induced by a distribution of Lamb vortices is not a solution of the 

Navier-Stokes equations. This introduces serious doubt as to the ability of Gaussian vortex distributions to 

simulate complex flows. 

Some researchers have introduced circulation reduction schemes in an attempt to account for the three­

dimensional effects which a fully two-dimensional model is clearly incapable of predicting. r, the vortex 

strength, is reduced at each time step according to some arbitrary experimentally-determined scheme and this is 

assumed to account for the vortex stretching which takes place normal to the flow direction for a truly three­

dimensional flow. However this author believes that two-dimensional simulations should be restricted to the 

simulation of flows which exhibit strongly two-dimensional behaviour. 

3.2.2 Amalgamation schemes 

The motivation for frequently-used vortex merging or amalgamation schemes stems from two main problems. 

Firstly, if the Biot-Savart Law is being used to calculate velocities it is important to limit the number of 

vortices in the flow and keep computational effort to a minimum. The second problem is encountered where 

vortices in close proximity induce large velocities in each other. Morton (1984) states that the decay of vorticity 

can only take place within the fluid interior and results from the cross-diffusion of vorticity of opposite signs. 

Since it is known that some natural merging and cancelling of vorticity will occur in real flows when two 

vortical regions interact, it is logical that the same might be allowed to occur within the simulation. 
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In general, once a cloud of vortex particles is deemed to have passed sufficiently downstream, or once several 

vortex particles have approached within a certain distance of each other, j vortices of strengths T1,T2 , •.•. Ij will 

be merged into a single equivalent vortex, of strength EIj, positioned at the centre of vorticity, z, where, 

(3.8) 

As vortices progress further downstream their influence on the upstream flow will diminish considerably and 

thus 'sufficiently downstream' is defined as the point beyond which the vortex cloud can be approximated by a 

single vortex without affecting the upstream flow. In some simulations the vortices may even be removed from 

calculations altogether. 

3.3 Viscous diffusion 

Viscosity is fundamental to the diffusion of vorticity within a fluid. This concept can be readily appreciated by 

manipulation of the Navier-Stokes equations to obtain the vorticity transport equation, 

aw 
- = -u' Vw+(w· VUJ+VV2W. 
at 

(3.9) 

The left-hand side of equation (3.9) represents the rate of change of vorticity. On the right the first term equates 

to the change in vorticity due to convection. It should be noted that in three dimensions line vortices are shed 

into the flow. The two-dimensional approximation assumes every plane of flow to be identical with point 

vortices replacing line vortices. The term in brackets represents rate of deformation of vortex lines and therefore 

does not exist for a two-dimensional model. The final term gives the rate of change of vorticity due to viscous 

diffusion. 

In two-dimensional models it is considered convenient to split (3.9) into a convection and a diffusion equation 

and any model that accounts for the viscous diffusion of vorticity must incorporate (3.1 Ob) into the simulation. 

awl = -u' Vw at ' 
c 

(3.10a) 

(3.10b) 
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3.4 Vortex-In-Cell (VIC) Method 

Using the Biot-Savart Law to compute velocities can become prohibitively expensive since a simulation may 

contain as many as 100,000 vortices. On the other hand grid-based Navier-Stokes solvers cannot simulate the 

small-scale details with sufficient accuracy. As a result a method which combines an Eulerian mesh with 

Lagrangian vortex convection was developed. Christiansen (1973) was the first to use this scheme in relation to 

the interaction of vortex elements. In essence the Vortex-In-Cell method uses an Eulerian reference mesh on 

which to solve Poisson's equation «(0 =-V2lf1) introduced in Section 2.2 before the convection of vortices is 

simulated in a purely Lagrangian manner. A distribution of NV vortices of strength r k is assumed. An area 

weighting scheme (see Figure 3.1) is then used to distribute vorticity from each point vortex to the surrounding 

mesh points: 

(m=1,2,3,4) (3.11a) 

This yields the values of vorticity at the mesh points. By solving Poisson's equation the stream function values 

on the mesh points can be found. Equations (3 .11 b) and (3 .11 c) then give mesh point flow velocities which are 

re-interpolated onto the vortices before they are convected. 

1 dljl .. 
I,j 

U··=---
I,j ].. dry , 

I,j 

(3.l1b) 

1 dllf
. 'f" {.j 

v··=----
I,j ].. d; 

/,j 

(3.11c) 

Diffusion can be incorporated into the method either by random walk or by forming a finite difference diffusion 

equation from (3. lOb), as in Graham (1988). The random walk tries to represent diffusion in a statistical manner 

which is a rather indirect method of solving (3. lOb). The change in vorticity at the mesh points is computed 

before being distributed to nearby vortices. If no vortices exist in the surrounding mesh, a new vortex is created 

at the grid point. 
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3.5 Calculation of force coefficients 

The Blasius theorem has been the most commonly used method for evaluating forces in vortex methods as it 

directly relates body forces to the vorticity field. However for the flow around circular cylinders the gradient of 

vorticity method has also been successfully implemented. 

3.5.1 Generalised Blasius theorem 

The Blasius theorem can be derived from Bernoulli's equation (see Acheson (1990»; for a steady flow with 

complex potential W(z), the components of force on the body are 

(3.12) 

Wu and Sankar (1980) have formulated what is called a generalised Blasius theorem, applicable to non-steady 

flows, 

F = Fx + iFy = P ~ J z ® liXixdy, 
dt R 

and it is straightforward to apply (3.13) within the DVM as will be seen in Chapter 4. 

3.5.2 Gradient of vorticity method 

(3.13) 

A relationship for the change in pressure along a body surface can be deduced by applying boundary conditions 

to the momentum equation at the surface. The momentum equation in the x-direction is 

(3.14) 

If we assume there exists a boundary at y=O and apply the no-slip condition at the body surface, i.e. u, v=O along 

y=O, we obtain: 

(3.15) 

Vorticity is defined as OJ = dvjdx - dujdy which is equivalent to OJ = -dujdy at the body surface and hence we 

derive 

dp aOJ 
-=-11-ax dy 

(3.16) 

which relates the surface pressure gradient to the gradient of vorticity normal to the body surface. 
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3.6 Applications 

Vortex methods have been applied to many flow situations and a comprehensive description of these would be 

too large to include here. Sarpkaya (1994) presents a fuller account but the following review is confined to two­

dimensional simulations about bluff cylinders and a few three-dimensional computations. 

3.6.1 Flows around circular cylinders 

Gerrard (1967) was the first to apply the DVM to flow around circular shaped bodies. His work was an attempt 

to simulate high sub-critical Reynolds number flow past cylinders and ignored the effects of viscosity and 

turbulence. Individual vortices were shed at each time step from points slightly downstream of experimentally 

chosen separation points. The vortex strengths were determined from the velocity calculated at the introduction 

points and they were convected under action of the flow past the body and of the induced velocity from other 

vortex particles. His results for lift and drag were rather crude but highlighted the problems future research would 

encounter such as the computational expense incurred by a fully Lagrangian model, the singularities present in 

the flow when point vortices are used and the need to include some form of diffusion model in the simulation. 

The time-splitting approach, which treated convection and diffusion separately, incorporating a random walk to 

simulate viscous diffusion, was first applied by Chorin (1973). His work looked at flow over a Reynolds 

number range, 102~e.:5105, but instead of point vortices, vortex blobs were used which ensured there were no 

singularities present in the flow. Because of the singularity associated with a point vortex, the convection of 

point vortices has a problem associated with the particles separation becoming too small leading to 

unrealistically high velocities. To overcome this vortex blobs consisting of evenly distributed vorticity over a 

small area are introduced, ensuring that for neighbouring blobs the flow remains bounded whilst distant blobs 

affect each other like point vortices. The vorticity transport equation is split into convection and diffusion parts, 

as in equations (3.9), with blob velocities induced from the vorticity field and diffusion represented by adding a 

random walk to the vortices' motion. The solution of (3.9b) can be statistically simulated by two independent 

sets of Gaussian random variables, each having zero mean and standard deviation defined by cr=-V(2!!.tIRe). A full 

explanation can be found in Sarpkaya (1994). Each random variable represents the spatial displacement of a 

vortex element in one dimension, hence two variables are required. One may argue that the simulation of 

diffusion by a random walk method gives a good overall representation of the amount of viscous diffusion 

present in the flowfield. However locally it is not solving the diffusion equation explicitly. 

Forces were evaluated by the gradient of vorticity method. Drag coefficient results showed CD decreasing with Re 

roughly in line with experimental results but the drag crisis, shown in region EG of Figure 2.3, occurred too 

early. According to Chorin this was due to 'excess noise in the numerical calculations analogous to the early 

onset of turbulent flow in a noisy wind tunnel'. However beyond this region at Re= 1 05 
, CD =0.27 which agrees 

well with experimental data. 

It must be emphasised that most DVM simulations have been trying to reproduce two-dimensional flow when 

any real flow will exhibit some three-dimensional phenomena. In an attempt to make some modifications for 
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three-dimensional effects Sarpkaya and Schoaff (1979) introduced a circulation reduction scheme which reduced 

the strength of each vortex by an amount proportional to its strength. 

Smith and Stansby (1988) developed a model based on the Vortex-In-Cell method for convection and Chorin's 

(1973) random walks for viscous diffusion. Runs were carried out in the range of Reynolds numbers 2.5x102 to 

105 and compared with two analytical time-series solutions for short times. Longer run times were compared 

with Eulerian finite-difference solutions and with some flow visualisation experiments. Vortices were introduced 

at the cylinder surface to satisfy the no-slip condition and agreement with other methods proved good provided 

enough vortices were created at each time step. As the Reynolds number was increased more vortices were 

required. The authors suggested that convergence with fewer vortices might be achieved by using vortex blobs 

incorporated into a suitably-defined Vortex-In-Cell algorithm. 

Ogami and Akamutso (1991) were the first to use the diffusion velocity approach for viscous flow simulation. 

From the vorticity transport equation (3.9) they derived the following equation, 

(3.17a) 

where the convection velocities u and v are found from Biot-Savart summation and diffusion velocities Ud and Vd 

are defined as 

v dW 
U =---

d Wdx' 
(3.17b) 

v dW 
Vd =---. 

wdy 
(3.17c) 

Gaussian vortex cores were employed to simulate flows at Re=40 and 1200. The results compared favourably 

with DNS calculations and showed an improvement on a random vortex method, particularly at low Re. The 

main problem with this approach is the computational expense incurred in evaluating convection and diffusion 

velocities. According to Sarpkaya (1994) the diffusion velocities, based on a Gaussian vorticity distribution, do 

not satisfy the equation of continuity which implies that the theoretical foundations of this model are also 

inappropriate. 

A novel method has been introduced by Clarke and Tutty (1994) in an attempt to reduce computational cost 

without resorting to the Vortex-In-Cell method. They have formulated a "zonal decomposition algorithm" for 

the Biot-Savart velocity summation. The effects of vortices sufficiently distant from the calculation point are 

clumped into single equivalent vortices while nearby vortices are treated in the normal fashion. Viscous effects 

are included using a combination of the random walk and diffusion velocity techniques and body representation is 

via a panel method. Although runs up to Re=3000 produced satisfactory results, some doubt exists as to how 

effective this method is at reducing computational cost. 
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3.6.2 Flows around sharp edged bodies 

For sharp-edged bodies an accurate form of body representation is required to ensure the boundary condition at the 

surface is satisfied. Problems can arise at corners, with mathematical singularities yielding physically inaccurate 

flow properties. One advantage of sharp-edged bodies is that the separation point is fixed whereas the circular 

cylinder requires careful determination of separation points for introduction of discrete vortices. 

Ham (1968) applied the discrete vortex method to the aerodynamic loading of a two-dimensional aerofoil during 

dynamic stall. Beyond the stall angle of attack separation takes place over a large percentage of the wing section 

surface area and thus at high incidence a bluff body flow simulation using the DVM is appropriate. Clements 

(1973) modelled the flow behind a semi-infinite square-based cross section. An appropriate Schwartz-Christoffel 

transformation projects the exterior region of the body onto the upper half plane with the body boundary 

represented by the real axis. Vortex velocities are found from addition of the free-stream potential flow and the 

velocities induced by all the other vortices. Image vortices of opposite sign but equal strength are required to 

satisfy the surface boundary condition. Vortices were introduced at the corners or separation points but to avoid 

flow singularities their velocities were determined a short distance away at the edge of the shear layer. The 

strength of these shed vortices was determined from the relationship T=(U/I2). An amalgamation scheme was 

used to limit the computational expense required. Clusters of vortices that had passed a suitable distance 

downstream were replaced by a single equivalent vortex. Good predictions for the Strouhal number, the form of 

vortex shedding and some of the mean flow velocities were obtained but no force coefficients were calculated. 

A similar study was conducted for flow over inclined flat plates by Sarpkaya (1975). The 10ukowski 

transformation is used to represent the body surface as a circle in the computational plane. The model did not 

account for viscous diffusion in any way but included amalgamation of vortices and removal of those particles 

which approached the body boundary too closely. Normal force coefficients were somewhat larger than those 

obtained experimentally, probably because the effects of viscous diffusion were neglected, but the Strouhal 

number was predicted satisfactorily. 

An investigation into the flow around rectangular prisms was carried out by Nagano et al (1982). Gaussian 

vortices (3.7b) were adopted in a Lagrangian scheme. The core growth of Gaussian vortices implies some 

viscous diffusion is present but to account for the experimentally-measured loss of vorticity a circulation 

reduction scheme was introduced. Figure 3.2(a) shows the reduction in circulation strength measured 

experimentally in the wake. In the simulation this circulation reduction is approximated by imposing a decay of 

the individual vortex strengths as a function of time (see Figure 3.2(b)). Vortex clusters that have travelled 

sufficiently far downstream are amalgamated according to equation (3.8). Forces were obtained from the 

generalised Blasius theorem and showed good comparison with experiment. 

In each of the studies by Ham, Clements, Sarpkaya and Nagano, vorticity is created by the introduction of 

vortex particles at the separation points at each time step. This arbitrary introduction of vorticity at the 

separation points is insufficient, since vorticity can clearly be created at all points along the fluid-solid interface. 

A more realistic scheme is therefore required which creates vorticity along the entire body boundary. 
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A random vortex method was used by Summers et al (1985) to compute the wind-induced loadings on buildings. 

The boundary layer around the obstacle was modelled by sheets of vorticity sufficiently distributed to ensure the 

no-slip boundary condition was satisfied. Discrete vortex elements were created at the edge of this shear-layer and 

subsequently convected. Any vortices returning to the shear layer were amalgamated with other sheets of 

vorticity or became sheets themselves. 

Dolan et al (1990) used the hybrid vortex-in-cell method to simulate the vortex streets formed around a triangular 

vortex obstacle in a bounded flow. According to Dolan the presence of an outer boundary appears to force the 

flow to exhibit strongly two-dimensional vortex shedding, making a 2D vortex method a suitable model for 

simulation. An expanding mesh was applied to the near-body region and this was combined with a regular mesh 

for the outer region (see Figure 3.3). This was necessary since the conformal transformation applied to the body 

geometry could not accommodate the pipe boundaries. Some previous experimental work had been performed 

and the values of Strouhal number and mean drag coefficient were in good agreement with these. Figure 3.4 

shows flow visualisation from this simulation. 

3.6.3 Oscillatory flow applications 

Many bluff body flows of real engineering importance have an oscillatory component in the upstream flow, 

such as pumped flow past vortex-shedding flowmeters or the combined wave and current motion past offshore 

structures. For a certain range of frequencies and amplitudes the wake characteristics can be seriously altered. In 

particular the vortex shedding frequency can "lock onto" or resonate with the oscillatory flow frequency. Some 

bridges have been known to collapse in heavy gales when the vortex shedding has locked onto the frequency of 

the bridges' wind-induced oscillations. Other applications include the flow past vortex shedding flowmeters 

where flowrate is measured proportional to shedding frequency. If the vortex shedding frequency is altered by 

some upstream disturbance then an erroneous measurement will be indicated. 

An interesting application to oscillatory flow was carried out by Longuet-Higgins (1981) in an attempt to 

calculate the drag coefficients over steep sand ripples. He used the basic Lagrangian form of the vortex method 

together with a series of conformal transformations (see Figure 3.5) to represent the flowfield on the interior of a 

circular cylinder. The model neglected viscous diffusion but included a simple amalgamation scheme to combine 

clusters of vortices which had moved a sufficient distance from the boundary into a single equivalent vortex. 

Calculated drag coefficients compared well with both laboratory and field experimental results. 

Smith and Stansby (1991) used Chorin's (1973) random vortex method, combined with a conformal 

transformation for body representation and a VIC algorithm for computing velocities efficiently, to study the 

oscillatory flow around variously-shaped cylindrical bodies. Their research was concerned with the oscillatory 

motion of cylinders within fluids and in particular how hydrodynamic damping works to reduce the amplitude of 

motion. This was simulated by assuming the fluid to be oscillating with a velocity amplitude VA and the 

cylinder motionless. As such it is no longer appropriate to define the flow by the Reynolds number, and an 

alternative non-dimensional parameter, the Keulegan-Carpenter number K=VAtld (where t is the period of 

oscillation and d the cylinder diameter) is used. Drag coefficients were averaged over half cycles of the flow and a 
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comparison with experimental results showed reasonable agreement. The authors' discussion concentrated on 

flow visualisation of the vortex structures present and how these structures are affected by changing the 

Keulegan-Carpenter number. Their flow visualisation remained symmetric for K <2.0 but above this value the 

vortical structures became increasingly asymmetric, in contrast with the laboratory visualisation for which 

symmetry persisted until a value of K=4.0. This may in part have been due to the fact that diffusion was 

modelled by the random walk method, introducing asymmetrical disturbances into the simulation. 

With a similar model Yeung and Vaidhyanathan (1993) studied forced and vortex-induced oscillations of a 

circular cylinder, the oscillations being normal to the free stream flow. The random vortex method was used in 

conjunction with a boundary integral method. To increase computational efficiency a VIC scheme was 

incorporated into the velocity calculation, the grid being composed of a fine inner mesh (128x128) and a coarse 

outer mesh (256x256). The size of the outer mesh was enlarged at each time step so that particles, once created, 

could not be removed from the calculation. Results for uniform flow, forced cylinder oscillations and vortex­

induced oscillations were given for Reynolds numbers of 1000-3000. The lock-in phenomenon was reproduced 

for a range of amplitudes and frequencies of oscillation but the authors considered their quantitative results to be 

unrealistic (when compared with laboratory experiments) as no circulation reduction scheme was present in the 

model. However this lack of agreement is to be expected at the Reynolds numbers chosen for this simulation. 

3D instabilities become increasingly important as the Reynolds number is increased and it is highly 

questionable that a circulation reduction scheme could have effectively accounted for the appearance of these 

instabilities. 

A hybrid vortex-in-cell method, with the diffusion equation (3. lOb ) solved on a finite difference mesh, has been 

implemented very effectively by Meneghini and Bearman (1993). The simulations were only conducted at low 

Re but showed the lock-in boundary for transverse oscillatory flow and demonstrated a new mode of vortex 

shedding (see Figure 2.33). Figure 2.32 shows the lock-in boundary with f the forcing frequency, Is the natural 

shedding frequency, Ye the amplitude of cylinder oscillation and d the cylinder diameter. Mean force coefficients 

compared well with experimental results. The main drawback of this method is the introduction of a finite 

difference mesh which needs to be very fine to model the shear layer accurately. 

3.6.4 Three-dimensional applications 

Vortex methods which attempt three-dimensional simulations are far rarer in the literature and have only recently 

been applied to bluff body applications. Extra difficulties arise from the increased computer power required to 

calculate such flows and from the need to include the vortex stretching term in the vorticity transport equation 

(3.9), which can be neglected in two dimensions. Since it is known that spanwise instabilities develop in 

circular cylinder wakes above Re-::::: 180 it is reasonable to suggest that similar phenomena will occur for other 

cylinder wakes and thus two-dimensional models will be insufficient for such simulations. 

Leonard (1985) has reviewed the computations by 3-D vortex methods concentrating on wmg tip vortex 

interaction and the interaction of ring vortices in an unbounded medium. Couet et al (1981) calculated the time 

evolution of two vortex rings using a vortex-in-cell scheme with vortex filaments. Bluff body applications are 
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even less common but a few studies have been made recently. Kiya (1992) simulated the flow past a circular 

disk using vortex blobs and a fuIly Lagrangian scheme based on the Biot-Savart law for the convection of blobs. 

A spiral wake structure was observed which showed that the model was capable of capturing a three-dimensional 

wake. However no comparison was made with any existing measurements such as wake velocities or disk drag 

and so it is difficult to gauge how the simulation relates to a physical flow at the present stage. 

A 'fast' vortex method is described by Chua and Quackenbush (1993) who have attempted to speed up the 

velocity calculations by imposing a grid of cubic boxes onto the computational area and clustering the vortex 

elements within each box together. The velocity field is then calculated from a twofold summation of near-field 

and far-field components. At a given point the velocity induced by the near field consists of a Biot-Savart 

summation of those vortices within the same box and those within adjoining boxes. Vortices more than one 

box length away are considered as far-field; their influence is evaluated at the centre of the box and a Taylor 

series expansion estimates the velocity at particular points within the box. A direct Biot-Savart summation 

requires a run time proportional to NV2. This contrasts with the 'fast' vortex method for which a run time 

proportional to NV1.63 is necessary. The propagation of an isolated vortex ring is computed both by direct Biot­

Savart summation and by the fast vortex method and there is a negligible difference in results. This method will 

probably prove useful for high Reynolds number inviscid simulations but would be inappropriate for application 

at low Re unless a non-mesh based viscous diffusion scheme could be incorporated into the model. 

Doorly and Liu (1994) describe a Particle-In-CeIl viscous vortex method which computes the impingement of a 

vortex ring on a waIl. The vortex rings are approximated by many overlapping vortex blobs. Vortex blobs were 

originaIly introduced in order to avoid the singularities present when point vortices are employed. However by 

implementing a particle-in-ceIl scheme these flow singularities are excluded from the calculations and it is not 

clear what further benefits can be derived from using vortex blobs within a PIC method. The method shows 

promise for the simulation of developing instabilities within boundary layer flows and a comparison with the 

laboratory visualisation for a vortex ring rebounding off a waIl shows reasonable agreement over a short time 

but detailed comparisons of any measurable quantities were not made. 

Computations of the flow past circular cylinders has been undertaken by Graham and Arkell (1994) in an 

extension of the two-dimensional hybrid vortex method developed by Graham (1988) and described earlier. The 

simulation employs an unstructured tetrahedral mesh set-up (see Figure 3.6) with a fine near-body resolution and 

coarse outer mesh. Using a tetrahedral mesh ensures that the vortex-in-cell scheme remains efficient, as there are 

only four nodes within each cell, but requires a finite element method for the solution of the vorticity-velocity 

formulation. Initially the code was tested on a circular cylinder of height half the diameter. A symmetry 

condition was imposed at either end of the cylinder and this, combined with restricting the cylinder's height, 

ensured that the flow remained two-dimensional. As previously discussed in Chapter 2 three-dimensional 

spanwise instabilities are known to occur at wavelengths similar to the cylinder diameter, A or at 4A. The 

authors found good agreement for this test case with the 2-D results but did not try modelling the behaviour of 

longer cylinders, although this would certainly be an interesting area for further research as numerical 

simulations have not, as yet, modelled the appearance of such spanwise instabilities. The flow past a mildly 
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tapered circular cylinder was also examined and vortex dislocations were found to appear towards the end with 

smaller diameter as a result of the discontinuity in shedding frequencies between the two ends (see Figure 3.7). 
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Figure 3.2 Experimental observation and numerical approximation of vorticity loss from Nagano et al (1982). 
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Figure 3.3 Double mesh for triangular body in duct (Dolan et aI, 1990) 
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Figure 3.4 Vortex street for symmetric velocity profile (Dolan et aI, 1990) 
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Figure 3.5 Conformal transformation takes flow from (a) physical plane (ripple profile) to (b) exterior of 

a polygon and from there to the interior of a circle (computational plane), Longuet-Higgins (1981). 
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(a) 

(b) 

Figure 3.6 Unstructured tetrahedral mesh employed by Graham and Arkell (1994) 

(a) x-y slice, (b) x-z and y-z slices. 
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Figure 3.7 Vortex dislocation in shedding past tapered cylinder from Graham and Arkell (1994) 
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Chapter 4 

The Hybrid Discrete Vortex Method 

The code used in this study was first developed at Imperial College (Graham, 1988). Subsequent applications of 

the code included those by Dolan et at (1990) who simulated the vortex streets formed around a triangular shaped 

body and Meneghini and Bearman (1993) who predicted the lock-in boundary for a circular cylinder subjected to 

cross-flow oscillations. The research described here commenced with the intention of studying flows about 

shapes typically used by vortex-shedding flowmeters; i.e. rectangular, triangular and T-shaped. 

Major alterations were required to the conformal transformation, grid set-up and method of calculating forces. 

The Schwarz-Christoffel transformation was applied to allow the simulation of flows past any rectangle. The 

grid was set up in such a way that the user has direct control over the placing of the inner and outer mesh 

positions. Previously the Blasius theorem or gradient of vorticity method have been used to calculate forces but 

the presence of sharp edges necessitated a new method in this study. A formulation for the generalised 

momentum equations was derived which yielded an integral relationship for the change in pressure along the 

surface. 

A description of the theory is given which closely follows that of Meneghini (1994). Certain corrections have 

been made due to the confusion which existed in the relations between circulation and vorticity in his study. An 

outline and flowchart give a clearer indication of how the simulation follows the theory. The chapter concludes 

with a summary of those modifications made during the course of the current research. 

4.1 Equations in transformed plane 

All calculations take place in a transformed co-ordinate frame; therefore the Navier-Stokes equations must be 

formulated in a manner valid for an arbitrary co-ordinate transformation x = f (r" T)), y = g (r" T)). Vorticity and 

velocity in the transformed plane are defined as follows: 

(4.1a) 
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ii = (S, rj). (4.1 b) 

Tildes have been used to represent variables in the transformed plane. J is the Jacobian or mapping derivative of 

the transformation, given by 

ax ax 
J = as ary 

Jy Jy 
as ary 

4.1.1 Vorticity transport equation 

(4.1c) 

The vorticity transport equation was introduced 10 Chapter 3(see equation 3.9). For a general co-ordinate 

transformation and for a two-dimensional application it can be written 

aw v n2 - -n­
at = J v W - u. v W, (4.2) 

The derivation of (4.2) can be found in Meneghini (1994). An operator splitting technique is then used to split 

the temporal change of vorticity into convection and diffusion parts:-

- =-u· vW [dW] - n -

at convection ' 

(4.3a) 

[aw] 
at diffusion 

(4.3b) 

Viscous diffusion is incorporated by a finite difference approximation of (4.3b) and this is outlined in Section 

4.6. A stream function is introduced to determine convection velocities as described below. 

4.1.2 Poisson's equation 

The velocities in the transformed plane, ~ and rj, are defined in terms of the stream function '" by 

. 1 a", s=--, 
J ary 

. 1 a", ry=---. 
J as 

(4.4) 
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Combining (4.4) with the definition of vorticity (4.1 a) leads to Poisson's equation relating the vorticity in the 

transfonned plane to the stream function: 

(4.5) 

Convection of vorticity is simulated in a mixed Eulerian-Lagrangian manner. Vorticity, the stream function and 

velocities are first calculated on a finite difference mesh before being interpolated onto individual vortex particles 

ready for advection to new positions. An outline of the code follows before a more detailed description of 

individual components is given. 

4.2 Outline of code 

Figure 4.1 presents a flowchart outline for the running of the DVM code. As can be seen two versions exist. 

Poisson's equation relating the stream function and vorticity is solved on the mesh using Fast Fourier Transform 

(FFT) techniques. In the versions of the code written by Graham (1988) and Meneghini (1994) the stream 

function is solved twice within each time step. 

4.2.1 Initial set-up 

Initially user defined variables must be declared such that the confonnal transfonnation and grid can be set up. 

The transformation works in such a way that the maximum cross-stream dimension d is found within the code 

and not set by the user. Instead the Reynolds number is user-defined and the upstream flow velocity Vv is 

calculated to give the required Re: 

v = Re.v 
o d 

(4.6) 

In addition the time step Lit, vortex cut-off strength a, number of grid points (NX, MY) and total number of 

time steps must be defined. At present the code is equipped to model circular and rectangular geometries. Once 

the conformal transfonnation and mapping derivatives have been calculated the simulation begins with iterations 

as described below and outlined in Figure 4.1. 

4.2.2 First time step 

At the beginning of the first time step the flow is assumed to be inviscid and thus there are no vortex particles 

present in the flow. In step (el) since the vorticity is zero, only the potential solution yields a contribution to 

the stream function, V/ij' (D) then solves the finite difference diffusion equation on the mesh before (F) creates 
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new vortices at mesh points where L1ri .j is above the threshold value a. Mesh velocities are directly related to 

the stream function and hence vortices are convected in (H). 

4.2.3 Subsequent time steps 

At the beginning of each subsequent time step a distribution of NV vortices will exist which are interpolated 

onto the mesh, step (B), to find the mesh values of circulation, Ti,j" Since there is now a vorticity field the 

stream function in (CI) is found as a summation of the potential value and the solution to Poisson's equation. 

The finite difference diffusion equation is solved in (D), and step (E) is now necessary to distribute the change 

in vorticity to nearby vortices. In step (F) new vortices are created at mesh points (i,j) where there are no 

neighbouring vortices and L1~.j > a. Those with a strength less than a are removed from the calculation in (G). 

After convection (H) the force coefficients can be evaluated if required. However (I) does not alter the 

convection or diffusion of vorticity in any way and thus it is not necessary to compute these at every time step. 

Graham's original code included an extra step (C 2) in which the stream function was re-calculated after the 

diffusion step (D). After updating the mesh values of vorticity an FFf is again performed to re-compute stream 

function values before calculating the convection velocities. Performing FFT's is an expensive operation and 

thus an argument exists for simply solving Poisson's equation once, in each time step, making considerable 

savings in time. This could also be thought of as simulating diffusion and convection simultaneously, which is 

what occurs physically, therefore providing a more accurate representation of the fluid flow. The two versions 

were compared for uniform flow cases during the initial stages of this project and the findings are reviewed in 

section 4.10. 

4.3 (Step A) Conformal transformation and grid set-up 

The choice of mesh is very important in our simulation. Generation of vorticity occurs at the body surface and it 

is desirable that our model more accurately follows the fluid motion in the boundary layer region close to the 

body surface. A conformal transformation is used which takes the body surface in the physical plane onto a line 

segment, O~~~2n, in the computational plane. The region of interest, in this transformed (~,TJ) plane, is a 

bounded rectangle (see Figure 4.2) with the ~ axis representing the body surface. Provided a suitable 

transformation, of the form x = f(~, TJ), y = g(~, TJ), can be found the flow about any obstacle can be modelled. 

Constraints on the solution of Poisson's equation require the mesh to be uniformly spaced and periodic in one 

direction, although it can be variable in the other. The transformation simplifies the imposition of boundary 

conditions and allows a rectangular mesh to be set up which is periodic in the ~-direction. The mesh spacing 

must therefore be uniform in the ~-direction but may vary in the TJ-direction such that the near body region is 

more finely resolved. 
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4.3.1 Schwarz-Christoffel formulation 

The Schwarz-Christoffel formulae can be found in many standard textbooks on conformal mapping and complex 

analysis; e.g. Nehari (1952) and Phillips (1957). The formulae give mappings between the regions exterior and 

interior of polygons to the regions exterior and interior of circles. Since we can also map from circles onto half 

planes or strips a whole series of transformations exist which are useful in the fields of fluid dynamics and 

electrostatics. The following expression, taken from Bieberbach (1953, p 117), maps the region exterior to the 

unit circle, I t I;:::: I, onto the exterior of a polygon with exterior angles ak7r: 

dz = C (t-a j t'(t-a 2 t 2 
......... (t-a n t" 

dt cl t 2 ' 
(4.7a) 

where the constant CCI is a complex correction factor which adjusts the polygon size and orientation. The 

constants ak and ak must satisfy the following conditions: 

La =2 k ' (4.7b) 

Lakak =0, (4.7c) 

lakl=l. (4.7d) 

The last condition signifies that the ak are points on the unit circle; they correspond to the polygon's vertices 

under the mapping. 

For this study a transformation was required which could take the exterior of a rectangle onto a semi-infinite 

strip in the computational plane. This meant that an expression had to be derived which combined the 

transformation (4.7a) with one between the unit circle and the required rectangular strip. A full derivation is 

provided in Appendix A and the final transformation is 

(4.8) 

where the constant CCI has been assumed equal to unity. This means that the code user has no control over the 

rectangle size. Since the Reynolds number and fluid viscosity are user-defined the upstream velocity is calculated, 

within the code, to give the required Re. Flows at incidence were simulated by changing the velocity direction 

rather than altering the body geometry. From (4.8) it is possible to explain how the computational grid was set-

up. 
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4.3.2 Grid set-up 

The grid must be uniform and periodic in the ~-direction in order that FFT methods may be used to solve 

Poisson's equation. In the 17-direction it is desirable that the mesh spacing varies as in the boundary layer and 

near wake region good resolution is necessary but far from the body less resolution is required. Meneghini 

(1994) tested two different 17 expansions in his calculations. A quadratic expansion was found to be better than 

an exponentially-varying mesh as the outer cell sizes did not grow as rapidly. Initially their quadratic mesh 

expansion was applied for this transformation but it was found to be too inflexible in that the outer extent of the 

grid and more importantly the inner cell spacing could not be controlled in a satisfactory manner. As a result a 

grid set-up was developed which gives the code user more control. Two user-defined variables are introduced, Mill 

and Motll' which define the distances to the first grid line out from the body and to the outer boundary in relation 

to the rectangle diameter. A summary of the way in which the mesh is set-up follows:-

where 

(i) Find surface mesh points and rectangle dimensions 

Initially the surface mesh points (Xk,l'YU) are found by integrating along 17=0 from ~=O to ~k' 

J:. = 2nk 
~k NX 

(4.9a) 

(4.9b) 

This integral (4.9a) is approximated by a rectangular rule summation over small increments L1~/1000. We need 

only calculate the mesh points up to k=NX/4 since the rectangle and grid are symmetric about the x and Y axes. 

The rectangle length B and diameter A are then given by, 

B = 2YllxI4,1' A = 2Xllx14.J . (4.9c) 

(ii) Calculate 172 and 17,HY 

172 and 17My are the 17 values at the first mesh point out from the body and at the outermost mesh point 

in the computational plane and must be found before the constants which define the quadratic mesh variation (see 

below) can be calculated M. and M are user defined variables to control these positions in the physical plane, 
• In our 

M is the number of body diameters from the body surface to the mesh outer boundary and Min is the number of 
out 

body diameters to the first mesh point out from the body. The distance to the first mesh point from the body 

surface varies in the physical plane, being smallest at the corners and largest at the mid-points of the sides. For 

this reason M is defined at the mid-point of the upper side surface. Then the boundary layer region can be 
In 
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resolved adequately by a suitable choice of Min. The integration is taken along ~=TCI2 from 11=0. 112 and 11MY are 

found as the required limits of the integrals; 

1], 

iMinA = J 2(cos(2(i11-Jr))-2f32+1)d11; 
() 2 

(4.1Oa) 

1]MY 

iMolllA= J 2(COS(2(i11-~))-2f32+1)d11. 
o 

(4.1Ob) 

As in (4.9a) these integrals were approximated by a rectangular rule summation over many small intervals of 

Ll11. Typically Min=0.025 and Mout=100 and the effect of varying these parameters has been examined in the next 

Chapter. 

(iii) Solution of quadratic grid variation 

As previously mentioned Meneghini (1994) tested an exponential and a quadratic expansion of his 

mesh, deciding that the exponential expansion was too fast, i.e. grid sizes became too large too quickly so that 

the outer region was not suitably resolved. Therefore for this study a quadratic expansion of the form 

(4. 11 a) 

was chosen. At the body surface j=1 and 111=0. Thus k3 follows immediately as k3=-kl-k2· 112 and 11MY correspond 

to the mesh points at )=2, )=MY and thus simultaneous equations can be written to find k 1 and k2: 

Th = 3kl +k2' 

11 MY = ( My2 -1)kl + ( MY -1)k2· 

Hence the constants kl and k2 are 

[11 MY -112 ( MY -1)] 
k = , 

1 ( MY - 1)( MY - 2) 

and 

(4.11b) 

(4.11c) 

(4. 11 d) 

(4.11e) 

Once these constants have been determined, equation (4.11 a) is used to calculate the mesh point values of 11 for 

all) between j=2 and )=M Y-l. 
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(iv) Perform conformal transformation on quarter plane 

After calculating the 17j from (4.11 a) the rest of the mesh co-ordinates in the physical plane (x;.i'Y;) can 

be computed: 

T/j 

= Xu + iYk.j + f ~2( cos(2( ~k - n + i17)) - 2[32 + l)d17 
o 

(4.12) 

These need only be calculated for k=l to NX/4 since the grid is symmetric. A double reflection is then used, 

purely for convenience, as it saves time in the set-up part of the simulation. 

(v) Calculate Jacobian at each mesh point 

The physical plane mesh co-ordinates (x;,j'Y;) are only needed when graphical output of the vortex 

positions is required and play no part in the simulation evolution. The Jacobian of the transformation is required 

throughout the calculations as can be seen from the representation of the equations in an arbitrary co-ordinate 

system detailed in Section 4.1. For a transformation given by 

Q 

Z = f(Q) = f g(Q')dQ', (4.13a) 
o 

the Jacobian can be expressed as 

(4.13b) 

Hence for the rectangular geometry transformation the Jacobian is given simply by 

(4.13c) 

or at the mesh co-ordinates, 

(4.13d) 

For the transformation of sharp edged obstacles J is zero at the vertex points which implies a singularity in the 

flowfield. It is therefore necessary to apply special attention to the value of J in this region. Some kind of 

smoothing is necessary, equivalent to a slight smoothing of the corner itself, in order to remove the resulting 

singularities from the simulation. Graham (1994) wrote a DVM code to simulate the flows past square 

(BIA=l.O) cylinders in which the Jacobian value at the vertex points was set to the value at the first mesh point 
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out: JvP.J =JVP•2 where vp has been used to indicate vertex position. However a more general scheme was required 

for this study since for rectangles of longer and shorter side ratio the Jacobian becomes very small at several grid 

points in the near corner region. A limiting value Jlim is chosen. At grid points for which Jk.j <Jlim an ad-hoc 

smoothing scheme is applied to update values of Jk.j: 

(4.13e) 

The scheme starts at grid points a few cells away from the body surface before moving in to the body grid points 

in order to achieve a smooth variation in the Jacobian. JUm was set to be 0.01, for all calculations, which is 

comparable to the minimum Jacobian value used in Graham's code. The effect of altering Jlim or the Jacobian 

smoothing scheme was not extensively tested in this study. However Scolan and Faltinsen (1994) have used a 

Vortex-In-Cell Method to study the flow around cylinders with sharp edges. In their study the mapping derivative 

was artificially smoothed at and near the corners. It was shown that this artificial treatment of the Jacobian 

values did not strongly influence the mean measured parameters and mainly affected the skin friction drag. 

4.4 (Step B) Interpolation of vortices onto mesh 

At the beginning of each time step the flow consists of a distribution of NV vortex particles each defined by 

spatial location (~p, TJp) and individual vortex strength, rp. Circulation is related to the net vorticity over a region 

of the flow (see equation 3.1) and on the mesh can be expressed as, 

r . = J. . ,1~(TJj+l - TJj-l) w . 
I.j I.j 2 I.j 

(4.14a) 

The vorticity from each particle is distributed to the surrounding mesh points using the VIC scheme outlined in 

Section 3.4. Equation (3.lla) gives the distribution of vorticity in the physical plane. An expression for the 

circulation applicable to both physical and computational planes is: 

r r arm) 
(m)= p-­

a 
(4.14b) 
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4.5 (Step C) Solution of Poisson's equation 

Since the code makes calculations in terms of circulation we can use (4.14a) to rewrite Poisson's equation 

introduced in Section 4.1.2: 

(4.15) 

A finite difference representation of (4.15) would yield a set of linear equations coupled in the ~ and 1] directions. 

However by first taking the Fourier Transform (FT), and making use of certain transform properties, it is 

possible to obtain a set of equations which are uncoupled in the ~-direction and can be solved by Gaussian 

elimination. It is the uniform spacing and periodicity of the mesh in one direction which enables the FT method 

to uncouple the equations. The ~ direction must be chosen for uniform spacing since the grid is periodic in ~. In 

any case a variable spacing is favoured in the 1] direction such that the code concentrates effort on the boundary 

layer and near-wake regions. 

The Fourier Transform solution technique is more comprehensively detailed in Appendix B. Essentially with Ti .j 

known at each mesh point a Discrete Fourier Transform of equation (4.15), taken in the ~-direction, yields a set 

of linear tridiagonal equations at each value of k: 

(4.16) 

Gaussian elimination reveals values of ~j' the Discrete Fourier Transform of the stream function on the mesh. 

Taking inverse transforms then yields the stream function as required. The process is significantly speeded up by 

applying a Fast Fourier Transform algorithm which restricts the number of cells in the ~ direction to be a power 

of two. 

Boundary conditions are necessary for ljI with the no slip condition implying ljI is constant on the body surface 

and 1jI=0 is taken for convenience. At the outer boundary ljI is given by the potential flow solution, ljIpot' which 

has been described in Appendix C. From (C8), with Ccr=1 and ~o=Tr, the irrotational potential flow solution on 

the mesh is expressed:-

ljI por I .. = -2U sine ~i - Tr) sinh 1]j 
(I,j) 

( 4.17) 

In theory the outer boundary condition on ljI should be supplemented to take into account the effect of each 

individual vortex particle. Meneghini (1994) satisfied this condition by applying a Biot-Savart summation at the 

outer boundary. Biot-Savart summations are computationally expensive operations and since the outer boundary 

is positioned around 130 body diameters downstream it was anticipated that the additional Biot-Savart term could 
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be ignored without adversely affecting the simulations. Preliminary investigations showed no significant 

difference in the results obtained in the case of square and circular cylinders and thus the results presented in 

Chapters 5 and 6 do not include the Biot-Savart summation. It has since been suggested that for rectangles of 

smaller BIA ratio the boundary condition may have more influence and that imposing a symmetry condition on 

the outer boundary in effect fixes the position of the upstream stagnation point. 

Some further simulations have thus been carried out in both uniform and pulsating flow, results from which are 

documented in Appendix H. The results indicate that although the inclusion of the Biot-Savart contribution does 

have some effect this effect is only significant when considering CL(I111S) and rectangles with BIA<1.0. Under in­

line oscillatory flow conditions the differences are less significant although there is clearly a consistent increase. 

Further comment is made in Appendix H. 

4.6 (Step D) Calculation of finite difference diffusion equation 

The diffusion equation (4.3b) is solved using a finite difference mesh with suitable boundary conditions for 

vorticity on the body surface and outer mesh boundary. A finite difference diffusion equation expressed in terms 

of circulation has been derived; 

(4.1Sa) 

where 

ArU) r(t+M) r U) 
Ll (' ') = (' ') - (' ') I,) I,) I,) 

(4.1Sb) 

and EY(T)) and EY(~) are finite difference operators. The finite difference representation is explicit in the; direction 

and uses the parameter ex to control the degree of implicitness in the T] direction. A full derivation of equation 

(4.1 Sa) is given in Appendices D and E together with definitions for the finite difference operators. 

Some boundary conditions on vorticity and circulation must be defined in order to solve equation (4.1Sa). 

Vorticity at the body surface is defined by 

(4.19a) 

which is a first order approximation of the solution to (4.5) at the boundary. In terms of circulation this can be 

written: 

(4.19b) 
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At the outer boundary LlTciMY)=O is assumed for the simulation, which is a reasonable assumption to make since 

diffusion effects will be negligible far away from the body. The system (4.18) represents a set of tridiagonal 

equations which are solved by Gaussian elimination to yield values of Llr(ij)' the change in circulation at each 

mesh point. These changes are then re-interpolated onto the existing point vortices in a reverse VIC scheme or a 

new vortex is created at each mesh point with no neighbouring vortices. 

4.7 (Step E) Distribution of change in circulation to nearby vortices and vortex 

creation 

The changes in circulation must then be re-interpolated onto the existing vortices In such a way that total 

circulation is conserved, 

4 Llr a 
r(t+t1t) = ret) + '" (m) (m) 

p p..t..J ' 
m=1 at 

(4.20) 

where at is defined as the sum of arm) values associated with all those vortices which neighbour grid point (m). 

This ensures that circulation is conserved where there is more than one neighbouring vortex. If no vortex 

neighbours the grid point then, provided Ll~,j > (J, the cut-off strength, a new vortex is created there. 

4.8 (Step F) Convection of vortex particles 

Each individual vortex must be convected to new positions ready for the next time step. With 1fI',j known, 

equations (4.4) give the velocities at the grid points. An interpolation is carried out to give the velocities at the 

vortex positions: 

. 4. arm) 
~k = L~(m)-' 

m=1 a 

4 a 
. ",. (m) 

Th = ..t..J TJ(I11) --. 
m=1 a 

First order approximations 

j::(t+t1t) _ j::I + it Llt 
~k - ~k ~k ' 

TJ (t+t1t) = TJt + TJ' t Llt 
k k k • 

are then used to convect vortices to their new positions. 

(4.21a) 

(4.21b) 

(4.22a) 

(4.22b) 
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4.9 (Step G) Calculation of force coefficients 
4.9.1 Blasius theorem 

85 

The Blasius theorem (3.12), see for example Clements (1973), has been a popular choice for calculating force 

coefficients in previous DVM simulations. It is simple to implement and does not require the pressure field to 

be calculated since it directly relates the body force to the vorticity field. Simple manipulation is required to 

expand (3.13) into components of drag and lift expressed as a summation of mesh circulation values T: I.J 

P NX MY 

Drag = Fx = --~ ~ y .(rt _r'~.1t), Lit £... £... I.j I.j I.j 
;=1 j=1 

( 4.23a) 

NX MY 

Lift = F.y =..E.... ~ ~ x . . ( r'. _rHj,). 
At £... £... I.j I.j I.j 

Ll ;=1 j=1 

(4.23b) 

Calculating the forces from equations (4.23) works well in traditional fully Lagrangian DVM codes in which 

there is no outer boundary and vortices are not removed from the calculation but the hybrid method employed 

here necessitates a mesh outer boundary and as vortices leave the computational region inaccuracies rapidly build 

up until the results are meaningless. A more versatile method is required for estimating the surface pressure 

around sharp edged bodies and to be applicable to any body geometry requires an examination of the Navier­

Stokes equations in a generalised co-ordinate format. 

4.9.2 Line integral method 

Voke and Collins (1984) have used tensor analysis to derive a generalised form of the momentum equations 

which is applicable to any co-ordinate transformation. For an incompressible, constant viscosity flow these 

reduce to 

(4.24) 

This result, in combination with the relationships between the covariant and contravariant velocity, vorticity and 

metric tensors, has been used to obtain expressions which can be used in the hybrid DVM code to calculate the 

pressure gradients throughout the mesh. A complete account of this derivation can be found in Appendix F. 

Careful handling is necessary as vorticity is defined differently from the definitions used by Voke and Collins. 

Taking i= 1 as the ~ direction and i=2 as the T] direction two equations for the spatial variation in pressure have 

been derived: 

ap a~ . - aiiJ -- = J--JT]w+v-
a~ at aT] , 

(4.25a) 

ap aT] . - aiiJ 
--=J-+J~w-v-. 

aT] at a~ 
(4.25b) 
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Since P is a scalar quantity, it is invariant under co-ordinate transfonnations and therefore the expressions (4.25) 

can be applied to calculate the pressure field at required time intervals within the simulation. For smooth bodies 

the surface pressure can be satisfactorily calculated by applying the no-slip boundary condition, i.e. S' 1j = 0 on 

the body surface. Equation (4.25a) then reduces to the well known fonn 

ap aiiJ 
--=v-
a~ ary , 

(4.26) 

which relates the gradient of vorticity normal to the body surface to the surface pressure gradient. Chorin (1973) 

and Meneghini (1994) both applied this method to their evaluation of the forces experienced by circular cylinders 

but for sharp-edged bodies this is not sufficient as the vorticity gradient becomes noisy near comers resulting in 

large errors. 

As a result a novel method has been developed in which the surface pressure gradient is found by first integrating 

(4.25) out from the surface along a line of constant S, then integrating along a line of constant T], before finally 

integrating back in to the surface along another line of constant ~. The summation of these integrals then gives 

the surface pressure gradient:-

(NX,j) ap (i,j) ap (i,l) ap 
M;=P;-PNX =- f -dT]- f -d~- f -dT] 

(NX,!) aT] (NX,j) a~ (i,j) ary 
(4.27) 

The choice ofj is arbitrary since the expression (4.27) remains valid for any j. In this study a value of j=MY-3 

was chosen. It is probable that when vortices leave the computational domain errors are introduced into the 

calculations of vorticity and velocity nearby although these effects will diminish with distance from the outer 

boundary. This suggests that a lower value of j could have been chosen but the effects of varying j were not 

rigorously examined in the present study. 

Once the surface pressure distribution is known, pressure components of lift and drag coefficients can be found 

by integrating the pressures around the surface. P NX is the pressure at the upstream stagnation point, which is 

assumed fixed. However since lift and drag are determined by the pressure difference between faces it is not 

necessary to give this a specific value. The skin friction contribution is found from the definition of shear stress 

at the wall, 

(4.28) 
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4.10 Summary of code alterations 

A conformal transformation has been implemented which in theory should allow the calculation of flows about 

any rectangular geometry. The grid has been set up in such a way that the user has direct control over the placing 

of the first mesh out from the body and of the outer boundary mesh. Typical grid systems are shown in Figures 

4.2 and 4.3 for several rectangles. The grid lines are seen to congregate near the comers, particularly when the 

rectangle is either very short or long, e.g. Figure 4.3(a). 

A description of the theory has been gIven which closely follows Meneghini's work (1994). However 

corrections have been made due to the confusion which existed in the relationship between circulation and 

vorticity. The finite difference diffusion scheme was adjusted to allow for the variation of the Jacobian in the ~­

direction, which occurs for non-circular geometries. 

In the version of the code which was initially inherited Poisson's equation was solved twice at each time step so 

that the stream function was recalculated immediately after the diffusion step but before convection. It was 

argued that this was not necessary since by only solving Poisson's equation once each timestep convection and 

diffusion are being modelled simultaneously. This is particularly relevant since the boundary condition on wall 

vorticity uses the value of stream function found in the first solution. In Figure 4.4 force time histories are 

plotted for versions which use both one and two FFT's per cycle. Table 4.1 summarises the mean values found 

in each case. It is clear from the figures and mean values that the differences between the two sets of results are 

negligible. Since the version which solves Poisson's equation once per timestep is considerably less 

computationally expensive it has been used for all the remaining data presented in this thesis. 

CD C L(rms.) St 

IFFT 1.15 0.39 0.190 

2FFT 1.15 0.38 0.190 

Table 4.1(a) Re=200, Circular cylinder. 

CD C L(rms.) St 

IFFT 1.44 0.25 0.157 

2FFT 1.44 0.24 0.157 

Table 4.1 (b) Re=170, Square cylinder. 
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The outer boundary condition on the stream function has been simplified somewhat. In the original version a 

Biot-Savart summation was used to calculate the outer mesh values of vrbut in this instance the stream function 

has been set to the potential flow solution at the outer boundary. Some further simulations were conducted to 

directly assess the influence of neglecting the Biot-Savart contribution. These results are tabulated in Appendix 

H and indicate that the mean forces are consistently underestimated without the correct boundary condition but 

that this effect was only significant on rectangles of small BfA and under uniform flow conditions. There was no 

evidence that the boundary condition affected the movement of the upstream stagnation position. 

The previous methods for calculating the force coefficients were found to be ineffective for sharp-edged obstacles 

and so a new technique was developed based on a form of the momentum equations generalised for any conformal 

transformation. A comparison between the Biot-Savart law, gradient of vorticity method and integral scheme is 

provided in Figure 4.5 for circular cylinders. Table 4.2 contains the mean values found using each method. The 

Blasius solution initially settles down into a clearly periodic force curve but once vortices begin to leave the 

computational domain both lift and drag oscillate in a noisy and unphysical manner. The gradient of vorticity 

method fares considerably better but, as previously stated, this method cannot be applied to sharp-edged obstacles 

since we cannot define a surface gradient at the corners. However the integral technique shows some 

improvement with the drag curve now oscillating with a regular amplitude. 

Stansby and Slaouti (1993) simulated vortex shedding past circular cylinders by a random vortex method and 

used two schemes to calculate the mean forces, a Blasius type scheme and a scheme which calculated the surface 

pressure from the rate of change of circulation. They found closer agreement between the two schemes than is 

shown in the present calculations. The reasons for the greater discrepancy in the present calculations remain 

unclear although the Blasius scheme used in Stansby and Slaouti's simulations differs from Wu and Sankar's 

(1980) generalised Blasius theorem formulated for non-steady flows which has been applied in this study. 

In Figure 4.4 the integral method was used to calculate force coefficients and periodic lift curves of steady 

amplitude were obtained for the flow about the square cylinder. Thus the integral method appears to be a 

promising technique and this is further borne out by the results obtained in Chapters 5 and 6 which on the whole 

compare well with existing numerical and experimental data. 

CD CL(rms.) 

Blasius 1.25 0.51 

Gradient of vorticity 1.14 0.35 

Integral 1.15 0.39 

Table 4.2 Re=200, Circular cylinder; 

Comparison of force calculation methods. 

St 

0.190 

0.190 

0.190 
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Chapter 5 

Simulation of Uniform Flow Past 

Rectangular Cylinders 

At the outset of this project it was not intended that a major study of the uniform flows about bluff bodies 

would be conducted. The uniform flow simulations were to be used as a tool for checking that the code was fully 

operational, i.e. that new developments and additions to the code such as the pressure calculation method and the 

mesh set-up were functioning in the required manner. Finding the free stream value of the Strouhal number 

under uniform conditions would also be necessary for each bluff geometry under which pulsating flow would be 

simulated. However once an initial assessment had been conducted of the existing literature, viz. Chapter 2, it 

became apparent that although the circular cylinder has been widely studied (recently Williamson (1996a) has 

published a fairly comprehensive review of flows past circular cylinders) there exist large gaps in the knowledge 

of flows past other bluff cylinders. Most laboratory experiments have been conducted in the high Re regime. 

Direct numerical simulations have been restricted to flows below Re<1000 which are classified here as low 

Reynolds number flows. Only a few numerical calculations of low Re flow around rectangular cylinders existed 

when this work first started. Therefore the variation of side ratio BIA and Reynolds number below Re<lOOO 

have been studied here to gain further insight into the fundamental aspects which occur, such as the trailing edge 

interaction with the separated shear layer, which at higher Re is thought to be significant in the critical drag 

phenomenon which occurs close to BIA=O.62. However before these findings can be discussed the description of 

input parameters and output available from the code must be explained. 

5.1 Code parameters 

A full description of the three input files, sqdatal, sqdata2 and sqdata3 required to run the code is given In 

Appendix G. The user is concerned with setting up the flow geometry, the mesh and what data is required as 

output. Output files are sqdata4, coords, plforce, sfpres andfort.30, .... , fort.30+1l. Since the user defines the 

flow geometry in terms of Reynolds number sqdata4 outputs dimensional values for the obstacle diameter and 

flow velocity. coords contains the mesh co-ordinates in both the physical and the computational planes and the 
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corresponding values of Jacobian. Pressure and skin friction forces are output to piforce. The vortex positions 

are built up within fort. 30, .... , fort.30+N, each of the files containing data on the vortex positions and 

strengths at a distinct timestep. A flow visualisation video can then be created consisting of the N output frames 

or frames can be chosen to coincide with the phase of the lift force, i.e. the phase of vortex shedding. sfpres 

contains values of the surface pressure distribution at instants corresponding to the fort. ** files so that the 

combined surface pressure distribution and near-wake flow visualisation can be analysed simultaneously. 

5.2 Effect of input parameters on simulation results 

The following quantities directly affect the performance of the simulation: MY, NX - Number of grid points in 

77 and S directions respectively; MaUl> Min, - Relative distance (with respect to cylinder diameter in physical 

plane) of outermost grid line and innermost grid line from cylinder; J/im - Limiting value on Jacobian of 

transformation; O"min - Vortex cut-off strength; Llt - Timestep. 

A converged simulation may be defined as the limiting case beyond which any further refinements to these 

parameters makes no apparent change to the observed results. However this is rather a simplification of the true 

scenario as it assumes that the solution will continuously improve with finer spatial and temporal resolution 

and that the available computing facilities can cope with the extra resolution. In the code all the calculations 

which directly affect the outcome of the simulation are made 'double precision'. 

When we come to do the pulsating flow analysis we will see that each geometry requires of the order of 50 runs 

to build up the 'lock-in' picture. It is therefore important to ensure that the runtime of the simulation does not 

become excessive in the search for greater simulation convergence. We wish for the code to run as quickly as 

possible whilst giving results which are converged to a reasonable confidence level. 

It is important to appreciate that these results are not expected to give a definitive answer for flow parameters 

such as drag and Strouhal number but rather they complement and add to existing data. The existing 

experimental and numerical data fall within a variation range of 20% or more. The effect of varying the input 

parameters was rigorously examined for the BIA=l.O cylinder and only partially examined for other cylinders. In 

each case the Reynolds number is set at Re=200 and the upstream flow is uniform. It was then assumed that, 

from a knowledge of the simulation performance around these geometries, suitable input parameters could be 

chosen for similar bluff geometries. 

Meneghini (1994) previously examined the effect of using different mesh sizes, M YxN X, in flows around 

circular cylinders. The Fast Fourier Transform algorithm requires that 2n grid points must be used in the s­
direction but the number used in the TJ-direction is arbitrary. Meneghini found 128x 128 to be optimum. It was 
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found that increasing the mesh refinement further merely added to the computational expense without providing 

any significant improvement in the output quality. Therefore in this study a 128x128 mesh has been used for all 

simulations. 

In setting a value for M",u the main aspect to take into consideration is that the far wake is known to have an 

influence on upstream developments. Since the effects of vortices leaving the computational domain are 

neglected it is important that the boundary is placed a reasonable distance downstream such that these effects are 

diminished. On the other hand if the boundary is placed too far out then the code will not be able to cope with 

the large numbers of vortices which are carried downstream and will also lose spatial resolution of the near 

wake. M out should therefore be chosen to be as small as possible without causing any adverse effects on the 

flow. 

The actual minimum vortex strength ~nil1 permitted within the code is related to the user defined value (J"'in by 

(5.1 ) 

It is desirable that ~nil1 should be as small as possible in order that all the vorticity created at the body surface 

and diffused throughout the flowfield is represented within the simulation. However, making this quantity too 

small results in the creation of a large number of point vortices, increasing computational expense. One might 

argue that by imposing a cut-off limit we are in some way copying the circulation reduction schemes 

incorporated into higher Reynolds number DVMs. In these methods vorticity has sometimes been reduced in an 

attempt to account for some of the 3-D vortex stretching which would occur in a real flow, but at low Re 3-D 

instabilities are not as important, although they are observed for Re> 170 in the case of the circular cylinder. 

Williamson (1996b) has described the initial appearance of 3-D instabilities in the form of oblique shedding 

from circular cylinders but it is debatable whether or not this is possible from a sharp-edged cylinder since the 

separation point will be steady along the span. This may mean that the flow about sharp-edged cylinders remains 

2-D until higher Re is reached. In this study the cut-off limit is imposed only to limit computational expense 

and is not an attempt to account for any 3-D phenomena which may be present in the flow. 

The time step Llt, inner mesh position Min and minimum Jacobian value intin can be considered together since 

there is a restriction on the time step in the diffusion solver which is dependent on the minimum cell size: 

Llt~ I . 
2v( L1x-2 + Lly-2 ) 

(S.2a) 

This result can be derived by a stability analysis of the vorticity transport equation. Roache (1976) presents a 

complete account of the one-dimensional diffusion instability problem. However since all calculations for this 
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simulation take place in a computational plane the co-ordinate transformed version of the time constraint IS 

required; this is 

~tS : 2' 
2v( ~~- + ~7r ) (5.2b) 

This constraint has been used as a guide when choosing the time step to be used in the calculations but each 

obstacle geometry needs to be considered separately since the mesh geometry will vary considerably between 

cases. Equation (5.2b) demonstrates that the time step required for stability decreases as the mesh size and 

Jacobian value decrease. Since ~~ is constant for all rectangles the constraint will be most restrictive where ~77 

and J are smallest, say (~77min' J min)' ~77min is a function of the transformation and Min" The transformation has a 

singularity at sharp corners such that the value of Jacobian is zero which would thus place an impossible limit 

on this time constraint. A limit on the minimum value of the Jacobian is imposed, JUm' such that the time 

constraint becomes meaningful. The scheme for the convection of vorticity would also break down at the comer 

if no limit was introduced. Graham (1994) in his code to examine the flow around square cylinders merely forced 

the value of the Jacobian at the corner mesh point on the body to be equal to the value at the first mesh point 

out. In this simulation the Jacobian has been smoothly varied in the vicinity of the comer as described in 

Chapter 4. This is equivalent, physically, to a slight smoothing of the corner geometry and it would be expected 

that with lower values of JUm' the corner should appear sharper and thus more vorticity should be created. 

The variations in the results with changes in the input parameters MULl I' ermin, Mill and ~t are investigated below. 

These variations were tested extensively for the BIA=l.O case and less rigorously for a few other geometries. 

Convergence was determined according to the variation in the main measured parameters, CD' Sf and Cl..(rmsj' since 

these properties can often be compared with previous research. The effect on any qualitative analysis of the flow 

such as wake width, vortex formation position and recirculation was not investigated. 

5.2.1 Effect of input parameters: BIA=1.0 cylinder 

Changing the downstream extent of the simulation by altering M out has perhaps the most easily identifiable 

effect on the results. Table 5.1 summarises the effect on the mean flow parameters and Figure 5.1 graphs some 

force time histories. We can see that the main influence of Muut can be observed in the lift time history. As the 

downstream extent of the simulation is reduced there is a jump in the lift curve which is magnified for smaller 

Mow. This corresponds to the point at which vortices begin to leave the computational domain and clearly NV, 

the number of vortices present at the end of the calculation, reduces substantially as M out decreases. The near 

in variance of the Strouhal number suggests that the far stream effects are largely unimportant at the body surface 

as vortices are still shed regularly and at the same frequency. The drag is also almost invariant with the change 
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Moul CD C L(rms) St NV 

160 1.46 0.40 0.153 140146 

130 1.46 0.42 0.152 138681 

100 1.47 0.37 0.153 114798 

70 1.47 0.49 0.154 84793 

50 1.47 0.62 0.155 62091 

Invariant parameters: M,'n=0.025, L1t=0.005, a ' =0 00075 J" =001 min· '1m· 

Table 5.1 Effect of outer boundary position on calculated parameters: BIA=1.0 cylinder 

Reducing the cut-off strength below a;nin=0.005 has little effect on the measured parameters as can be seen from 

Table 5.2. CD and St vary insignificantly while the number of vortices and C L(I'I71S) increase. An M our of 130 and 

a;nin of 0.00075 were chosen for all further calculations although it may have been possible to use a higher value 

of cut-off strength. The smaller value was chosen since reducing it did not involve a large increase in run time 

and also to ensure that the simulation included as much of the vorticity diffused from the surface as possible. 

amill CD CL(rms) Sf NV 

0.00500 1.46 0.376 0.154 79977 

0.00100 1.46 0.395 0.153 101859 

0.00075 1.46 0.397 0.153 109681 

0.00025 1.46 0.399 0.152 119071 

Invariant parameters: Min=0.025, Mour=130, L1t=0.005, J IiI71=O.01 

Table 5.2 Effect of cut-off strength on calculated parameters: BIA=1.0 cylinder 

Since the minimum time step satisfying the diffusion criterion is linked to the position of the first mesh point 

out from the body it is appropriate to consider the effect of L1t and Min together. Meneghini (1994) also used a 

quadratic mesh expansion but it was not clear how the parameters were used to effect the mesh co-ordinates. As 

the geometry was circular the conformal transformation produced a radial mesh with the first mesh point being 

equidistant from the surface all around the body. Meneghini used values in the range 0.009<Min<0.015 but for a 

circular geometry this set the distance to the first grid point all around the body surface. With the conformal 

transformation necessary for the rectangular geometry the mesh in the physical plane will be nearer to the body 

at the corner points than at the mid-span. Typically with Min set to 0.03, for the BIA= 1.0 cylinder, the corner 

grid is at a distance of 0.005A and since we apply the constraint in the transformed plane it is the value of 

Jacobian at this point, Jmin , which controls the time step constraint as defined in equation (5.2b). 
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Table 5.3 shows how 11771 and Jmin vary with Min and give corresponding values for the time step limit according 

to equation (5.2b). The values indicate that by increasing Min a higher time step can be used within the 

simulation whilst ensuring that the solution remains stable. The three values of M· below have each been tested 
In 

over a range of time steps to establish if the stability criterion on l1t is suitable. 

Mill 11771 Jmi" 
111:::; 

0.022 0.0264 0.082 0.0022 

0.030 0.0359 0.11 0.0046 

0.050 0.0598 0.18 0.0130 

Table 5.3 Variation of diffusion time constraint with Mill' J Um =O.Ol: BIA=1.0 cylinder 

Mill 111 CD CL(rms) SI NV 

0.05 0.0050 1.44 0.328 0.158 67124 

0.05 0.0025 1.44 0.329 0.159 75124 

0.05 0.0010 1.45 0.327 0.160 84927 

0.03 0.0050 1.46 0.385 0.154 90637 

0.03 0.0025 1.45 0.363 0.159 97170 

0.03 0.0010 1.45 0.340 0.160 105405 

0.022 0.0050 1.47 0.395 0.153 104433 

0.022 0.0025 1.47 0.370 0.158 110850 

0.022 0.0010 1.46 0.360 0.159 120710 

Table 5.4 Effect of inner mesh position and timestep on calculated parameters: 

BIA=1.0 cylinder 

Stable solutions were obtained for all the runs summarised in Table 5.4. As Min is decreased the force 

coefficients become higher, more notably in the case of the lift, and more vortices are created within the 

simulation. This follows since with smaller grid spacing near the body surface the diffusion and creation of 

vorticity can be spread over more points. Drag and Strouhal number are consistent to within ±59c, 

CD=1.45±O.02, St=O.156±O.004, and r.m.s. lift to within ±10%, CL(rms)=O.36±O.04, for the range of Lit and Min 

considered. Viewing the above results it may be considered that the stability time constraint of equation (5.2b) is 

a little stringent as stable solutions have been simulated with the timestep set above the constraint but this is 

not surprising since the corner grids represent only a small, albeit important, part of the simulation and the 

constraint will be comfortably enforced in the vast majority of the simulation domain. 
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In arguing for choice of time step and Min this author would state that it is not just the importance of 

convergence of flow parameters which is important. The production of a smooth force time history and clearly 

periodic vortex street are also of importance. A value of M;n=0.025 and L1t=0.005 were chosen for future 

BfA= 1.0 cylinder runs since this gives a stable solution and the main measured parameters fall close to the mean 

of the values in Table 5.4. At Min=0.05 the convergence level is similarly high and far fewer vortices are created 

within the simulation which would have been beneficial from a time consideration. However it was considered 

more important to keep the near-wall resolution as fine as possible. Ideally a lower timestep should be used but 

this would hinder the use of the code in performing many pulsating flow cases later on. It should also be 

appreciated that in the recent DNS calculations of Sohankar et at (1996) although CD was not found to be 

particularly susceptible to the grid set-up, CL(rmsi and St varied considerably. 

5.2.2 Effect of input parameters: Diamond cylinder 

A BfA = 1.0 cylinder inclined to the flow at a=45°, or diamond cylinder, was also tested for convergence as the 

time step was decreased. Mesh geometry parameters were chosen as for the BfA=1.0 cylinder at zero incidence. It 

was felt that this case might represent a more demanding convergence test than the cylinder at zero incidence 

since the corner separation will be more severe. However Table 5.6 shows the measured quantities to vary little 

as L1t is decreased below 0.01 and encouragingly the results fall within a smaller percentage range than the zero 

incidence cylinder convergence tests. 

L1f CD CL(rmsi Sf CDs 

0.01 1.93 0.69 0.201 0.23 

0.005 1.95 0.69 0.202 0.23 

0.001 1.93 0.68 0.201 0.23 

0.0005 1.92 0.69 0.203 0.23 

Invariant parameters: Min=0.025, Mour=130, Jlim=O.01 

Table 5.5 Effect of timestep on mean flow parameters for diamond cylinder. 

5.2.3 Chosen parameters 

The parameters chosen for simulations in this study are listed in Appendix G, Table G.2. Some points should 

be noted. For rectangles of smaller side ratio, alliin was increased in order to limit the number of vortices which 

became very large. The distance to the first grid line from the rectangle surface varies around the body surface and 

is largest at the mid-points of the longer sides. This has to be taken into account when setting Min on rectangles 

with small or large BfA. Hence Min is increased as BfA increases. The final column of Table G.2 shows the 

total non-dimensional time of each simulation and also gives an indication of how many body diameters 

downstream the vorticity created during the initial stages of the calculations will travel. 
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5.3 Effect of side ratio (BIA) 

Earlier in Chapter 2 a description was given of the effects of varying the side ratio for turbulent flows, Re> 1 04
• 

Bearman and Trueman (1972) and others have shown that there appears to exist a critical side ratio at which the 

base pressure and drag attain a maximum value (see Figure 2.7). Ohya (1994) showed that there was a 

discontinuity in the flow pattern close to BfA=0.5 with two distinct shedding modes occurring intermittently. 

The two shedding modes are associated with different values of base pressure since in one mode the vortices are 

forming further downstream. However other researchers, notably Laneville and Yong (1983), have not witnessed 

this intermittency; perhaps because time-averaged values were measured and no examination was made of the 

fluctuating values. The precise mechanism for the 'golden ratio' phenomenon is still uncertain although it is 

clearly a result of interaction between the separating shear layer and the trailing edge. It should be noted that full 

reattachment, within the turbulent Reynolds number region, does not occur until BfA"'"2.5. At lower Reynolds 

number a critical drag has not been observed. In laboratory experiments it is difficult to measure the drag at low 

Reynolds number, particularly for short bodies, since the cross-stream dimension A must be quite small to 

allow for flow at low Reynolds number. There should not be extra difficulty in simulating numerically the 

flows about shorter rectangles but this is an area where results are scarce and the majority of numerical studies 

which do exist have not attempted to simulated flows with BfA<0.6, e.g. Davis and Moore (1982) and Okajima 

et at (1993). An inviscid discrete vortex method for prediction of high Reynolds number flow used by Okajima 

(1990) did show a peak in the drag close to BfA=0.6 although the peak was not as sharp as that found 

experimentally. Generally though the numerical simulation of cylinders with BfA<0.6 has been avoided. The 

work of Nakamura (1993), in which upstream turbulence is shown to decrease the critical ratio, suggests that the 

'golden ratio' effect may well be Reynolds-number dependant, particularly within the laminar regime, since the 

interaction between the separating shear layer and trailing edge may differ from that observed at higher Reynolds 

number. Thus a study of the effect of varying BfA at low Reynolds numbers is presented here. A similar but 

totally independent study was conducted at the same time in Sweden and results from both studies were presented 

at the same conference [Sohankar et at (1996) and Steggel and Rockliff (1997)] so that a blind comparison could 

be made between the two sets of data. 

For this investigation simulations were undertaken with the side ratio varying between 0.02<BfA<8.0. Results 

of drag, Strouhal number, r.m.s. lift and skin friction drag are graphed in Figure 5.2. No evidence can be seen 

from Figure 5.2(a) for any drag maximum occurring, even at much lower side ratios than the critical value of 

BfA=0.62 reported at higher Re. Some typical force time histories which span the range of side ratios studied are 

shown in Figure 5.3. This dataset is more comprehensive than that presented in Steggel and Rockliff (1997) 

which was restricted to 0.4<BfA<2.5. The earlier limitations arose since at that stage Min could not be set 

within the code and became exceptionally small for BfA outside this range. This in turn led to a requirement for 

prohibitively small time steps. No laboratory measurements of drag variation with side ratio exist at this Re, 

although Okajima (1995) has determined CD for the BfA = 1.0 cylinder. The only authors who had previously 

tested the variation in drag with side ratio were Davis and Moore (1982) and Okajima et al (1993) but neither of 
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these investigations examined flows below BIA=0.6. These older numerical results all predict slightly higher 

values of drag than those found in this study. Encouragingly a strong correlation is found with the recent 

calculations of Sohankar et al (1996). Their work encompassed a direct numerical simulation of flows for 

0.2S<BIA<4.0 and their drag coefficients are in remarkable agreement across the whole range of side ratios. 

Since similar results have been obtained using a different method (DNS) and a rectangular mesh, it is presumed 

that the method and mesh employed in this study are sufficient over the range of side ratios studied. 

The Strouhal number results shown in Figure S.2(b) have a great deal more scatter. Above BIA=l.O the 

numerical calculations give consistent values of 0.lS<St<0.17. The present calculations are around 10% higher 

than those measured in the laboratory and typically all the numerical results are around 10-20% higher than 

experiment. It is thought that this is due to the two-dimensional nature of the simulations which cannot account 

for any span wise movements. These will decrease the rate of vortex formation since not so much fluid need be 

entrained in the streamwise direction. Below BIA= 1.0 no experimental data exists but the present results, and 

those of Sohankar et al (1996), indicate an increase in Strouhal number as BIA decreases with a maximum value 

of St::::0.20 occurring close to BIA=0.3. At still lower side ratios the Strouhal number falls back to a value 

similar to that found for the BIA=1.0 cylinder and clearly this reduction in Strouhal number is uncorrelated with 

the drag curve. 

A similar trend is observed in the Lm.s. lift curve (see Figure S.2(c)) with a maximum of 0.7 occurring close to 

BIA=0.3. Interestingly Sohankar et al also predict a dip in the lift curve although their Strouhal number still 

appears to be rising at BIA=0.25. Unfortunately there are no laboratory measurements with which the numerical 

data can be compared. There is still quite a degree of uncertainty attached to the numerically obtained values of 

CL(rms)' It was greatly influenced by factors such as the downstream extent of the mesh, the near-wall resolution 

and the simulation time step. Indeed Sohankar et al provided similar findings predicting CL(rms) in the range 0.15-

0.4 for the BIA=1.0 cylinder. Their most resolved mesh gave a value of 0.3 which is closer to the value obtained 

here. The variation in drag and Strouhal number was only a few percent in comparison so clearly it is more 

difficult to predict the surface pressure variation along the side walls, probably because the variation in time of 

the side wall surface pressure is far greater than that along the base wall and the upwind face will have a surface 

pressure which hardly varies at all with time. A greater understanding of the mechanism behind the peaks 

observed in the St and CL(lms) curves may be possible by closer inspection of the time variation in surface 

pressure distributions and by flow visualisation of the near-wake development. 

The skin friction drag CDs is plotted against side ratio in Figure 5.2(d). A rough estimate of the degree of 

recirculation along the side surfaces should be possible since a negative CDs implies a large amount of reversed 

flow. CDs is positive for small side ratios and becomes negative at BIA::::0.33. At BIA=8.0 it is positive again. 

No other calculations were performed for BIA>4.0 so the side ratio at which skin friction becomes positive 
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again was not found. The side ratio at which CDs becomes negative corresponds to the observed peaks in the lift 

and Strouhal number curves. 

Force time histories for rectangles with 0.02<BIA<8.0 are presented in Figure 5.3. A peculiarity arises for 

BIA=0.02, which corresponds almost to a flat plate normal to the stream. There appear to exist two solutions as 

the drag alternates between a high and low value. This jump in the drag curve suggests an intermittency in the 

shedding mode although no observations of the vortex wake have been made. It is not clear if the mechanism 

responsible for this intermittency is similar to that found by Ohya(1994) (see Figure 2.11) for a BIA=0.5 

cylinder at Re=6700; further investigations would be necessary to clarify this point. For 0.1 <BIA<2.0 the force 

histories give reasonable periodicity and indicate smooth vortex shedding but a change occurs in the start-up of 

vortex shedding between BIA=0.2 and 0.5. At BIA=O.l and 0.2 after the initial onset of vortex shedding the drag 

oscillates around a higher value than its long term mean. In contrast for BIA~0.5 the drag oscillates about its 

average value immediately after the initial settling phase. At BIA=4.0 there is a large amount of noise in the 

force time history and, although this has been dampened somewhat at BIA=8.0, it indicates that either the vortex 

shedding is not regular or there are some instabilities along the side walls perhaps involving intermittent flow 

reattachment. 

In summary no maximum in the drag was found as observed at higher Reynolds number but the results were in 

broad agreement with those of Sohankar et al (1996) and appear to predict that the drag increases continuously 

with decreasing side ratio. An interesting question arises as to what would be the drag coefficient and Strouhal 

number for a flat plate placed normal to the flow at a low Reynolds number. This limiting case could provide a 

definitive answer as to whether the drag continues to increase with reduced side ratio. Either the 'critical drag' is 

a consequence of turbulent flow conditions or three-dimensional instabilities are responsible. The latter case can 

perhaps be ruled out since the 2-D vortex simulation of Okajima (1990) predicted a drag maximum at higher 

Reynolds number although the peak was greatly reduced from the experimentally determined values. An 

explanation for the peak in the lift and Strouhal number close to B/A=O.3 is given from the near wake flow 

visualisation analysis, Section 5.6. 

5.4 Effect of Reynolds number 

Reynolds number effects for bluff body flows have been summarised in Chapter 2. Williamson (1996a) has 

made an extensive review of circular cylinders but only a few results exist for Re dependence of rectangular 

cylinders. Okajima (1995) has recently determined the drag over a wide range of Re for the BIA= 1.0 cylinder and 

data combined from several investigations on the Strouhal number variance for rectangles with 1.0<BIA<3.0 

have been published by Norberg (1993) (see Figure 2.12). Numerical computations have been limited to a few 

studies mainly at low Re. 
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No convergence tests were carried out as to the effects of altering code parameters at Reynolds numbers other 

than 200 and when varying the simulation Reynolds number, all code input parameters were kept constant other 

than the time step. For Re>200 Lit was decreased proportionally such that the flow would travel the same 

distance between time steps but the mesh was unaltered from the Re=200 case. However this negates the 

possibility of phenomena occurring in smaller spatial scales and at lower time scales as Re is increased. For 

Re<200 Lit was kept constant and the run time extended so that the flow had time to develop. This was 

necessary since the diffusion constraint on the time step does not alter with Reynolds number. 

Indeed the Reynolds number dependence would probably not have been tested at all had not Okajima's (1995) 

laboratory data become available during the study since it was not anticipated that the DVM simulations would 

provide meaningful information of the flow above Re=500. Results have been summarised in two subsections 

below. Firstly the findings relating to the BIA=l.O cylinder are considered and then the combined effects of 

Reynolds number and BIA ratio are briefly examined. 

5.4.1 Effect of Re variation on BIA=1.0 cylinder 

Figure 5.4 plots drag coefficient, Strouhal number, r.m.s lift and skin drag vs. Re respectively for the square 

(BIA=l.O) cylinder. On the drag plot the previous numerical results of Davis and Moore (1982) and Franke et al 

(1990) are plotted along with Okajima's (1995) laboratory measurements for completeness. The results of 

Sohankar et al (1996) are also included. Sohankar et al simulated the flow over 50<Re<300 and the agreement 

with DVM is strong in this range. Above Re=150 there is remarkable agreement with the measurements of 

Okajima. The DVM calculations closely follow the drag slope up to Re=900 at which point the drag peaks at 

around CD=2.1-2.2, before falling back to a local minimum at Re=2x103 with CD::::::l.7. Surprisingly the 

recovery in drag beyond Re=2x103 is also well predicted up to Re=5x103
, although at Re=104 the DVM gave a 

very low drag and the separation point had moved, giving a narrow wake analogous to a fully developed 

turbulent wake found for high Re flows past a circular cylinder. It was not anticipated that the DVM could make 

very sensible predictions of drag above Re=500 since three-dimensional effects and the growth of instabilities 

become increasingly important. Between 800<Re<2000 the DVM calculations are slightly scattered in 

comparison to Okajima's data but certainly the prediction of a peak and dip followed by a subsequent rise 

suggest that the mechanisms responsible for these phenomena are 2-D in nature. A comparison with Figure 2.3 

reveals some large similarities between the CD vs. Re curves of the circular and square cylinders. Williamson 

(1996a) attributed the drag decline of region CD (see Figure 2.3) for the circular cylinder to an elongation of the 

vortex formation length caused by increasing disorder of developing small scale 3-D structures. Region CD, 

200<Re< 1200 for the circular cy linder, corresponds directly to the range 900<Re<2x 103 for the square cylinder 

and one assumes that the same mechanisms must be responsible for the drag variations of each curve. It would 

therefore be reasonable to suggest that small scale 3-D structures cannot be responsible for the fall in drag since 

a 2-D simulation was able to predict their presence and even estimate the Reynolds number at which they occur 

in agreement with the measurements of Okajima. 
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Figure 5.4(b) plots St vs. Re. The agreement with experiment is most satisfactory for Re<500, although the 

measurements of Okajima (1982) and Norberg (1993, 1996) certainly show more scatter in this range. Vortex 

shedding was predicted for Reynolds numbers as low as Re=50 by the DVM but no attempt was made to 

simulate the flow below this Reynolds number since calculations would be hindered by the need to perform 

lengthy runs before the shedding process develops. At this low Re the Strouhal number of St=O.1 agrees well 

with the laboratory data of Norberg who witnessed shedding down to Re=47. Both the measured values of 

Norberg and the present numerical calculations increase linearly up to Re=150. Above Re=150 the laboratory 

measurements indicate a gradual decline in St before it levels off at a Strouhal frequency of approximately 0.13 

for Re> 103
• The DVM calculations are in close agreement with Norberg's data up to Re=500 but at higher Re 

the laboratory measurements and DVM calculations are quite different. Two dominant frequencies are observed in 

the range 600<Re<1500 and for Re>2000 a single dominant frequency exists but the Strouhal number is 

considerably higher, 0.22<St<0.24 than the experimentally determined values. It might be conjectured that the 

shedding process becomes increasingly controlled by three-dimensional and turbulent instabilities which are not 

accounted for in the DVM simulation. 

The r.m.s lift and skin drag plotted in Figures 5.4(c) and 5.4(d) respectively are not quite as informative since no 

comparison with experiment can be made. Below Reynolds numbers sufficient to induce vortex shedding the lift 

coefficient must be zero since the wake consists of a symmetric vortex pair. Above Re=50 CL(rms) increases with 

Reynolds number reaching a peak near Re=850, similar to that found in the drag curve, before falling to a local 

minimum at Re=2000 and then slowly recovering again. Below Re=200 there exists a reasonable agreement 

with the previous numerical data of Davis and Moore (1982), Franke et at (1990) and Sohankar et at (1996). 

Skin friction is found to be negative for 150<Re<1000 suggesting a substantial region of reversed flow along 

the side walls at these Reynolds numbers. 

The force time histories of Figure 5.5 confirm the points made about the Strouhal curve. Emergence of vortex 

shedding is found at Re=50 although the curve has some irregularities present. Thereafter for Re<500 strongly 

periodic vortex shedding is found with 0.13<St<0.16. For 500<Re<2000 two frequencies are found in the 

spectral analysis of the lift curve. Above Re=2000 the strongly periodic vortex shedding returns but at a 

Strouhal number far exceeding the experimentally determined values. 

A summary of the main findings from the DVM calculations of Reynolds number dependence for the BIA=l.O 

cylinder follows. Vortex shedding was simulated for Reynolds numbers in the range 50<Re<104
• Norberg (1993) 

detected a Strouhal frequency at Re=47. Initially the flow remains attached to the side surfaces, implying 

positive skin friction drag, and separates from the trailing edge. With increasing Reynolds number the vortices 

form further from the base, resulting in decreased drag but the lift and Strouhal number both increase. Skin 

friction decreases as regions of recirculation begin to emerge along the side surfaces. At about Re= 150 S t is at a 

maximum, CD is at a minimum and the skin friction drag becomes negative near to this R e. Above Re= 150 the 
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flow is fully separated from the leading edge and the lift and drag both increase. The next major instability would 

appear to occur close to Re=850 at which point the drag and lift are both at a maximum and the skin friction is 

changing from negative to positive. This region would appear to correspond to region CD of Figure 2.3 which 

plots base pressure against Reynolds number for a circular cylinder. Williamson (1996a) attributed the fall in 

drag of region CD to the onset of small scale 3-D instabilities. This seems unlikely since the 2-D DVM 

simulation has captured the drag maximum and fall in a similar manner to that measured experimentally by 

Okajima (1995). It is possible that the increase in vortex formation length associated with a fall in drag is forced 

by developing 2-D small-scale instabilities and that their appearance is adequately represented in the simulation 

since the DVM represents the flow by infinitesimal vortex elements. It would be interesting to note whether a 

direct numerical simulation could predict the drag to a similar level of accuracy without alteration of the mesh 

since any instabilities smaller than the cell sizes cannot be accounted for in the simulation. 

The rate of interaction between the separating shear layers governs the Strouhal number and the calculations of 

St made in the DVM simulation are not in accordance with the measured values beyond Re=500. This suggests 

that 3-D mechanisms are increasingly responsible for controlling this interaction as Re increases even though 

there is no apparent jump in behaviour evident in the Strouhal curve. 

5.4.2 Combined effect of Re and BfA variation 

The laminar flow calculations presented in Section 5.3 showed quite different CD vs. BIA characteristics from the 

turbulent flow behaviour (see Figure 2.7). It is therefore expected that the Re dependence will vary with side 

ratio as there must exist a Reynolds number beyond which a critical geometry exists. Since the drag seems to be 

predicted fairly consistently with experiment up to Re=2000 for the BIA=1.0 cylinder and there is also broad 

agreement with the corresponding results of Sohankar et al at Re=200 for BI A variation, it would thus appear 

sensible to attempt to predict the drag variation with Reynolds number of some other geometries as maybe the 

critical drag phenomena will begin to occur at a higher Re. 

Rectangles of side ratio, BIA=0.2, 0.5, 1.0 and 2.0 were tested for Red0
3 

and the results are presented in Figure 

5.6. The BIA=2.0 cylinder shows little variation in drag coefficient with Re. At BIA=0.2 and 0.5 the drag 

increases with Re and although the gap between the two has narrowed at Re=500 there is no evidence for a 

critical drag side ratio below Re=103
• The Strouhal frequency variationis shown in Figure 5.6(b). There is little 

variation in St for the BIA=0.5 cylinder and a slight decrease in St for the BIA=0.2 cylinder as Re increases from 

200 to 1000. For the BIA=2.0 cylinder the Strouhal number increases from a value of around St=0.13 at Re= 100 

to S(=0.20 at Re=500 before decreasing slightly. These values are a little higher than the laboratory 

measurements shown in Figure 2.12(b). 
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5.5 Effect of flow at an angle of attack 

Results for the flow at an angle of attack are given in Figure 5.7. Only the BIA=1.0 cylinder was tested due to 

time constraints and since Sohankar et at (1996) have already tested the variation for a family of rectangles with 

BIA=1.0, 2.0, 3.0 and 4.0. It was anticipated that any results from the DVM would not differ greatly from those 

of Sohankar since broad agreement was shown in the variation of BIA earlier. A direct comparison with the 

findings of Sohankar et at can be seen. Sohankar has only plotted pressure drag but there is an excellent 

agreement between his findings and the results of this study with pressure drag falling to a minimum value close 

to a=6°, before rising to a maximum value of around CDP=1.7 at a=45°. A notable difference however is seen in 

the Strouhal number curve (Figure 5.7(b»; Sohankar found that the Strouhal number initially increased with 

angle of attack until a=6°; St then fell to a minimum value near a= 10° before recovering to a maximum value 

of St=0.2 at a=45°. In contrast the DVM simulation has produced a smooth increase in St with increasing 

incidence. At a first glance it appears that perhaps Sohankar's data point at a= 1 0° is a mistake since it is 

possible to visualise where it might be placed to smoothen the curve but reference to Figure 2.19(a) shows that 

Sohankar has predicted similar minima occurring for other BIA values. 

This fundamental difference is further complicated by examination of the variation in lift with angle of attack, 

Figure 5.7(c). Sohankar et at do not state that they have plotted only the pressure component of lift but this 

would appear to be the case since the agreement between their DNS results and DVM is far greater when the 

pressure component is plotted. The lift coefficient is initially negative with a minimum at a=6°, which 

corresponds to the point of minimum drag. It then rises becoming positive at a::::20°, but remains relatively 

small and eventually falls back towards zero as a approaches 45°. The r.m.s lift plotted in Figure 5.7(d) agrees 

well for a>20°. Below this range there is substantial difference from Sohankar's results which cannot be 

accounted for by neglect of skin friction lift since at low incidence both the mean and r.m.s. values of skin 

friction lift are small. It should be noted however that Sohankar et at found the values of CUrms ) to vary 

substantially with simulation conditions. The a=0° cylinder showed a range of 0.20<CL(rms)<0.36 depending on 

mesh parameters and it is expected that the cylinder would show a similar variance at other angles of attack. The 

value of Cl.(rllls)=0.36 at a=0° is closest to that found in this DVM study and corresponds to the most refined grid 

used by Sohankar et at. However the grid did not influence other calculated values such as CD and St to such an 

extent and so they chose a less refined grid set-up probably because this enabled considerable savings in run 

times to be made. 

The force time histories of Figure 5.8 demonstrate that a non-symmetric bluff profile induces vortex shedding 

almost immediately with steady lift and drag curves established soon after the impulsive start. Strangely, at 

a=45° the drag does not oscillate in a uniform manner at twice the shedding frequency but appears to indicate 

that vortex shedding might be favoured from one side. Further examination of Figure 5.7(c) reveals that the 

mean lift is not quite zero at a=45°. This gives further evidence for some asymmetry in the vortex shedding 

process but the reasons for this behaviour remain unclear at present. 
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5.6 Flow visualisation 

In the previous sections we have concentrated on analysis of the mean parameters, which can be calculated from 

the simulation, such as lift, drag and Strouhal number. Although no maximum in the drag curve was reported 

there did appear to be a maximum in the r.m.s lift and the Strouhal number occurring close to BIA=0.3. These 

quantitative results are useful in themselves but a qualitative analysis of the flow visualisation might provide 

some further insight into the physics responsible for such mechanisms. As described in Chapter 2, the work of 

Laneville and Yong (1983) and Ohya (1994) has helped to provide a better understanding of why we expect a 

critical drag phenomenon at higher Reynolds number. 

The flow pattern analysis of this study has been split into two categories; firstly a near wake analysis of the 

time evolving flow pattern and associated surface pressure distribution is given and then the far wake flow 

patterns are compared for several cylinders. 

Each of the visualisations shows the distribution of individual point vortices at instants of the DVM 

simulation. Each of the vortices has an associated circulation strength Tk and a visualisation scheme was chosen 

such that the strength of the point vortices is indicated by their colour. The colour coding scheme varies through 

fifty shades, with red indicating strong positive (anticlockwise) vorticity, green weak positive, blue weak 

negative and violet strong negative vorticity. 

In the full analysis approximately 100 frames were made of each shedding cycle and these were made into 

loopable videos of the shedding process. A video of vortex shedding past a BIA= 1.0 cylinder has been made into 

an 'animated gif' file format so that it could be made available on the internet. This video may be viewed at the 

following World Wide Web address: http://vortex.mech.surrey.ac.uklFluidsGroup/People/steggeI 

5.6.1 Near wake visualisation 

Figures 5.9-5.14 show visualisation time sequences and corresponding surface pressure distributions for 

rectangles in the range 0.2::;BI A:S4.0. The visualisations were produced at four points of the shedding cycle 

determined from the lift curve: (a) CL zero; (b) CL is minimum; (c) CL zero; (d) CL maximum. These instants 

were chosen as they are easily identifiable from the force time history curve. 

The surface pressure coefficient is defined as 

(5.3a) 

where 
(S.3b) 
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i1p is measured from the centre of the front surface, assumed to be a stagnation point, and found from the 

pressure integral expressions of Chapter 4; qo is the dynamic pressure. 

The pressure distribution plots then show the variation in surface pressure from the centre of the front surface 

around the rectangle in a clockwise direction. The pressure differential between the base and front surfaces is 

primarily responsible for the drag and that between the upper and lower side surface for lift, although there will 

also be a small amount of lift and drag due to skin friction. Clear similarities can be observed between each set 

of frames and at the corresponding snapshots and the following description is made with particular reference to 

Figure 5.9, with BIA=O.2, since the vortex shedding process is very apparent in this case. 

(a) The surface pressure distribution is symmetric implying zero lift force. A positive vortex is just about to be 

shed and a new one is forming close to the lower side surface. 

(b) This vortex then rolls up strongly resulting in a reduced pressure along the lower portion of the base and the 

lower side surface. Meanwhile the anticlockwise vortex has moved further from the base of the body, resulting 

in a higher pressure along the upper portion of the base surface, and the separating shear layer is now at a more 

inclined angle to the upper surface, which also increases the pressure along the upper side surface. As a result the 

lift attains a minimum value at this point. The effect of the positive vortex close to the base outweighs that of 

the negative one and thus drag is also maximum at this point. 

(c) At this moment the inverse to situation (a) is attained as the positive vortex begins to move away from the 

base, the negative vortex is about to be shed and a new one is forming close to the upper surface. A balance in 

the pressure distribution has again been obtained and hence the lift force becomes zero once again. 

(d) It would appear that the negative vortex has been shed at some point in-between (c) and (d). The term 'shed' 

is used loosely here but a sensible definition might be the point at which an old vortex is no longer directly 

attached by a 'string' of vorticity to the newly forming vortex of the same sign. The inverse to plot (b) has now 

been obtained with a negative vortex rolling up strongly along the base resulting in reduced pressure along the 

upper surface portion. 

The above description holds in many respects for the flow about the cylinders of larger side ratio. The phase of 

vortex shedding with respect to the lift force remains identical throughout the BIA range studied but the size and 

position of the vortex formation varies considerably as we would expect since the drag force decreases as the 

afterbody lengthens. A comparison between Figures 5.9(a)-5.l4(a) shows that with increasing BIA the vortex 

which is forminu near the lower surface is pushed further from the base of the cylinder and no longer rolls up as 
o 

tightly. This is particularly evident in Figures 5.9(b)-5.14(b) as the vortex becomes more dongated in the 

streamwise direction and its centre appears further from the base. 
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An attempt can now be made to describe the reasons for the peak in the lift and Strouhal number close to 

BfA=O.3. Separation occurs at the cylinder comer and the shear layer grows along the cylinder side surface. At 

the rear of the cylinder the vortex shedding process dominates but this results in an oscillation of the shear layer. 

This oscillation leads to a difference in the pressure distribution along the top and bottom surfaces and hence an 

oscillatory lift results. As indicated by the visualisations at minimum lift, Figures S.9(b)-S.14(b), and 

maximum lift, Figures S.9(d)-S.l4(d), there is a clear difference between the angles of inclination of the 

separating shear layers from the lower and upper surfaces. At low BfA it appears that this angle can oscillate 

substantially during the shedding cycle, a low surface pressure corresponding to the moment at which the shear 

layer is closest to the surface. Near to the leading edge the oscillation of the shear layer during the shedding cycle 

is small since it must remain attached to the front edge. Moving further downstream away from the leading edge 

the shear layer has more freedom of oscillation. As the afterbody is extended the trailing edge begins to interact 

with the separated layer damping out its oscillations and thus the surface pressure along the side surfaces can no 

longer oscillate as freely and lift begins to fall. The connection with the Strouhal peak remains unclear. 

A simple analysis was carried out in an attempt to compare these visualisations, quantitatively, with those of 

Laneville and Yong (1983) who made laboratory measurements at Re=7x 104
• They have defined the vortex 

formation position (see Figure 2.8) with time-averaged quantities Vp the distance of the vortex centre from the 

cylinder base and V c the distance between vortex centres. In their laboratory visualisations the flow patterns 

could be time-averaged by an oil film technique and the quantities Vp and Vc are taken as the point of maximum 

oil accumulation, clearly identifiable from Figure 2.10. Vp and Vc are non-dimensionalised by B and plotted 

against BfA in Figure 2.9. 

It is more difficult to define vortex centres in the DVM visualisations and these have simply been approximated 

visually from each of the near-wake plots. An average over the four instants of vortex shedding has then been 

taken in an attempt to estimate the mean position over the whole cycle. This is not particularly satisfactory as a 

means of finding Vp and Vc since it not only introduces spatial inaccuracies from the visual identification of 

vortex centres but temporally there will be inaccuracies introduced from averaging at only four instants of the 

shedding cycle. In hindsight a more effective method would be to average the mesh values of vorticity over a 

number of shedding periods and assume that the positions of high vorticity would correspond directly to the 

positions where oil accumulates in Laneville and Yong's technique. However the visual identification method 

should be useful for a preliminary investigation. 
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BfA VpfA VelA 

0.2 0.5 0.8 

0.5 0.7 0.4 

1.0 1.1 0.57 

2.0 1.5 0.53 

3.0 1.7 -
4.0 2.4 -

Table 5.8 Effect of BfA on vortex formation positions 

Table 5.8 gives values for the variation in vortex formation position with BIA. Beyond BIA=2.0 the clarity with 

which the vortex centre position can be identified from the visualisations is greatly reduced and although it is 

possible to estimate Vp' the error in any estimation of Ve would have been quite large and thus these values were 

not determined. Clearly V/A increases with increasing BIA which is consistent with a rise in the base pressure 

or, equivalently, a reduction in the drag as shown in Figure 5.2(a). This differs from the result found by 

Laneville and Yong (see Figure 2.9) who found that VplA is minimum close to BIA=0.6. The changes in VJA 

from the DVM simulation are less clear. Laneville and Yong's work showed a rapid decrease in VJA as BIA 

increases from 0.2 to 0.64. At BIA=0.64, VelA is almost zero as the vortices are forming virtually along the 

wake centre line. With a further increase in BIA they found the formation positions moved away from the wake 

centre line. The DVM results do show evidence for a minimum value of VelA occurring between BIA=0.2 and 

1.0 but it would appear that the vortices do not form close to the wake centreline as was found by Laneville and 

Y ong for a higher Reynolds number. 

5.6.2 Far wake visualisation 

Wake visualisations of cylinders with side ratios in the range 0.2<BIA<4.0 are plotted in Figure 5.15. The 

scales of the rectangle widths are the same in each picture and the colour coding of vortex particles is identical to 

that used in the near-wake visualisations. Two main structures are observed. Firstly a primary structure is 

observed in which the vortices are arranged in staggered pairs with the longer dimension of each vortex oriented 

in a cross stream direction. This structure becomes fully established further downstream in the wake as BlAis 

increased. A secondary structure evolves as the vortices roll up such that their longer dimension is now aligned 

with the flow direction. This structure appears almost immediately in the BIA=0.2 case with only a single pair 

observed in the primary structure and appears further downstream in the BIA=0.5 case. It is evident that the 

vortices are beginning to roll up into the secondary structure at the downstream end of the BI A= 1.0 

visualisation; one might anticipate that the secondary structure would appear at an increasing distance 

downstream as BIA is increased beyond BIA=1.0 although the wake visualisations of Figures S.15(d)-(f) do not 
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go far enough downstream to verify this assertion. For the BIA=0.2 cylinder the secondary structure quickly 

breaks down into a less orderly configuration which was not observed for the cylinders of larger side ratio. 

Wake visualisations of the BIA=l.O cylinder at an angle of attack are shown in Figure 5.16. The same two main 

wake structures are observed with the secondary structure appearing further upstream as a increases up to 30°. 

However at a=45° the secondary structure appears slightly further downstream than at a=30°. Since the body is 

symmetric at a=45°, the shedding process should be symmetric and it is possible that the primary structure is 

more stable under symmetric shedding and hence breaks down further downstream. This suggests that there 

exists a limit between a=20° and a=45° at which point the primary structure is least stable. The maximum 

wake width observed decreases from around 8d at a=0° to 6d at a=45°, where d is the maximum cross-stream 

dimension. 

5.7 Future use of the code for uniform flow calculations 

Developing three-dimensional instabilities are considered to be the main hindrance to simulation accuracy at 

these low Re and they may manifest themselves in different forms and at different Re depending on the afterbody 

geometry. A two-dimensional model cannot therefore be expected to provide a good representation of a real flow 

which exhibits strongly three-dimensional behaviour. For the future use of this code in its present format it is 

recommended that a Reynolds number limit of Re=500 and a side ratio range of 0.25<BIA<3.0 be used. The 

upper limit for Re is chosen purely on the basis that for BIA=l.O satisfactory agreement was obtained with 

existing measurements for the variation in Strouhal number and drag coefficients. It should not however be 

taken for granted that other side ratios will show agreement over a similar range if and when laboratory 

measurements become available for comparison. 

Introducing the parameter Min helped make the mesh more user-friendly since the values of L11]min and Jmin could 

be controlled such that the diffusion time-step limit did not become too small. However there is still a problem 

with the grid at extremes of BI A caused by an increasing disparity between the grid spacing near the rectangle 

corners and at the side surface mid-points. An upper limit of BIA=3.0 is given simply because the mesh does 

not place enough cells within the wake region at higher BIA. This maybe what causes the noisy force time 

histories shown for BIA=3.0 and 4.0. Simulation at an angle of attack does not appear to present any extra 

difficulty. 

A few main suggestions are given for future development of the code as a tool for uniform flow simulations 

past rectangles. Firstly vortex formation positions could be more precisely determined by analysis of the grid 

vorticity values, averaged over a number of shedding cycles. A comparison with the work of Laneville and Yong 

(1983) could then be more rigorously undertaken. In addition the time variation of skin friction plotted in a 
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similar manner to the time variation of surface pressure may prove beneficial in attempting to explain the 

changes responsible for the lift and Strouhal peaks at BIA=O.3 since the direction of flow along the body surface 

is quite difficult to interpret from the near-wake visualisations. 
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Chapter 6 

Oscillatory Flow Results 

6.1 Introduction 

Literature on oscillatory flow topics was reviewed in Section 2.5 and broadly categorised into two distinct areas, 

cross-stream oscillations and in-line oscillations. One of the initial purposes of this project was to make 

numerical calculations of pulsating flows past typical vortex-shedding flowmeter geometries. Cross-stream 

simulations have thus not been pursued here although there is no reason why the code should not be used to 

make such a study as a future project. 

As discussed in Chapter 2 pulsating flows can induce interactions between the shedding frequency Is and the 

forcing frequency fe. The primary resonant mode, referred to here as lock-in, occurs where vortices are shed in a 

Karman wake at half the forcing frequency. This regime is expected to occur when the forcing frequency is close 

to double the natural shedding frequency 10 and above some threshold amplitude of oscillation. A symmetric 

shedding mode has also been observed in which a pair of oppositely signed vortices are shed at the same moment 

in each cycle. Within the symmetric mode f,=!e and the induced forces on the cylinders are generally considerably 

lower than those found under uniform flow conditions. This contrasts with the primary mode for which forces 

are generally found to increase. 

Relevant studies of in-line oscillatory motion include the laboratory findings of Ongoren and Rockwell (1988b) 

who have examined flows past circular cylinders. Their flow visualisations, Figure 2.35, clearly show the 

competition which exists between symmetric and primary modes. The measurements of AI-Asmi and Castro 

(1992) demonstrate that the range of oscillation amplitudes and frequencies over which lock-in can occur (Figure 

2.37) is highly dependent on body geometry. Numerical studies of in-line pulsations are limited. Okajima and 

Kitaj ima (1993) have used a Direct Numerical Simulation to calculate pulsating flows about rectangles, 

1.0<BIA <3.0, at Re= 103
. Both the primary resonant mode and the symmetric mode were observed in their study 

with the mean calculated forces greatly reduced within the symmetric mode (Figure 2.38). However a comparison 

between a 2-D and 3-D simulation at Re=103 (Figure 2.31) by the same authors for cross-stream oscillations 

suggests that the 2-D calculations over-estimate the range of conditions under which resonance modes are 

predicted. A less comprehensive study by Minewitsch et at (1994) details calculations for the in-line oscillations 
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past square, BIA= 1.0, cylinders. A primary resonant mode was clearly identified and the authors reported that 

symmetric shedding was possible under certain conditions although no evidence for this could be deduced from 

those results presented. 

Two of the main questions which still arise in oscillatory flow topics were identified by Bearman (1984) in his 

review of the subject. Firstly, what effect does the afterbody geometry have on the appearance of resonant modes, 

and secondly, under what conditions does phase switching across the synchronisation range take place? 

Six geometries were chosen for the simulation of pulsating flows. These were a circular cylinder and rectangular 

cylinders of side ratios BIA=0.62, 1.0, 2.0 and 3.0. A BIA=1.0 cylinder inclined to the flow at 45°, hereafter 

referred to as a diamond cylinder, was also tested. Their relevant parameters calculated under uniform flow 

conditions are given in Table 6.1. for each cross section. Although initially only the rectangular cylinders were 

to be considered the circular cross section has been included since the bulk of the literature in oscillatory flow 

topics refers to the flow about circular cylinders. 

GEOMETRY Sto C DO CLO!nns) Flow vis. 

Circular 0.190 1.39 0.43 Fig 6.6 

Diamond 0.202 1.95 0.69 Fig 5.16(f) 

BIA=0.62 0.172 1.83 0.52 -

BIA=1.0 0.154 1.46 0.35 Fig 5.15(c) 

BIA=2.0 0.167 1.15 0.24 Fig 5.15(d) 

BIA=3.0 0.161 1.05 0.21 Fig 5.15(e) 

Table 6.1 Mean calculated parameters under uniform flow conditions 

and flow visualisation Figure number. 

Some frequencies quoted in this chapter have been non-dimensionalised according to 

St = fo d . St = fed. St = fsd. St = fn d ; 
o u' e u' S u' n U o 0 0 0 

(n = 1,2,3, ... ) (6.1) 

where Sf is used to represent a non-dimensional and f a dimensional frequency. Sto is the Strouhal frequency or 

frequency under uniform flow conditions, Ste is the oscillatory forcing frequency and Stn are the dominant 

frequencies found from spectral analysis of the lift curve. Sts is the shedding frequency under oscillatory 
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conditions and is usually equated to Sfl. The pulsations are characterised by the form of the upstream flow 

velocity, 

(6.2) 

where U A represents the amplitude of the imposed flow velocity. In the literature most researchers refer to a 

maximum displacement amplitude Xe of the cylinder defined by 

u x = _A_. 

e 27fe 
(6.3) 

The defining parameters of the flow are then the ratios!ello and xjd. 

6.1.1 Lock-in chart categories 

For each cross-section examined, a lock-in chart has been prepared which shows the range of oscillatory 

amplitudes xld and frequencies 1110 over which the geometry was tested. These are shown in Figures 6.4, 6.10, 

6.14,6.18,6.22 and 6.26 for each of the cylinders considered. Each combination of xld andilio has been placed 

within one of three categories: (i) quasi-symmetric shedding; (ii) asymmetric synchronisation; or (iii) outside the 

synchronisation regimes. The definitions used for the synchronisation regimes follow. 

Across the asymmetric synchronisation range the vortex shedding is expected to take place at t=I)2. For 

practical purposes a less rigorous criterion is applied. The expression (6.4) gives a range of values for t which 

imply that the shedding frequency has been significantly altered from its freestream value to the extent that we 

may consider the flow to be controlled by the forcing oscillation. 

(6.4) 

It should also be noted that, although expression (6.4) implies asymmetric synchronisation, several different 

modes of shedding were found within this range as will be evident from the flow visualisations discussed in the 

following sections. No attempt was made to further subdivide the asymmetric synchronisation range into these 

alternative modes. These modes will be referred to according to the definitions given by Williamson and Roshko 

(1988), Figure 2.28. 

The onset of a symmetric shedding mode implies reduced lift forces. Shedding frequencies could not always be 

detected from the lift time history and where they could they referred to the asymmetric part of the wake which 

developed further downstream. An examination of the drag curve reveals that the drag force is controlled by the 

forcing frequency over a larger range and cannot be used to determine synchronisation of the shedding process. 
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For these calculations it was decided that the flow could be termed quasi-symmetric provided the r.m.s. value of 

the lift coefficient was reduced significantly from its freestream value. A 50% reduction was chosen: 

C LO(lms) 
C L(rms) < ---'-

2 

6.1.2 Mean forces, dominant frequencies and shedding modes 

(6.5) 

For each simulation force time histories were produced as in the uniform flow case. Some examples of the lift 

time histories and lift power spectra are presented in Figures 6.1-6.3 for the circular cylinder. Spectral analysis of 

the lift curve was used to obtain the dominant frequencies and the shedding frequency Sts was assumed equal to 

the dominant frequency Sf1• Mean values for CD and CL(rms) were obtained by ignoring the initial interval during 

which the vortex shedding establishes itself and averaging the force time histories over an integer number of 

shedding periods. Across quasi-symmetric regions (see Figure 6.3(d» the lift force was small and irregular such 

that the shedding frequency could not be determined from analysis of the lift curve. Any frequencies which could 

be detected for quasi-symmetric modes relate to the far wake since asymmetric behaviour develops further 

downstream. 

Together with the lock-in charts figures are presented (see Figures 6.5, 6.11, 6.15, 6.19, 6.23 and 6.27) which 

show the variation of CD' CL(rll1s) and fells with felfo for each geometry at set displacement amplitudes. On the 

curves of hils vs. fifo two additional lines are plotted. If the upstream oscillations had not affected the shedding 

frequency then we would expect the points to lie on the line hils = fifo, i.e . .Is =fo· On the other hand asymmetric 

synchronisation is signified by points lying on the line fells =2.0. 

Instantaneous plots of the vortex street are also presented for each cylinder. The colour coding scheme was 

described previously in Chapter 5 (p108). The shedding modes have been termed according to the definitions of 

Williamson and Roshko (see Figure 2.28). 

6.2 Circular cylinder (Figures 6.1 - 6.8) 

Under uniform flow conditions the mean measured values of the key parameters were Sto =0.190, CDo=1.39 and 

C
W

(rllls)=0.43. The effect of the addition of an upstream pulsating flow component was tested over the ranges 

O.5~fe Ifo~3.0 and x/d~0.30. All those combinations of frequency and amplitude which were simulated are 

displayed in Figure 6.4 together with the results of Barbi et al (1986) and Okajima et al (1993). 

Asymmetric resonance was found for amplitudes above x/d=0.05 and the lower frequency bound for asymmetric 

resonance shifted to lower frequencies at higher amplitudes. Quasi-symmetric shedding was possible for 

amplitudes at or above x/d=0.2 and again the lower frequency bound for quasi-symmetric synchronisation was 
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reduced at the higher amplitude. This also had the effect of reducing the upper frequency limit for asymmetric 

resonance. The curve deduced by Barbi et al (1986) shows the amplitude threshold required to induce resonance of 

an asymmetric kind at a higher Reynolds number. Their curve does not continue beyond 1110=2.4 since the 

authors reported competition between asymmetric and symmetric shedding modes at higher forcing frequencies. 

This phenomenon was also reported by Ongoren and Rockwell (1988b). 

One can clearly observe that the amplitude threshold found by DVM is larger than those obtained by Barbi et at 

(1986). However this is consistent with the result presented in Barbi et al which suggests that the required 

amplitude threshold decreases with increasing Reynolds number. Okajima and Kitajima (1993) made some 

numerical studies of the lock-in bounds at Re=lQOO for a single oscillatory amplitude, xld=0.14. Their 

calculations predicted lock-in for 1.324110<1.98 which indicates a similar lower frequency bound and a slightly 

smaller upper frequency bound than observed in this study. This difference contradicts two previous statements. 

Firstly that the frequency bound for lock-in tends to increase with increasing Re and secondly that a 2-D 

calculation applied above the Reynolds number limit for fully 2-D flow will over-estimate the lock-in bounds. 

However it appears likely that as Re increases the threshold amplitude for the appearance of quasi-symmetric 

modes is reduced and this may be responsible for the smaller upper frequency bound found by Okajima and 

Kitajima (1993). 

Mean forces and shedding frequencies are plotted in Figure 6.5 for fixed amplitudes of xld=0.05, 0.10, 0.15 and 

0.30. Lift and drag forces are clearly seen to increase within the asymmetric synchronisation region and decrease 

across the quasi-symmetric regime. As the amplitude increases, the lift and drag maxima are shifted to lower 

frequencies. The asymmetric range is clearly visible at each of the four amplitudes plotted and can be seen to 

shift to lower frequencies with increasing amplitude. Outside the synchronisation range we might expect that the 

shedding frequency would return to the uniform flow value but clearly the frequency can be considerably altered 

even beyond this range. For the highest amplitude xld=0.3, no frequency could be detected from the lift force at 

Illo?1.7 since the shedding was quasi-symmetric in this region. It is assumed that the shedding is locked on at 

11.fs=1.0 throughout the quasi-symmetric region since the drag force oscillates at the shedding frequency. 

However the drag force oscillates at the forcing frequency across a broad range of frequencies and this is not 

necessarily related to the shedding pattern but may be caused by the pressure change on the upstream surface. 

This pressure is not affected by the vortex shedding process and is controlled directly by the upstream 

oscillations. Thus it would not be wise to use this for prediction of the shedding frequencies. 

Flow visualisations over the range of oscillatory conditions tested are displayed in Figures 6.7-6.9. The uniform 

flow case is given in Figure 6.6 as a reference. At low amplitudes of oscillation the conditions are insufficient to 

induce resonance and the Karman vortex street remains intact, Figure 6.7, although it is noticeable that the 

Strouhal number has increased slightly from the uniform flow value. However at higher oscillatory amplitudes 

the shedding process may be altered even beyond the frequency ranges for resonance. 
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Initially the amplitude is set at x/d=0.15. For a low frequency ratio,f/fo=0.5 (Figure 6.8a), the shedding process 

is not directly controlled by the forcing frequency and the mean forces are virtually unaltered from their steady 

flow values. However the vortex shedding has clearly been influenced by the upstream oscillations which results 

in the appearance of a secondary frequency, St2 • This frequency is a combination of the shedding and forcing 

frequencies, i.e. St2=Sts+Ste. The combination frequency persists throughout the asymmetric lock-in range, 

1.3<j/Is<2.1, at this amplitude but three quite distinct shedding modes are observed across the synchronisation 

range. At the lower frequency bound, Figure 6.8(b), vortices are shed alternately and of opposite circulation in 

each cycle and the centres of each vortex appear to be positioned near to the wake centreline. At an increased 

frequency, Figure 6.8(c), the shedding alternates between a pair of oppositely signed vortices and a single vortex 

per cycle. This corresponds to mode P+S in the work of Williamson and Roshko (1988, see Figure 2.28). Near 

the upper frequency bound, Figure 6.8(d), the process again consists of alternate shedding of clockwise and 

counter clockwise vortices. The vortex alignment now differs from that observed at the lower frequencies and the 

centres of each vortex are now positioned slightly away from the wake centre line. An explanation for the 

difference in vortex alignment can be given. As the forcing frequency increases the shedding frequency, Is, must 

also increase while the flow remains synchronised. This increase inIs reduces the separation distance between the 

vortices causing them to roll up and change their alignment relative to the flow. 

A higher amplitude of x/d=0.30 has been set in Figure 6.9. At a low forcing frequency, Figure 6.9(a), the mean 

force parameters are similar to the steady flow values and the shedding frequency has been slightly reduced, 

St,=0.186. Although the flow is not fully controlled by the upstream oscillations it is clear that a new pattern of 

shedding has been induced which we may term a P+2S mode following the definitions from Williamson and 

Roshko, Figure 2.28. Four vortices are shed per cycle consisting of a pair of vortices and two single vortices of 

opposite circulation. The combination frequency, St2=0.0903, differs from that found at the lower amplitude, 

x/d=0.15, since it is now given by St2=Sts-Ste• The reason for this difference in combination frequencies is not 

clear since the shedding pattern resembles that displayed in Figure 6.8(a). This P+2 S mode must however be 

considered unique since the frequency of the forcing oscillation has been set at exactly half the natural shedding 

frequency, h=0.5fo. 

Figures 6.9(b), (c) and (d) span the asymmetric resonant range at x/d=0.30. Two modes of shedding were 

observed. For frequencies in the middle of this range, Figure 6.9( c), Type 2 P shedding was found, and this was 

sandwiched between type P+S shedding. For frequency ratios f/fo~1.8, Figures 6.9(e) and (f), quasi-symmetric 

shedding was induced and a striking wake pattern emerges with a 'Chinese Dragon' appearance. The vortices in 

the near-wake region are seen to be considerably smaller than those shed within asymmetric modes and a close 

examination reveals that a pair of oppositely signed vortices are shed from each side of the cylinder per cycle. 

Vortex amalgamation occurs downstream in which an asymmetric pattern is established. The wake position of 

this vortex amalgamation moves further downstream as the forcing frequency is increased. 
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An immediate question which arises from these results is why in the case of the P + S and P + 2 S type shedding 

should the vortex pair favour one side of the wake? The P+S type shedding has been observed under cross-flow 

oscillations by Meneghini and Bearman (1993) and in their calculations the favoured side for the vortex pair 

could be altered by changing the initial direction of the cross-flow oscillations. For in-line oscillations changing 

the initial oscillatory direction would not alter the symmetry and one may suggest that the arrangement will be 

dependant on the side of the wake into which the start-up vortex is shed. This implies that the favoured side for 

the vortex pair is random under in-line oscillations. 

6.3 Diamond cylinder (Figures 6.10-6.13) 

The mean calculated parameters for the diamond cylinder under uniform flow conditions were Stu =0.202, 

CDO= 1.95 and CW (nns)=0.69. Figure 6.10 displays the combinations of frequencies and amplitudes which were 

tested and as before the shedding patterns have been categorised into symmetric and asymmetric synchronisation 

and outside the synchronisation range. No previous data exists for this configuration to the author's knowledge. 

The variations in lift, drag and the ratio 1 lis against increasing 1110 are plotted for four fixed displacement 

amplitudes (xld=0.05, 0.10, 0.20, 0.30) in Figure 6.11. Similar characteristics are observed as were found with 

the circular cylinder case. Lift and drag both increase across the asymmetric synchronisation range, which shifts 

to lower frequencies at the higher amplitudes. At xld=0.20 and 0.30, symmetric shedding is possible provided 

111,;>2.0 and lift is greatly reduced in this regime although the drag is not significantly lower than its uniform 

flow value. 

At xld=0.05 asymmetric synchronisation was found in the range 1.6</110<2.0. The asymmetric synchronisation 

range was shifted to a lower frequency band 1.4</110<1.8 at xld=O.lO. At higher frequencies, no evidence for 

any symmetric shedding was found at this amplitude but the shedding frequencies have been significantly altered 

from their uniform flow value while CL(fI11S) values are found to be around 15% lower. This suggests the onset of 

a symmetric range and indeed at higher amplitudes symmetric shedding is found. 

In Figure 6.11 (c) the reduction in lift force is clearly seen and the arbitrary 50% reduction is achieved for 

1110>2.2 at xld=0.20 and for 1110>1.8 at xld=0.30. Asymmetric resonance was found over the range 

1.2</1/0< 1.6 for xld=0.20 and xld=0.30. However at xld=0.30 the situation is a little more complicated since 

resonance was also found for a lower forcing frequency 1110=0.8 but not at 1110=1.0. There is also evidence for 

lock-in with Ilis= 1.0 atlllo=0.7. 

Vortex streets at xld=0.05 are displayed in Figure 6.12. Figure 6.12(a) shows the shedding pattern at a low 

forcing frequency but the Karman vortex street is only sustained for around four or five shedding cycles 

downstream. Within the resonant regime, Figure 6.l2(b), the street is sustained for a slightly longer period but 
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there is a strong indication of some vortex pairing occurring in the centre of this visualisation. This pamng 

becomes more apparent at a higher frequency, Figure 6.12(c), beyond the synchronisation range. In the 

immediate near wake the vortices are shed asymmetrically but after travelling a short distance they appear to pair 

off favouring one side of the wake centre line, in this instance the lower side. Further downstream the vortices 

have paired off on the opposite side of the wake centre line which suggests some form of intermittency is 

present in this shedding arrangement. 

The visualisations at xld=0.30, Figure 6.13, are further evidence of the complex shedding processes which have 

been found for this geometry. At a low frequency, Figure 6.13(a), the vortices have paired off onto one side of 

the wake in a similar manner to that found for high frequency oscillations at a lower amplitude. In Figure 

6.13(b) atflfo=0.9 the Strouhal number deduced from the lift force suggests that the flow is synchronised with 

fl.fs=2.0 but this appears unlikely on inspection of the vortex street and the secondary frequency is probably 

more closely associated with the shedding frequency in this case. At a synchronised frequency, Figure 6.13(c), 

the paired vortices are now shed alternately from either side of the diamond. As the forcing frequency is increased 

across the synchronisation range, 1.1 <f Ifo< 1.6, the alignment of these paired vortices changes by ninety 

degrees. At higher frequencies symmetric shedding is induced with pairs of vortices shed simultaneously from 

each side. The vortices are somewhat smaller than those shed in non-symmetric regimes but contain very strong 

cores. This arrangement breaks down in the far wake into something resembling a giant Karman street. 

The main point of observation for this cylinder is the strong tendency for vortex pairing resulting in the P type 

mode, Figures 6.12(b),(c) and 6.13(a),(b), and the 2P mode across the synchronisation range at xld=O.03, 

Figures 6.13(c),(d) and(e). Pairing is also evident in the quasi-symmetric shedding case, Figure 6.13(f). 

6.4 BIA =0.62 cylinder (Figures 6.14-6.17) 

The lock-in diagram for this cylinder is presented in Figure 6.14 together with the threshold amplitUdes found by 

AI-Asmi and Castro (1992) for a flat plate and a BIA=0.67 cylinder. Under uniform flow conditions the mean 

calculated parameters for the BIA=0.62 cylinder were Sto =0.172, CDo=1.83 and CW (rms)=0.52. It is clear that at 

xld=0.05 the lock-in boundaries lie close to those found for a BIA=0.67 cylinder by AI-Asmi and Castro (1992) 

although their measurements were taken at a higher Reynolds number, Re=7000-50000. 

The variation in mean forces and shedding frequencies is displayed in Figure 6.15. Flow visualisations for this 

cylinder are shown in Figures 6.16 and 6.17. At a low oscillatory amplitude, xld=0.05, asymmetric 

synchronisation is possible in the range 1.8~flfo~2.2. There is no noticeable change in the vortex street 

arrangement, shown in Figure 6.16, across this range. Outside this range the dominant frequency (see Figure 

6.15(b» is only slightly altered from its uniform flow value. Atxld=0.10 the lower bound is extended such that 
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asymmetric synchronisation is found over the range 1.6<1lfo<2.2. The mean forces increase marginally across 

the lock-in range at xld=0.05 and 0.10. 

A greater increase in the mean forces is found at the higher amplitudes shown in Figure 6.l5(c). As the 

amplitude is increased to xld=0.20 the synchronisation range broadens to 1.4$flfu$2.3. There is a sudden 

decrease in the upper frequency bound for asymmetric resonance at xld=0.30 and the range is shifted to 

1.2<1lfo<1.6. Some evidence is found for quasi-symmetric shedding at xld=0.30 near flfo=1.8 but clearly the 

reduction in the r.m.s. lift is not as significant as was observed in the case of the circular and diamond cylinders 

and occurs over a shorter range of forcing frequencies. At xld=0.30 with flfo'?2.2 the dominant frequency is 

clearly significantly different from the uniform flow value, and follows a straight line fit. This straight line did 

not appear to be given by any obvious fractional combination of fe and fo but could be approximated by Is = 

0.93f, + fo. 

The visualisations in Figure 6.17 encompass the range of oscillatory frequencies tested at xld=0.30. 

Asymmetric resonance was found from the lift spectra over the range 1.2$f Ifo$I.6 but simulations were not 

undertaken for frequency ratios lower than flfo=1.2. The flow patterns in these cases are complex and it is 

difficult to define the shedding mode or deduce that the flow is controlled by the forcing oscillations from these 

visualisations. At flfo=1.2 and 1.6, Figures 6.17(a) and (c), this may have resulted from not allowing the 

simulation a suitable time to fully settle down as the vortex street does not show a regular pattern in the wake. 

However atflfo=I.4, Figure 6.17(b), a regular street is observed although the mode of shedding is debatable and 

dependent on the reference position. There are certainly four vortices shed in each cycle and if we examine the 

near wake we may categorise this as type 2 P shedding. However as we move downstream one of the vortices 

from the pair shed into the lower half of the wake begins to interact with the pair shed into the upper half. This 

may be termed type T+S shedding since the arrangement consists of three vortices in the upper half of the wake 

and a single vortex in the lower half. At higher forcing frequencies, Figures 6.17(d, e and f), the flow appears to 

consist of many small vortices shed into the near wake which amalgamate downstream to produce a vortex 

street. 

6.S BfA =1.0 cylinder (Figures 6.18-6.21) 

Under uniform flow conditions the mean calculated parameters for the BIA=1.0 cylinder were Stu =0.154, 

C
D

()= 1.46 and C
W

(rIllJ)=0.35. Some previous research has been undertaken to determine the lock-in boundary for 

this cylinder and these results are displayed in Figure 6.18. Minewitsch et al (1994) determined the lower and 

upper frequency threshold for asymmetric resonance at Re=200 but their calculations indicated a slightly narrower 

synchronisation range than found by the DVM simulations. The DVM study indicates that this range ceases to 

widen beyond xld=0.15 but Minewitsch's study shows the synchronisation width continues to increase up to 

xld=0.20. Okajima et al (1993), working at Re=1000, chose a fixed displacement amplitude xld=O.l.+ and 
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obtained somewhat different values to those found in this study at a lower R e. The frequency range over which 

they determined asymmetric synchronisation was given by 1.7<1110<2.7 which compares to the range determined 

by DVM of 1.5<1lfo<2.4 at a fixed amplitude of xld=O.15. Okajima also found lock-in of type flIs= 1.0 for a 

range O. 6 <lIfo < 1.35. Neither this DVM study nor the Minewitsch calculations found any evidence for such 

behaviour at Re=200. 

Figure 6.19 shows the forces and shedding frequencies observed for displacement amplitudes xld~0.50 with the 

square cylinder. No evidence for any quasi-symmetric behaviour was found for this cylinder but the asymmetric 

synchronisation range was wide, varying from 1.8<1lfo<2.2 at xld=0.05 to 1.5<1lfo<2.4 at xld=0.20. At 

xld=0.30, the range had narrowed to 1.6<1lfo<2.3 and by xld=0.50 no asymmetric lock-in was observed. At the 

high displacement amplitude xld=0.50 and with f Ifo"2:.1.4, Figure 6.19(f), the dominant shedding frequency 

follows a straight line fit similar to that found for the BIA=0.62 cylinder with Is = 0.91.f., + fo. 

Flow visualisations are shown across the synchronisation ranges at xld=0.10 and 0.30. At xld=O.lO, Figure 

6.20, only type 2S shedding is found. This remains the case at xld=0.30, Figure 6.21, although the vortices are 

beginning to change their orientation in the far wake at flfo=2.3, Figure 6.21(c), as the separation between the 

vortices decreases. In summary the BIA=1.0 cylinder shows a wide range of asymmetric type 2S shedding but no 

alternative modes of shedding or quasi-symmetric behaviour were observed for xld~0.30. 

6.6 BI A =2.0 cylinder (Figures 6.22-6.25) 

The mean calculated parameters for the BIA=2.0 cylinder under uniform flow conditions were Sto =0.167, 

CDo=1.15 and CLO(rms)=0.24. Figure 6.22 shows the lock-in chart for this geometry. The mean forces and shedding 

frequencies are displayed in Figure 6.23 and vortex shedding plots have been reproduced at displacement 

amplitudes of xld=O.lO, Figure 6.24, and xld=0.30, Figure 6.25. At Re=103 Okajima et at (1993) found lock-in 

of type flIs= 1.0 across the range 0.6<1110<2.5 and of type fIIs=2.0 across the range 2.5<1lfo<3.0. This is 

clearly quite different from the lock-in values found in this study and is probably due to the difference in 

Reynolds numbers between the calculations. The shedding characteristics under uniform flow conditions alter 

substantially as the Reynolds number increases for this geometry. The Strouhal number vs. Re curve was 

reproduced in Figure 2.12(b) and shows a discontinuity close to Re=400. This is due to intermittent reattachment 

along the side surfaces. At Re>600 the flow remains attached and thus there is a distinct difference between the 

fully separated flow at Re=200 and the reattached flow at Re= 1 000. It is thus not surprising that the 

characteristics under oscillatory flow conditions found in this study should be so different from those found by 

Okajima et at. 

In the DVM simulations the range of forcing frequencies which induced asymmetric synchronisation varies little 

with forcing amplitude. As the displacement amplitude increased from xld=0.05 to 0.30 the lower bound for 
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asymmetric synchronisation decreased fromf/fu=1.7 to f/fo=1.5 while the upper bound decreased from f/f()=2.1 

to f/fu= 1.9. Quite different behaviour from that of the rectangles of shorter side ratio is observed since the 

pulsations are strongly inclined to induce quasi-symmetric shedding for certain ranges of forcing frequency. The 

quasi-symmetric shedding mode begins to emerge at x/d=O.lO and at higher amplitudes is dominant for 

f/fo>2.0. Above the upper frequency bound for asymmetric synchronisation one can observe a sharp decline in 

the mean forces, particularly the rms lift as the flow changes abruptly to exhibit quasi-symmetric behaviour. 

The visualisations show the different shedding modes observed for this geometry. At x/d=O.lO, Figure 6.24, 

only type 2 S shedding was observed, although at f /fo=2.2 the calculations indicate a reduced lift force (see 

Figure 6.23(a)) and hence quasi-symmetric shedding is implied. It is rather difficult to detect any great difference 

in the near-wake regions between Figure 6.24(b) and (c) but at this low amplitude the near-wake symmetry may 

well be intermittent. At a higher amplitude, x/d=0.30, the shedding mode changes from type 2 S at f/fo= 1.5, 

Figure 6.25(a), to type 2P atf/fu=1.7, Figure 6.25(b), across the asymmetric synchronisation range. At higher 

frequencies the quasi-symmetric mode is induced, Figure 6.25(c), and the symmetry in the near wake now 

extends to several body widths downstream before breaking down into an asymmetric vortex street. 

6.7 BI A =3.0 cylinder (Figures 6.26-6.28) 

Figure 6.26 displays the lock-in chart found for this cylinder. Under uniform flow conditions the mean calculated 

parameters for the BIA=3.0 cylinder were Sto =0.161, CDo=1.05 and CW (nns)=0.21. The effect of in-line 

oscillations on mean forces and shedding frequencies is shown in Figure 6.27 and a series of shedding plots have 

been plotted at the displacement amplitude x/d=0.30, Figure 6.28. As a reference the uniform flow shedding 

pattern has been plotted in the previous chapter, Figure 5.15(e). Asymmetric synchronisation was not observed 

below a forcing amplitude of x/d=O.lO or above a forcing frequency of f /fo=2.0. This compares with the upper 

limit found by Okajima et al (1993) of f/fo=1.9. The lower limit decreased from f/fo=1.6 at x/d=O.lO to 

f/fu= 1.2 at x/d=0.30 although at the higher amplitude this lower limit has not been fully investigated. 

Okajima's study found a lower limit to the asymmetric resonance and also found shedding with f l!s= 1.0 for 

forcing frequencies above and below the range for f/!s=2.0. 

This cylinder exhibits behaviour similar to the BIA=2.0 cylinder within the asymmetric range but no qUasl­

symmetric behaviour could be deduced from examination of the lift forces in Figures 6.27(a) and (c). It is clear 

that the lift is never reduced significantly as was observed for the circular, diamond and BIA=2.0 cylinders and 

none of the simulations for this geometry could be termed quasi-symmetric according to the definition of a 50% 

reduction in the mean r.m.s. lift. 

At x/d=0.3, 1/fo= 1.2, Figure 6.28(a), the near wake shows strong quasi-symmetric behaviour, particularly if 

comparison is made to the uniform flow shedding appearance, Figure 5 .15( e). However further downstream the 
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asymmetric vortex street is locked onto the forcing frequency at f 1!s=2.0 and since this was dominant in the 

spectral analysis of the lift curve the flow is considered to be within the asymmetric synchronisation region. As 

the frequency is increased through the asymmetric synchronisation range the shedding pattern changes to mode 

2P, Figures 6.28(b) and (c). Beyond the synchronised region at fifo;':: 1. 8 the shedding pattern is similar to what 

was previously observed for quasi-symmetric shedding with a near-wake region in which pairs of vortices are 

shed into the flow before breaking down into an asymmetric vortex street further downstream. However careful 

examination of the near-wake region reveals that the symmetry is not as well maintained as was the case for 

other geometries. This perhaps explains why the lift force does not reduce substantially and suggests that 

although using the reduction in lift force is perhaps a sufficient condition to define quasi-symmetry in the near 

wake it is not a necessary one. With this longer geometry the lift coefficient under uniform conditions is already 

quite small since the afterbody delays the onset of any asymmetry from the vortex interaction and hence the 

quasi-symmetric mode is no longer well defined by an examination of the mean lift. 

6.8 Pseudo-phase shift across the asymmetric resonance range 

A phase shift across the synchronisation range has been found for cross-flow oscillations by Ongoren and 

Rockwell (1988a) amongst others. Their results indicate a sudden jump in the phase difference as the forcing 

frequency increases across the synchronisation range. Figure 2.26 has been reproduced from Ongoren and 

Rockwell's (1988a) laboratory study on cross flow oscillations. We can observe that atflfu=1.0 a vortex has 

just been shed from the lower surface. At flfo=1.17 the vortex is shed from the upper surface at the equivalent 

moment of the oscillation cycle. This implies that the phase of the vortex shedding with respect to the 

oscillatory motion has shifted by approximately 1800 in this frequency range. 

This phase change has not been observed for in-line oscillations although Okajima et al (1993) examined the 

phase of the drag with respect to the forcing oscillation for pulsating flows about rectangular and circular 

cylinders. Their findings showed only a small shift in the phase angle and across the synchronisation range the 

phase remained quite constant. It is not clear why the drag was used to determine this phase change instead of the 

lift which would appear to relate more clearly to the vortex shedding process. A possible explanation is that the 

drag normally oscillates at twice the frequency of the lift. For in-line oscillations this implies that the drag will 

oscillate at the forcing frequency and thus a phase difference can be readily calculated. Across the asymmetric 

synchronisation range the lift oscillates at half the forcing frequency and so a phase difference cannot be defmed 

in precise mathematical terms. 

There is also a fundamental difference between the phase shift for an in-line and a cross-flow oscillation which 

can be appreciated by reference to Figures 6.29-6.31. Two moments of vortex shedding, shown in Figure 6.29, 

are chosen which coincide with the moments of maximum and minimum lift. [It should be noted that Figures 

6.29(a) and (b) are taken from uniform flow visualisations but should be sufficient for illustrative purposes]. For 
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cross-flow oscillations ¢v is defined as the phase difference between these moments of vortex shedding and the 

forcing oscillation. ¢v is defined to be zero if vortex A is shed at the moment of maximum oscillatory velocity 

and vortex B is shed at the moment of minimum oscillatory velocity, Figure 6.30(a). ¢v=180° if this 

arrangement is reversed, Figure 6.30(b). The phase change between Figures 6.30(a) and (b) then corresponds to 

the type of behaviour shown in Ongoren and Rockwell's work, Figure 2.26. 

For in-line oscillations, and across the asymmetric synchronisation range, the frequency of vortex shedding is 

half the forcing oscillation frequency and a phase shift cannot be properly defined. A pseudo-phase shift is 

therefore defined as shown in Figure 6.31. ¢v is defined to be zero if both vortex A and vortex B are shed 

consecutively at moments of maximum oscillatory velocity. ¢v= 180° if both vortices are shed consecutively at 

moments of minimum oscillatory velocity. 

It must be emphasised that the laboratory-determined phase difference involves a difference in phase between the 

forcing oscillation and the shedding process. The numerical calculations are concerned with a difference between 

the forcing oscillations and the force time histories. It is certainly far simpler to calculate a phase shift by 

referring to the difference between the forcing oscillations and the force time histories, particularly if only small 

shifts are involved. For this study a pseudo-phase difference ¢L will therefore be defined which relates a moment 

of the lift cycle to a moment of the forcing oscillation. A phase lag ¢D will also be calculated which relates a 

moment of the drag cycle to a moment of the forcing oscillation. 

The phase differences were calculated by plotting a sine curve of frequency Ie on the same graph as the force time 

history. The sine curve was given an amplitude and displacement similar to the lift (or drag). Shifts of ¢L and ¢D 

degrees were applied to the lift and drag curves respectively such that the force curves coincided with the 

sinusoidal forcing oscillation at particular moments of the cycle. For the lift curve these moments were given 

when both the lift and the forcing oscillation were changing from negative to positive. For the drag curve the 

chosen coincident moments were not as vital since the drag time history oscillates in an approximately 

sinusoidal manner at the forcing frequency Ie. It is important to note that ¢L can only be defined across the 

asymmetric synchronisation range. The drag was found to be controlled by the forcing oscillation over a much 

greater range of frequencies than the lift and so ¢D could be defined over a wider frequency range. A discussion of 

the findings for ¢L and ¢D for each cylinder follows. 

6.8.1 Circular cylinder (Figure 6.32) 

Figure 6.32 shows the phase difference found between the lift and drag time histories and the forcing 

oscillations. The phase difference for the lift, ¢v can only be defined across the asymmetric synchronisation 

region. A definite trend is exhibited in which ¢L gradually increases as the forcing frequency increases. TIle 

gradient of this increase appears to become shallower as the oscillatory amplitude is increased although it is 

unclear what significance this holds. ¢D' the phase of the drag with respect to the forcing oscillation, could be 

defined across a much broader range of frequencies since it is controlled over a wider range than the lift. The 
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phase change is small and shows similar characteristics independent of the forcing amplitude. For /1/0> 1.2 it 

remains roughly constant at approximately 260 degrees. 

6.8.2 Diamond cylinder (Figure 6.33) 

Figure 6.33 plots ¢L and ¢D found for the diamond cylinder. A similar trend is seen to the results for the circular 

cylinder with ¢L gradually increasing as the forcing frequency increases. However the change in ¢L is not as great 

as was observed for the circular cylinder. ¢D=335° at /1/0=0.8 and gradually decreases until /1/0>2.0 at which 

point it remains constant at approximately ¢D=290°. 

6.8.3 Rectangular cylinders (Figures 6.34-6.37) 

The phase of the drag remains approximately constant at ¢D=270o-290° for each cylinder above /1/0=2.0. Below 

this value the change in ¢D is small and will not be considered further. There is some difference between the 

cylinders in the way ¢L is observed to vary. The results for the BIA=0.62 and BIA=2.0 cylinders shown in 

Figures 6.34 and 6.36 indicate similar behaviour to the circular and diamond cylinders as for these cylinders an 

increase in amplitude is accompanied by a decrease in the gradient of the phase change across the synchronisation 

range. However if one considers /1/0 fixed then an increase in amplitude results in an increase in ¢L for the 

BIA=0.62 and BIA=2.0 cylinders. This contrasts with the findings for the BIA=1.0 and BIA=3.0 cylinders for 

which the value of ¢L decreases for increasing amplitude at a fixed/I/o. 

At an amplitude of xld=0.15 the BIA=1.0 cylinder, Figure 6.35(a), shows a particularly rapid increase in ¢L over 

the range 2.1-:;'/1/0-:;'2.4. ¢L changes by approximately 180 degrees over this region. This implies that an 

examination of the vortex shedding taken at equivalent moments of the oscillatory flow cycle at /1/0 =2.1 and 

fifo =2.4 would reveal a shift in the phase of the vortex shedding similar to that indicated in Figure 6.31. 

6.9 Comparison between geometries 

Figures 6.38 and 6.39 show comparison of the lift and phase shift found for each cylinder. Figure 6.40 displays 

the lock-in boundaries found for each cylinder. In Figure 6.38 the ratio CU.rms/CLO(rms) has been plotted against 

fifo. C W (rl1ls) refers to the value calculated for uniform flow conditions. In effect this means that the curve shows 

the relative change to the lift from its uniform flow value. 

At xld=0.05, Figure 6.38(a), the differences between the cylinders are not large. For forcing frequencies less than 

fl/o= 1.5 the lift is unaltered from its uniform flow value for the circular, diamond, BIA=2.0 and BIA=3.0 

cylinders. However the rectangles of shorter side ratio, BIA=0.62 and BIA= 1.0, show a slight increase. All the 

cylinders show a decrease in the lift for slightly higher /1/0 with minima occurring in the range 1.6-:;'/lfo-:;' 1. 8. 

Across the asymmetric synchronisation ranges the lift increases by a similar amount for all but one of the 

cylinders. The BIA=2.0 cylinder shows different characteristics at this displacement amplitude as the lift reaches a 
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sharp peak close to 1110=2.0 before falling sharply to a value around 0.8 times its uniform flow value. The main 

difference between the cylinders when the forcing amplitude is low is that the BIA=2.0 cylinder shows signs of 

developing quasi-symmetric behaviour with a reduced lift force abovelllo=2.0. 

At a higher displacement amplitude, Figure 6.38(b), the differences in the behaviour for each cylinder are more 

noticeable. The BIA=2.0, circular and diamond cylinders all have a distinct range across which the lift is reduced 

to near zero, indicating quasi-symmetric shedding. The BIA=2.0 and 3.0 cylinders have a large increase in their 

lift, 4-5 times their respective uniform flow values across the asymmetric synchronisation range. For the other 

cylinders the maximum increase is between two and two and a half times the uniform flow value. Secondary 

peaks in the lift curves can be observed near 1110=1.0 for the BIA=1.0, .2.0, 3.0 and circular cylinders. This is 

possibly evidence for a small range of lock-in where 11!s= 1.0 but this was not investigated further. 

Values of ¢L across the synchronisation range are displayed in Figure 6.39. At the low amplitude, xld=0.05, 

Figure 6.39(a), there is a clear difference between the cylinders. The BIA= 1.0 and circular cylinders show a large 

change in ¢L of almost 180 degrees. The exact moment at which the vortices were shed with respect to the 

forcing oscillation cycle was not investigated. However if one assumes that the vortices are shed at the moment 

of maximum forward acceleration near the lower frequency bound for resonance then a 180 degree shift across the 

synchronisation range implies that the vortices will then be shed at the moment of maximum deceleration. 

Smaller changes in ¢L are observed for the other cylinders. At the higher displacement amplitude, Figure 6.39(b), 

¢L increases slowly across the synchronisation range. For the BIA=3.0 cylinder there is actually a slight decrease 

in ¢L' 

The frequency bounds for lock-in are shown in Figure 6.40. The dashed lines represent the lower frequency bound 

and the dotted lines the upper bounds for asymmetric synchronisation in each case. There is clearly considerable 

difference in the frequency ranges between the geometries. The smallest lock-in bounds are seen for the diamond 

cylinders and the rectangles of side ratio BIA=2.0 and 3.0. The shorter rectangles of side ratio BIA=0.62 and 1.0 

have the widest lock-in ranges. 

In summary this in-line oscillatory flow study has revealed substantial differences in the lock-in characteristics of 

several geometries. All the cylinders exhibited primary asymmetric resonance within which 11!s=2.0 and the 

mean forces increase although the lock-in boundaries and shedding modes varied between cylinders. The circular, 

diamond and BIA=2.0 cylinders exhibited quasi-symmetric type shedding in which the near wake takes on a 

symmetric appearance and the far wake reverts to an asymmetric vortex street. The lift force was substantially 

reduced from its uniform flow value for quasi-symmetric type shedding. The BIA=0.62 and 1.0 cylinders gave 

some indication that quasi-symmetric behaviour may emerge at higher forcing amplitudes. An investigation of 

the pseudo-phase difference between the lift and the forcing oscillation showed that at low amplitude a large 

change in ¢L took place across the asymmetric synchronisation range at low forcing amplitudes. However this 

change was reduced significantly at higher amplitudes. 
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The above results perhaps offer more new questions rather than resolving any old ones. For example what is the 

mechanism responsible for producing vortex pairs instead of individual vortices? How does the change from 

asymmetric shedding, e.g. Figure 6. 13(e), to symmetric shedding, e.g. Figure 6.13(f), occur? Are there regions 

close to the boundaries for asymmetric and quasi-symmetric resonance which exhibit intermittent behaviour? 

Does the side of the wake into which the vortex pair is shed depend on the side of the wake into which the start­

up vortex is shed? What is the link between the shedding mode, lift time history, and phase difference? It is 

evident that further work must be carried out before an explanation for these questions can be offered. Greater 

understanding may be found from an examination of the near wake at several moments of the forcing oscillation. 

More comprehensively it would be useful to create a series of loopable videos of each shedding mode. Each video 

should also include a time evolution of the force histories and upstream oscillations so that a link between these 

processes can possibly be deduced. It may also be useful to undertake some simulations within which the forcing 

frequency is gradually increased, particularly at frequencies close to the lock-in boundary. 
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Figure 6.6 Vortex shedding past circular cylinder; Uniform flow ; Re=200; 
Sto=0.191, CD=1.39, CL(nns)=0.43 

Figure 6.7 Effect ofin-line oscillations on vortex shedding; Circular cylinder; Re=200. 
xld=0.02,lllo=2.2, St1=0.194, CD=1.36, CL(rms) =0.42 

(a) xld=0.15 , Ilj~=0.5, St1=0.189, St2=0.283, CD= 1.39, CL(mls) =0.43 

Figure 6.8 Effect of in-line oscillations on vortex shedding; Circular cylinder; x/d=0.15 ; Re=200. 
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(a) x/d=0.30,f/fo=0.5; 
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Figure 6 .9 E ffect of in-line oscil lations on vortex shedding; Circular cylinder ; x/d=O JO. 
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(d) xld=0.30,flfo=1.6; 
51}=0.154, 512=0.458, CD=2.13 C =1 20 tf. -100 , L{nns) . ''f'L- . 

(e) xld=0.30,flfo=1.8; 
CD=1.31 , CL{mzs)=0.02 . 

(f) x/d=0.30, f/fo=2.2 ; 
CD=1.29, CL{mzs) =0.02. 

Figure 6.9 (cont) Effect of in-line oscill ations on vortex shedding ; Circular cylinder; x/d=0.30. 
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Figure 6.11 Effect of in-line oscillations on mean forces and shedding frequencies; Diamond cylinder. 
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Figure 6.12 Effect of in-line oscillations on vortex shedding; diamond cy linder; x/d=O.OS. 
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Figure 6.13 (cont) Effect of in-line osci llations on vortex shedding; Diamond cylinder; x/d=O J O_ 
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Figure 6 .16 Effectof in-line oscill ations on vortex shedding; BIA=O.62 cy linder; x/d=O.OS . 
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Figure 6.17 Effect of in-line oscillati ons on vortex shedding; BIA=O.62 cylinder; x/d=O.30. 
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(d)/I/o=1.8, St}=0.130, St2=0.442, CD=1.50, CL(nns)=0.25. 

Figure 6 .17 (cont) Effect of in-line oscillati ons on vortex shedding; 8IA=0.62 cylinder; x/d=0.30. 
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Figure 6 .21 Effect of in-line oscillations on vortex shedding; BIA=l.O cyli nder; x/d=OJ O. 
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(c)flfo=2.2, St1=0.159, CD=1.1 2, CU nns)=0.09 . 

Figure 6.24 Effec t of in-line oscillations on vortex shedding; BIA=2.0 cylinder; x/d=O.l O. 
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Figure 6.25 Effect of in-line oscillations on vortex shedding; BIA=2 .0 cylinder; x/d=O.30. 
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(d)///0=1.8, St1=0.114, St2=0.397, CD=1.26 C =0 18 , L(nns) . . 

(f) ///0=2.8, Co=1.60, Cunns)=0.85 . 

Figure 6.28 (cont) Effec t of in-line oscillations on vortex shedding; BIA =3.0 cylinder x/d=O .. O. 
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Chapter 7 

Conclusions 

A numerical study was undertaken of the flow past a selection of bluff cylinders. For uniform flow conditions, 

attention was focussed on rectangular cylinders of side ratio in the range O.02<BIA<4.0, and the effects of 

varying the side ratio, the angle of incidence and the Reynolds number were all considered. The addition of an 

upstream in-line oscillatory flow component was tested on six cylinders. 

In an earlier study Meneghini (1994) had applied the discrete vortex method to simulate the flow past a circular 

cylinder with an oscillatory component normal to the oncoming stream. The code used in Meneghini's study 

was adapted such that it was suitable to model flows about sharp-edged obstacles. Initially this was motivated by 

a desire to simulate the effects of in-line unsteadiness on the flows about typical vortex shedding flowmeter 

geometries. These include triangular, rectangular and T-shaped geometries. A variable rectangular transformation 

was chosen since a review of the literature revealed large gaps in the fundamental knowledge of flows even under 

uniform flow conditions past these geometries. 

A summary of the code adaptations and main findings under uniform and oscillatory flow conditions follows. 

Finally a discussion of future code usage and possible developments will be given. 

7.1 Code development 

An integral expression was derived from the Schwarz-Christoffel relations which gave the transformation 

between a region exterior to any rectangle onto a semi-infinite strip in the computational domain. This 

transformation was incorporated into the DVM code together with an adaptation to the grid generation giving 

better user control on the mesh spacing. Improved smoothing of the Jacobian J in the region of the vertex 

singularities and a proper consideration of the variability of J with ; in the diffusion calculations were also 

included. In previous versions of the code a Fast Fourier Transform algorithm was performed twice per timestep 

to solve the stream function. This appeared an unnecessary and computationally expensive operation and thus 

the code was modified to include only one FFT per timestep. 
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The most important and novel adaptation to the code was the derivation and implementation of a surface pressure 

solver. This was necessary since the methods applied in previous versions of the code were found to be 

inappropriate for this study. The Blasius method determines force coefficients but not surface pressure 

coefficients and becomes noisy as vortices leave the computational domain. The gradient of vorticity method is 

inappropriate for sharp-edged obstacles since the tangential direction cannot be defined at corners. An integral 

expression was derived which relates the spatial pressure gradients in a manner applicable to a general coordinate 

transformation. Ongoing projects have successfully applied the surface pressure solver to triangular, T-shaped 

and aero foil cross-sections. 

Simulations under uniform and oscillatory flow conditions have demonstrated the value of all these 

modifications. Ideally more thorough investigations would have been made of code convergence and the effects 

of altering the Jacobian smoothing scheme. However the prime objective of the project was not to provide 

highly accurate values for calculated parameters such as the Strouhal number and force coefficients and the 

emphasis is instead placed on the trends in these parameters which occur as the cylinder and flow geometry are 

varied. It is felt that where comparisons could be made the broad agreement between the DVM calculations and 

existing numerical and laboratory data justifies this methodology. 

7.2 Uniform flow simulations 

Rectangular cylinders of side ratio 0.02<BIA<4.0 were tested. In addition to the side ratio, tests were done on the 

variation of the angle of attack and the Reynolds number, although these were confined mainly to the square, 

BIA=l.O, cylinder. 

7.2.1 Effect of side ratio and angle of attack at Re=200 

At Re=200, no drag maximum was found in the BIA range tested. This contrasts with the known result at 

higher Reynolds numbers, Re=104-105, for which a maximum drag occurs close to BIA=0.6. At higher Reynolds 

number this result has been attributed to a change in the vortex formation position caused by an interaction 

between the rectangle afterbody and the shear layer separating from the front corner of the rectangle. Some 

attempt was therefore made to estimate the vortex formation position and it was shown that the distance from 

the rear surface to the formation position increased across the range of side ratios investigated at Re=200. 

However the formation positions were not accurately determined and a more detailed analysis could have been 

made if the time-averaged values of mesh vorticity had been calculated. 

Although no peak in the CD vs. BIA curve was found, both the Strouhal number and the lift coefficient MJ 

. I I t BI.' A -0 30 A change was also observed in the skin friction drag coefficient which maximum va ues c ose 0 /"1-. • 

f ,. t t' e at a similar side ratio Some near-wake visualisations and surface pressure went rom posItive 0 nega IV . 

I I 'd t everal moments of the sheddina c)lcle for a few rectangles of differing side ratio. An ca cu atlOns were rna e a s 0 

explanation for the maximum lift coefficient which occurs close to BIA=0.3 was suggested from these results, 
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Separation occurs at the cylinder corner and the shear layer grows along the cylinder side surface. At the rear of 

the cylinder the vortex shedding process dominates but this results in an oscillation of the shear layer. This 

oscillation leads to a difference in the pressure distribution along the top and bottom surfaces and hence an 

oscillatory lifting force. As BIA increases initially since the oscillation magnitude is greater further downstream 

the lift oscillation also grows but as the side ratio increases beyond BIA=0.3 the afterbody begins to suppress 

the oscillation of the shear layer and hence the mean lift decreases. 

The simulations for the BIA= l.0 cylinder were varied over the full range, OO<a<45°, of the angle of incidence. 

The lift coefficient was found to be negative for a<15° with a minimum occurring near a=5°. The drag was 

also minimum near a=5° and had a maximum at a=45°. The Strouhal number increased gradually with 

incidence angle from St=0.155 at a=O° to St=0.20 at a=45°. 

7.2.2 Effect of Reynolds number 

Vortex shedding was detected at Re=50 with the Strouhal frequency in close agreement with existing laboratory 

measurements. The agreement remained strong up to Re=500 at which point DVM predicted a dual-shedding 

mode in contrast to the accepted laboratory data which remains roughly constant at St=0.13 for Re>500. This 

may be explained by the appearance of three-dimensional instabilities which cannot be accounted for in a two­

dimensional simulation. The scale of these instabilities will also decrease as the Reynolds number increases and 

thus the cell size will not be large enough to model them all. 

One may have anticipated that other parameters estimated in the simulation would also become inaccurate as 

Re>500 since the vortex shedding process did not give a good representation of the laboratory observations. 

However the drag was found to give good agreement with the laboratory data up to Re=5000. This was a 

surprising result and suggests that although the vortex shedding frequency is not well simulated the strength and 

position of vortex shedding is predicted in accordance with the laboratory data. Since the drag could be predicted 

with some confidence for the BIA=l.O cylinder some further simulations were made to predict the drag 

coefficient for rectangles of other side ratios. Those cylinders tested did show different Reynolds number 

dependencies but no critical side ratio was found for Re<10
3

• 

7.3 Oscillatory flow simulations 
The addition of an in-line oscillatory upstream flow component was tested on six cylinders at a fixeJ Reynolds 

number, Re=200. A circular, a diamond and four rectangular cylinders, BIA=0.62, 1.0, 2.0 and 3.0, were chosen. 

The pulsations were varied over a range of forcing amplitUdes, xld~0.3, and frequencies, flf()~3.0. At each 

combination the mean forces and dominant frequencies of the lift oscillation were determined. Three different 

resonant modes were detected and several shedding patterns observed as described below. 



Chapter 7 Conclusions 195 

7.3.1 Resonant modes 

All the cylinders exhibited primary lock-in within which the shedding frequency is controlled by the upstream 

oscillations at 11/,,=2.0. Across this synchronisation range the mean forces, particularly the lift, increased. The 

most significant increases relative to their uniform flow values occurred for the geometries of longer afterbody, 

the BIA=2.0 and 3.0 cylinders. As the forcing amplitude increased the synchronisation range became larger and 

the increase in the force coefficients was more pronounced. 

For amplitudes in the range 0.2~/d:::;0.3 several cylinders also exhibited a secondary type of resonance. It was 

termed a quasi-symmetric mode since the near wake was characterised by symmetric vortex shedding and the 

symmetry broke down at some point downstream. Vortex shedding frequencies could not be determined from the 

force coefficients where this mode was excited. However the mode was characterised by a substantial reduction in 

mean forces and the bounds for quasi-symmetric synchronisation were defined in terms of the relative reduction 

to the lift coefficient from its uniform flow value. The mode initially occurred at 1110'2.2.0 but shifted to lower 

frequencies as the amplitude increased. 

Some evidence was shown for a third resonant mode in which 111s= 1.0. This was observed for the diamond and 

circular cylinders for forcing oscillations in the range 0.7:::;1110:::;0.8 but was not thoroughly investigated. 

7.3.2 Shedding patterns 

Several different shedding patterns were observed and these were noted across the synchronisation ranges of each 

cylinder. At low forcing amplitUdes type 2 S shedding was dominant for all cylinders. However some changes 

could be detected in the vortex alignment as the forcing frequency increased across the synchronisation range. At 

higher amplitudes new modes began to emerge. 

Type P+S shedding was observed for the circular cylinder. A pair of vortices and a single vortex are shed per 

cycle but a question which remains to be resolved is the asymmetry of this arrangement. This same shedding 

pattern has been observed under cross-flow oscillations but the asymmetry in that case can be explained by the 

direction in which the oscillation is started. 

Vortex pairing was clearly a common process for many of the flows examined. Type 2P shedding was found in 

which two pairs of oppositely signed vortices are shed into each side of the wake per cycle. This mode was 

observed for all but the BIA=l.O cylinder. However the kind of 2P shedding differed both between cylinders and 

for different forcing combinations of amplitude and frequency. The 2P shedding behind the circular and diamond 

cylinders contained vortex pairs in which both vortices were of similar size although the alignment varied. For 

the BIA=2.0 and 3.0 cylinders the vortices in each pair were of quite different sizes. The larger vortices were 

positioned near to the wake centre line and the small vortices were positioned further off centre. 
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In some cases, particularly for the BIA=0.62 cylinder, the shedding mode could not be determined althouah the e 

frequencies deduced from the lift curve implied that the vortex shedding was controlled by the forcing oscillation. 

Quasi-symmetric shedding was observed for the circular, diamond, BIA=2.0 and BIA=3.0 cylinders. This mode 

consists of vortices shed symmetrically from either side of the cylinder per cycle. The symmetry breaks down at 

some point downstream and an asymmetric vortex street emerges in the far-wake. In cases where the quasi­

symmetry was strong vortex pairs were shed from each side per cycle. This led to a striking wake pattern with a 

'Chinese dragon' appearance. 

7.3.3. Pseudo-phase shift 

The phase lag between vortex shedding and the forcing oscillation has been examined in previous experiments 

for cross-flow oscillations. These indicated a sudden jump in the phase difference as the forcing frequency 

increases across the synchronisation range. 

Since the vortex shedding frequency locks in at half the forcing frequency for in-line oscillations a phase 

difference cannot be defined in precise mathematical terms. A pseudo-phase difference (/h was therefore defined to 

relate a moment of the lift cycle to a moment of the forcing oscillation. f/h showed a gradual change across the 

synchronisation range and for all cylinders considered the change was greater at lower amplitudes. This was 

particularly apparent for the circular and square cylinders at x/d=0.05. f/h changed by close to 1800 across their 

respective sychronisation ranges at this amplitude. It is not entirely clear why this pseudo-phase difference does 

not change as much at higher amplitudes although it is possible that the different shedding modes observed at 

higher amplitudes in some way compensate for the smaller phase change. 

7.4 Further work 

In its present format the code could be used to provide further insight into the two-dimensional flows about 

rectangular cylinders. The Reynolds number dependence of other rectangular cylinders below Re=500 could be 

studied and the effects of cross flow oscillations could also be examined. In addition the effects of varying the 

angle of attack on the other rectangular cylinders could be examined although these have already been studied by 

Sohankar et at (1996). However the most valuable new information could be gained by undertaking more 

qualitative analysis of the simulations. Videos of the near-wake vortex shedding could be combined with time 

histories of the force coefficients and under oscillatory conditions the phase of the forcing oscillation could also 

be displayed. For uniform flow, analysis of these videos may reveal a better understanding of the peak in the lift 

curve which occurs close to BIA=0.3. With the added oscillatory flow component the relationship between the 

forces, the phase of the oscillatory flow and the mode of vortex shedding may become clearer. Ideally videos 

should be made under pulsating flow conditions which span the asymmetric resonance range of several cylinders. 

In this way it is hoped that a greater understanding of the pseudo-phase change phenomenon may be obtained. 
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Minor adjustments to the code could include the simulation of flows about other geometries. A few projects 

have already been undertaken to examine the flows about triangular and T-shaped obstacles. These studies simply 

involved a change to the conformal transformation although since the bodies were polygons they could still use 

the Schwarz-Christoffel transformations. Further changes to the geometry of the flow could include the addition 

of external boundaries, although the conformal transformation would lead to very distorted grids with subsequent 

computational inaccuracies. 

More challenging code modifications could involve the implementation of a turbulence model or the adaptation 

of the code to a fully three-dimensional simulation. The former could be applied directly to the code in its 

present format and the differences between the simulation and laboratory experiments may provide some useful 

information on the appearance of 3-D instabilities. 

In summary these uniform flow measurements have highlighted the ability of the DVM code to simulate two­

dimensional low Reynolds number flows about bluff cylinders at least as well as contemporary DNS 

calculations such as those by Sohankar et at (1996) and Minewitsch et at (1994). It is hoped that the 

recommendations for making a series of videos will be undertaken as the implementation should be 

straightforward and the results informative. On a more general note solving three-dimensional turbulent flows 

about bluff obstacles must represent the ultimate goal for bluff body aerodynamicists. Since these flows are 

characterised by wakes in which vortical structures are dominant the extension of vortex methods to three­

dimensional turbulent flow simulations should be encouraged. 
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APPENDIX A 

Conformal Transformation of Rectangle to Strip 

A conformal transformation is employed which transfers our physical (x,y) reference frame into a suitably 

defined computational (~, 71) plane, periodic in the ~-direction, in which a rectangular grid can be used and the 

equations are more easily discretised. As the ~-axis from ° to 21C now represents the body surface, boundary 

conditions can also be more easily applied than in the physical plane. It is desirable to have a non-uniform mesh 

in the 71-direction with more grid points close to the body surface such that the boundary layer region is more 

satisfactorily resolved. An FFT algorithm is used to solve Poisson's equation and this necessitates that the mesh 

be uniformly spaced and periodic in one direction. Thus the grid spacing is chosen to be uniform in the ~­

direction. 

The Schwarz-Christoffel formulae can be found in many standard textbooks on conformal mapping and complex 

analysis, e.g. Nehari (1952) and Phillips (1957). They give mappings between the regions exterior and interior 

of polygons to the regions exterior and interior of circles. Since we can also map from circles onto half-planes or 

strips a whole series of transformations exist which are useful in the fields of fluid dynamics and electrostatics. 

The following relationship, taken from Bieberbach (1953), maps the region exterior to the unit circle, Itl~l, 

onto the exterior of a polygon with exterior angles ak1C: 

(AI) 

where the constant C is a complex correction factors which can adjust the polygon size and orientation. The 
CI 

constants ak and ak must satisfy the following conditions: 

L,ak = 2, (A2a) 

L,akak =0, (A2b) 

lakl = 1. 
(A2c) 

The last of these implies that the a
k 

lie on the unit circle; these are the image points of the polygon vertices. 
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For a rectangle k=l, . .4 and the ak=1I2. Using symmetry, the vertex image points are chosen to lie at 

a j =j3+iy, a2 =j3-iy, a3 =-j3+iy, a4 =-j3-iy. (A3) 

Since the points ak lie on the unit circle, 

(A4) 

and so the expression (AI) simplifies to 

(AS) 

The second stage is to transform from the region exterior to the unit circle onto a strip in the computational 

(;,1]) plane. This is accomplished by the mapping 

t = e -i(il-ilo), (A6) 

such that 

dt . -I(il-il) -=-le 0 (A7) 
d£2 

Substituting (A6) and (A 7) into (AS) leads to an expression (A8) for the transformation from the computational 

plane £2(;, T]) to the physical plane z(x,y): 

(A8) 

(A8) takes a strip in the computational plane onto the exterior of a general rectangle in the physical plane. 

However the ratio j3/y does not give the side ratio BfA directly although when j3=y the transformation to the 

exterior of a square is obtained, 

dz = C
el 

-J2 ~cos(2( £2 - £20 )) . 

d£2 
(A9) 
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APPENDIXB 

Solution of Poisson's Equation 

In terms of circulation Poisson's equation is expressed, 

(
eFI!' + a2tj1 J = -2T;,j 
aP an 2 ".1;::( ) . .., " .., 17 j+1 -17 j-l {,j 

(BI) 

A finite difference representation of (B 1) would yield a set of coupled linear equations. To obtain a set of 

uncoupled equations we can take the Discrete Fourier Transfonn of both sides first. The Discrete Fourier 

Transforms of functions the tjI, its deri vati ves and T are defined by 

n=NX -I ( _ 2nikn ) 
F(tjI) == IJIk,j = ~ tjI n,j exp NX ' (B2a) 

n=NX-l (-27rikn) 
F(T) == Ak,j = L Tn,j exp NX ' 

n=O 

(B2b) 

(B2b) 

(B2c) 

where s is given by: 

.117j s---
- .117 j -l ' 

(B2d) 

(B2b) is a useful property which follows since the mesh is uniformly spaced in the ; direction, see Arfken 

(I985) for a detailed explanation. (B2c) is the finite difference representation for an expanding mesh, derived in 

Appendix E. 
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Taking the Fourier Transform of (B 1) yields the following expression, 

(B3) represents a set of linear equations for each value of k and can be written as 

The coefficients for this set of equations are given by 

2s 
akj =--, 

s+l 

bkj = -e L1TJ~ - 2s, 

2S2 
ckj = --, 

s+l 
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(B3) 

(B4a) 

(B4b) 

(B4c) 

(B4d) 

(B4e) 

At each value of k the set of tridiagonal equations (B4) can be solved using Gaussian elimination techniques to 

yield values for Pk,j' The stream function values, 1JIi,j' can then be deduced by taking inverse Fourier Transforms, 

-I n=NX-I (2rcikn) 
F (P) == I{Ik . = '" P . exp --

,j £.. n,j NX 
n=O 

(BS) 

The Fourier Transforms of (B2a) and (BS) are speeded up by using FFT algorithms and these have been set up in 

the code in such a way that the number of mesh points in the S direction must be a power of two. 
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APPENDIXC 

Irrotational Flow Solution 

The freestream potential solution for irrotational, in viscid flow about an obstacle is required as this represents 

the instantaneous solution to the problem when the flow is started impulsively from rest, or equivalently the 

solution at the first time step. In subsequent time steps the stream function is found as a summation of the 

potential flow solution and the vorticity flowfield. 

The uni-directional flow In an unbounded, inviscid and irrotational fluid has a simple complex potential 

solution, 

Q(w) = Uw, 

where U is fluid velocity and w the complex position. 

Transformation to the circular z-plane is achieved by means of the mapping function 

a 
w-z+-- Z2 

in which a is the radius of the circle and thus the complex potential becomes 

The mapping function 

transforms from the z-plane to the, plane and complex potential becomes 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 
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Now since S=~+iTJ and So=~o we can derive the result, 

D(S) = UA[ cos( ~ - ~o)2 cosh TJ - i sine ~ - ~o)2 sinh TJ] 

and hence since !2=cf>+il/f, 

¢ = 2UAcos( ~ - ~o )cosh TJ 

l/f = -2UA sine ~ - ~o) sinh TJ 

2()3 

(C6) 

(C7a) 

(C7b) 

Considering equation (A9) the constant of the transformation is C CI' since -fi is an explicit part of the 

conformal transformation. Hence the general result for the stream function in potential flow about a square 

cylinder is given, 

(C8) 
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Finite Difference Diffusion Scheme 

Viscous diffusion has been incorporated into the simulation by splitting the vorticity transport equation (4.1) 

into convection and diffusion parts. (Dl) represents the rate of change of vorticity due to viscous diffusion, 

[aw] 
dt diffusion 

V n2 -
=-v W J . (Dl) 

For the DVM code presented here (Dl) is solved on a finite difference mesh, expanding in the 1] direction but 

constant in the ~ direction. An explicit difference representation of this equation is given by 

(D2) 

but in the code the diffusion equation is solved explicitly in the ~ direction and uses a parameter, ex, to control 

the degree of implicitness in the 1] direction. 

(D3) 

A derivation of the finite difference operators, w;; and wT)T) is presented in Appendix E. The code uses 

circulation to define vortex strengths and so (D3) must be altered accordingly. Vorticity and circulation are related 

as, 

_ 2T(ij) 

w(i.j) = J .. L1J::(L11]. + L11]. ) 
(I.j) ~ J J-l 

(D4) 
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Substituting (D4) into the expressions for w;; and wT]T] and with some manipulation of the expression (02) 

leads to a finite difference diffusion equation in terms of circulation, 

(OSa) 

where, 

L1r(t) - r(I+dI) _ r(l) 
(i,j) - (i,j) (i,j) (OSb) 

The operators of (DS) are expressed:-

2 2 {rtl' 2r
t 

rll '} e r', =--~ __ ,_,j +~ 
(;) (r,j) L1;2 J., J. ' J.,' 

I-l,j l,j I+l.j 

(06) 

(07) 

(08) 

The system (OS) represents a set of tridiagonal equations which are solved by Gaussian elimination to yield 

values of L1r(i,j)' the change in circulation at each mesh point. These changes are then re-interpolated onto the 

existing point vortices in a reverse VIC scheme or a new vortex is created at each mesh point with no 

neighbouring vortices. 
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Finite Difference Approximations 

for an Expanding Mesh 
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In order to solve the diffusion equation given by (Dl) it is first necessary to form finite difference forms of the 

second derivatives for meshes with unequal grid spacing. The following work closely follows that given in 

Minkowycz et al (1988) and also Meneghini (1994). Notation is simplified to give a more compact form of 

equations: 

.11] . 
s=--}-, 

.11] j-l 

Jw 
w =-

1) J ' 1] .. 
t,} 

(El) 

The following expressions can be obtained by taking Taylor series expansions of the vorticity at grid points 

UJ+l) and (iJ-l), 

(E2) 

(E3) 

Multiplying (E2) by lIs(s+ 1) and (E3) by -s/(s+ 1) and adding the two equations yields:-

1 2 
Jw = W;,j+l + (s- -1)W;,j - s W;,j_l + O( .11])2 (E'+) 

J1] . . s( s + 1).11] j-l 
t,) 
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Similarly mUltiplying (E2) by 1/s(1 +s) and (E3) by 1/(1 +s) and then adding yields 

2s [Wij'+l -(1+s)wij, +SWij'_I] 2 - . " + O( .1 ) 
dTJ2 " - (s + 1) .117 2 17 , t.j J 

(E5) 

or equivalently using the definition in (EI), 

(E6) 

A similar expression can be derived for w;~ noting that the mesh spacing is invariant in the ~ direction, i.e. d ~ 

is constant, 

W, l' -2w" +W l' _ t+ .j t.j t- .j + O( .1): l 
W;~ - L1~2 ~ . (E7) 
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APPENDIXF 

Surface Pressure Calculation Scheme 

Voke and Collins (1984) have expressed the momentum equations for an incompressible, constant viscosity 

now with no body force in a generalised coordinate system as 

(Fl) 

where for convenience the expression for total pressure, P, has been used to simplify (Fl). 

(F2) 

with the covariant vorticity tensor defined as 

(F3) 

However in the Hybrid DVM presented here vorticity, ill, has been defined differently, 

(F4) 

Certain relationships between the metric tensor, g ij' Jacobian, I, and the vorticity tensor, wij' must be stated 

before a form of (Fl) can be derived which is appropriate for the calculation of surface pressures. 

12 21 0 I (11g22 )-~ r.ll! - r.l 22 - roll = rol
2 = 0 W

l2 = _W
21 

g = g =, = g ,U.I - U.I - U.ll U.l2 ' 
(F5) 

(F6) 
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The two definitions of vorticity are related by the expression 

Jill 
WI2 =-

2 
(FS) 

The expressions (F4)-(F8) allow the derivation of a form of the momentum equations (FI) which uses vorticity, 

ill, as defined in the hybrid DVM and the contravariant form of velocity, ui
• 

Putting i= I and i=2 yields the following pair of equations, 

:! I II:!p 2211 2 ]-I:! (J 1122 ) 
0rU = -g 01 + U g W 12 - ~ 02 g g WI2 

Making further use of the earlier expressions and noting that 

we obtain: 

a~ 1 ap . _ v aill 
-=---+T]w---
at J a~ J dT] 

ary = _~ ap _ ~ill + ~ aill 
at J aT] J a~ 

These expressions can then be given in the form given by equations (4.25). 

(F9) 

(FlOa) 

(FlOb) 

(FII) 

(FI2a) 

(F12b) 
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APPENDIXG 

Input Files/or Vortex Code 

The three input files used in the DVM code are listed below together with typical input values. A description of 

each variable is listed on the following page. The appendix concludes with two Tables. In Table G.l the 

corresponding values of f and BIA are given. In Table G.2 the input parameters used for the flows simulated 

this study are given. 

sqdatal sqdatal 

GAMMASQ MY NX 0.3465 128 128 

NRUN DT Re 75000 0.0002 1000 

XeH FeH STRHL 0.2 2.4 0.154 

ALPHA XeV FeV 0.0 0.0 0.0 

sqdata2 sqdata2 

SFR ITER EXIN EXOUT UPJACK 0.0 1 0.04 125 0.01 

RNU TOR ALAM BETA CUTOFF 0.01 0.0 1.0 1.0 0.0002 

sqdata3 sqdata3 

JFORCE JUGGLE JVORT JLIMIT 1 50 1 125 

JSTART JFINISH JOFTEN JCONT 75000 75000 1 0 



ALAM 

ALPHA 

BETA 

CUTOFF 

DT 

EXIN 

EXOUT 

FeH 

FeV 

GAMMASQ 

ITER 

JCONT 

JFINISH 

JFORCE 

JLIMIT 

JOFTEN 

JSTART 

JUGGLE 

JVORT 

MY 

NRUN 

NX 

Re 

RNU 

SFR 

STRHL 

TOR 

UPJACK 

XeH 

XeV 
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specifies type of vorticity boundary condition (Equation 4.19 used in all calculations for this 

study) 

angle of incidence of obstacle (a) 

degree of implicitness/explicitness in diffusion solver 

vortex cutoff strength (~nin) 

time step (Lit) 

distance of first mesh out from body surface (Min) 

distance of outer mesh from body surface (Mour) 

in-line forcing frequency if/fo) 

cross-flow forcing frequency (not used in this study) 

controls side ratio (y2 see Table G.1) 

number of iterations per time step in diffusion solver (not used in this study) 

output all data required for run continuation at end of simulation (1= YES, O=NO) 

last vortex data output at JFINISH timestep (see also JOFTEN and JSTART) 

print force coefficents (1=yes, O=no) 

output data on all vortices for which 11k < 1]jlimir 

vortex data output given every JOFTEN timesteps (see also JSTART and JFINISH) 

first vortex data output at JSTART timestep (see also JFINISH and JOFTEN) 

output force coefficient data every JUGGLE timesteps 

output of vortex data (1=YES, O=NO) 

number of grid points in 1] direction (MY) 

number of timesteps for simulation (NT) 

number of grid points in S direction (NX) 

Reynolds number of simulation (Re) 

kinematic viscosity of fluid (v) 

controls velocity evaluation at outer boundary 

Strouhal number of flow under uniform flow conditions (Sto) 

start time of run (only used if continuation of previous run) 

lower limit on Jacobian value (Jlim) 

amplitude of in-line pulsations (x/d) 

amplitude of cross flow pulsations (not used in this study) 
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BIA y2 

4.000 0.2184 
3.000 0.2673 

2.500 0.3016 

2.000 0.3465 

1. 700 0.3809 

1.620 0.3914 

1.500 0.4084 

1.000 0.5000 

0.667 0.5916 

0.617 0.6086 

0.588 0.6191 

0.500 0.6535 

0.400 0.6984 

0.333 0.7327 

0.250 0.7816 

0.200 0.8151 

0.100 0.8945 

Table G.1 Variation of y2with side ratio, some specific cases. 

BIA L1t NT Mill Moul am ill fUm U o.L1t.NTIA 

0.1 0.0040 150,000 0.005 125 0.0010 0.01 106.25 

0.2 0.0050 120,000 0.010 125 0.0010 0.01 135.30 

0.5 0.0050 65,000 0.020 130 0.0010 0.01 124.40 

0.62 0.0050 55,000 0.025 130 0.0002 0.01 123.80 

1.0* 0.0050 36,000 0.025 130 0.0002 0.01 125.40 

2.0 0.0010 80,000 0.025 130 0.0001 0.01 122.41 

3.0 0.0005 90,000 0.040 130 0.0001 0.01 118.62 

Table G.2 Input parameters used in Hybrid DVM 

* BI A =1.0 cylinders at an angle of attack used the same parameters 
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APPENDIXH 

Stream Function Outer Boundary Condition 

The stream function outer boundary condition can be calculated by adding the potential flow solution to a Biot­

Savart summation that includes a contribution from each individual vortex particle. All the results presented in 

Chapters 5 and 6 have neglected this Biot-Savart term. By neglecting the Biot-Savart contribution one is 

imposing a symmetry condition at the outer boundary. It has been suggested by Stansby (1998, personal 

communication) that the effect of imposing symmetry may be to fix the forward stagnation point. This could 

consequently change the nature of the vortex shedding leading to higher induced forces and/or a change in the 

shedding frequency. It is interesting to note that in Figure 2.11 the upstream stagnation point is clearly located 

away from the centre line. However there are two fundamental differences between the results of Ohya (1994) and 

the DVM simulations. Firstly the Reynolds number is much higher in the laboratory-based study but more 

importantly since Ohya's study is laboratory based the alignment of the rectangle cannot be exactly perpendicular 

to the flow. A slight misalignment could encourage the stagnation point to favour one side as appears to be the 

case in Figure 2.11. 

The purpose of this Appendix is to investigate the effect of neglecting the Biot-Savart contribution and the 

implications with respect to the results presented in Chapters 5 and 6. A derivation of the theory used to obtain 

the stream function boundary condition is given first. This is followed by a direct comparison of the mean 

measured parameters for a range of simulations. Finally the implications of any differences are discussed. 

The boundary condition for the stream function is applied in the computational ('=~+i17) plane. This domain is 

periodic in the ~-direction with a period of 2n. The periodicity must be considered since it implies infinite rows 

of vortices rather than a single vortex. A distribution of NV vortices given by strength Tk positioned at ~k' 17k 

thus becomes a distribution of NV infinite vortex rows. 

Rutherford (1966, p84) has derived an expression for the stream function for an infinite row of vortices in which 

one vortex is placed at the origin. If the period in the ~-direction is 2n this can be written as 

t{f = .I...- 1og ].. {cosh 17 - cos ~} 
4n 2 

(HI) 



Stream FUllction BOllndar}' COllill/I()11 21.t 

If each vortex in the row is displaced by ~k' T]k the expression becomes: 

(H2) 

The contribution due to an infinite row of image vortices must also be considered. A major advantage of making 

this calculation in the computational plane is that the image vortices are simply located. For vortices of strength 

-rk displaced by ~k' -T]k expression (HI) becomes: 

(H3) 

Combining expressions (H2) and (H3) and summing for all the NV vortices yields 

(H4) 

In the code calculations are made in terms of mesh vorticity values, as this is less computationally expensive. 

Results from the uniform flow simulations are given in Tables H.1 (a) and (b). The results indicate a maximum 

difference in the Strouhal number of around 3% and in the mean drag of approximately 5%. A greater difference 

in the rms lift of around 20% is found. However these differences are only significant at the lower values of BI A. 

Under oscillatory flow it was thus decided to perform additional runs on the lower BIA cases. Results from these 

are shown in Tables H.1 (c) and (d). The differences are less significant under pulsating flow. 

Videos of the flow with and without the Biot-Savart contribution may be viewed at the following World Wide 

Web address: http://vortex.mech.surrey.ac.uklFluidsGroup/Peopleisteggel 

The videos do not give any indication for the movement of the upstream stagnation position due to the change 

in the boundary condition. However it is possible that any change is too small to detect by visual interpretation. 

Some overall conclusions can now be stated. The inclusion of the Biot-Savart contribution does have some 

effect on the mean measured parameters. However this effect is only significant when considering CU,mu) and for 

rectangles with side ratio BIA<l.O. Comparison can be made with Figures 5.2 and 5.4 which indicates that the 

calculated values still fall well within the range of numerical and experimental scatter. One should also 

appreciate that C
L

(II11S) is a difficult quantity to determine with any confidence as has been shown in this study and 

in the DNS calculations of Sohankar et at (1996). Under pulsating flow conditions the differences appear to be 

less significant. On the whole one may therefore state that the general conclusions reached in Chapters 5 and 6 
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have not been affected by neglecting the Biot-Savart contribution. However if further simulations are to be made 

for rectangles with BIA<l.O it would certainly be advisable to include this term. 

SI 

CD 

CL(rms) 

BIA=0.5 BIA=0.62 BIA=1.0 

without with BS without with BS without 

0.183 0.188 0.174 0.178 0.152 
2.02 2.12 1. 79 1.88 1.46 

0.66 0.78 0.58 0.71 0.40 

(a) Uniform flow, BIA=0.5, 0.62 and 1.0; Re=200. 

BIA=2.0 BIA=3.0 

without with BS without with BS 

Sts 0.166 0.166 0.161 0.161 

CD 1.16 1.16 1.05 1.07 

CL(rms) 0.20 0.22 0.21 0.25 

(b) Uniform flow, BIA=2.0, 3.0; Re=200. 

///0=1.5 ///0=2.3 

without with BS without with BS 

SIs 0.154 0.151 0.177 0.173 

CD 1.68 1.63 1.81 1.86 

CL(rms) 0.60 0.59 0.68 0.75 

(c) Oscillatory flow, x/d=0.30, BIA=l.O, Re=200. 

///0=1.4 ///0=1.6 

without with BS without with BS 

SIs 0.121 0.125 0.140 0.143 

CD 2.54 2.59 2.57 2.69 

CL(rms) 1.07 1.15 0.93 1.03 

(d) Oscillatory flow, x/d=0.30, BIA=0.62, Re=200. 

Table H.I. Comparison of mean measured values for simulations with 

and without the Biot-Savart boundary condition. 

with BS 

0.149 
1.46 

0.44 



216 

References 

Acheson, DJ. (1990) Elementary Fluid Dynamics, Clarendon Press, Oxford. 

Al-Asmi, K. (1992) Vortex shedding in oscillatory flow, PhD Thesis, University of Surrey. 

Al-Asmi, K., and Castro, I.P. (1992) Vortex shedding in oscillatory flow: geometrical effects, Joumal of Flow 

Measurement and Instrumentation, 3(3), 187-201. 

Arfken, O. (1985) Mathematical Methods for Physicists, Academic Press, Third Edition. 

Aris, R. (1962) Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice Hall, London. 

Barbi, c., Favier, D.P., and Maresca, C.A. (1986) Vortex shedding and lock-on of a circular cylinder In 

oscillatory flow, Journal of Fluid Mechanics, 170, 527-544. 

Bearman, P.W. (1984) Vortex shedding from oscillating bluff bodies, Annual Review of Fluid Mechanics, 16, 

195-222. 

Bearman, P.W., and Trueman, D.M. (1972) An investigation of the flow around rectangular cylinders, 

Aeronautical Quarterly, 229-237. 

Bieberbach (1953) Conformal Mapping, Chelsea Publishing Company, New York. 

Borthwick, A.O.L., and Herbert, D.M. (1990) Resonant and non-resonant behaviour of a flexibly mounted 

cylinder in waves, Journal of Fluids and Structures, 4, 495-518. 

Chang, C.C., and Chern, R.L. (1991) Numerical study of flow around an impulsively started cylinder by a 

deterministic vortex method, Journal of Fluid Mechanics 233, 243-263. 

Chorin, A.J. (1973) Numerical study of slightly viscous flow, Journal of Fluid Mechanics 57(4),785-796. 

Christiansen, J.P. (1973) Numerical simulation of hydromechanics by the method of point vortices, Journal of 

Computational Physics, 13, 363-379. 

Chua, K., and Quackenbush, T.R. (1993) Fast three-dimensional vortex method for unsteady wake calculations, 

AIAA Journal, 31(10), 1957-1958. 

Clarke, N.R., and Tutty, O.R. (1994) Construction and validation of a discrete vortex method for the two-

dimensional Navier-Stokes equations, submitted to Computers and Fluids. 

Clements, R.R. (1973) An inviscid model of two-dimensional vortex shedding, Joumal of Fluid Mechanics 

57(2), 321-336. 

Copeland, O.S., and Cheng B.H. (1995) Hysteretic vortex shedding from an oscillating cylinder, ill Flow 

Induced Vibration, ed. Bearman, Balkema, Rotterdam, 221-230. 

Couet, B., and Buneman, O. (1981) Simulation of three-dimensional incompressible flows with a vortex-in-cell 

method, Journal of Computational Physics, 39, 305-328. 

Davis, R.W., and Moore, E.F. (1982) A numerical study of vortex shedding from rectangles, Journal of Fluid 

Mechanics. 116, 475-506. 

Davis, R.W., Moore, E.F., and Purtell, L.P., (1983) A numerical-experimental study of confined flow around 

rectangular cylinders, Physics of Fluids 27, 46-59. 



References 217 

Dolan, P.S., Graham, J.M.R., and Young, J.A. (1990) Computation of unsteady two-dimensional separated 

flow using hybrid mesh techniques, Journal of the American Society of Mechanical Engineers, Fluids 

Engineering Division, 92, 33-40. 

Doorly, D.l. and Liu, C.H. (1994) Application of a 3-D vortex particle in cell computational method to free and 

wall bounded shear flows, Proc. Symposium on Boundary Layer and Free Shear Flows, ASME (FED), 

184, 163-172. 

Franke, R., Rodi, W., and Schonung, B. (1990) Numerical calculation of laminar vortex shedding flows past 

cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 35, 237-257. 

Gartshore, I.S. (1984) Some effects of upstream turbulence on the unsteady lift forces imposed on prismatic 

two-dimensional bodies, Transactions of the ASME, Journal of Fluids Engineering, 106,418-424. 

Gerrard, J.H. (1967) Numerical computation of the magnitude and frequency of the lift on a circular cylinder. 

Phil. Trans. Roy. Soc. 261(118), 137-162. 

Goldstein, S. (1965) Modern Developments in Fluid Dynamics, Volumes I and II, Clarendon Press, Oxford. 

Graham, J.M.R (1988) Computation of viscous separated flow using a particle method. Numerical methods for 

fluid dynamics III. Clarendon Press, Oxford, 311-317. 

Graham, J.M.R (1994) Private Communication. 

Graham, J.M.R. and Arkell, RH. (1994) Effects of surface waves on vortex shedding from cylinders, Internal 

Report, Department of Aeronautics, Imperial College of Science and Technology, UK. 

Griffin, O.M. and Hall, M.S. (1995) Vortex shedding lock-on in a circular cylinder wake, in Flow Induced 

Vibration, ed. Bearman, Balkema, Rotterdam, 3-14. 

Griffin, O.M. and Ramberg (1976) Vortex shedding from a cylinder vibrating in line with an incident uniform 

flow, Journal of Fluid Mechanics. 75(2), 257-271. 

Ham, N.D. (1968) Aerodynamic loading on a two-dimensional airfoil during dynamic stall. AIAA Journal 

6(10), 1927-1934. 

Henderson, R.W., and Barkley, D. (1996) Secondary Instability in the wake of a circular cylinder, Physics of 

Fluids, 8(6), 1683-1685. 

Kiya, M. (1992) Numerical simulation of three-dimensional vortex motion, Proceedings of The Fifth Asian 

Congress on Fluid Mechanics, Aug. 1992, Taejon, Korea, 431-438. 

Knisely, C.W. (1990) Strouhal numbers of rectangular cylinders at incidence: A review and new data, Joul7lal of 

Fluids and Structures, 4, 371-393. 

Kuethe, A.M., and Chow, C.Y. (1986) Foundations of Aerodynamics, John Wiley, Chichester. 

Laneville, A., and Yong, L.Z. (1983) Mean flow patterns around two-dimensional rectangular cylinders and their 

interpretation, Journal of Wind Engineering and Industrial Aerodynamics, 14,387-398. 

Launder, B.E. and Kato, M. (1993) Modelling flow-induced oscillations in turbulent flow around a square 

cylinder, Journal of the American Society of Mechanical Engineers, Fluids Engineering Division, 157, 

189-199. 

Laurence, D. and Mattei, J-D. (1993) Current state of computational bluff body aerodynamics. Journal of Wind 

Engineering and Industrial Aerodynamics, 49, 23-44. 



References 218 

Leonard, A. (1980) (Review of) Vortex methods for flow simulation, Journal of Computational Ph)'sics. 37, 

289-335. 

Leonard, A. (1985) Computing three-dimensional incompressible flows with vortex elements, Annual Re\'iell' 

of Fluid Mechanics. 17,523-529. 

Lewis, R I. (1995) Vortex element methods for fluid dynamic analysis of engineering systems, Cambridge 

University Press. 

Longuet-Higgins, M.S. (1981) Oscillating flow over steep sand ripples, Journal of Fluid Mechanics, 107, 

1-35. 

Meneghini, lR (1994) Discrete Vortex Method incorporating viscous diffusion, PhD thesis, Imperial College. 

Meneghini, J.R, and Bearman, P.W. (1993) Numerical simulation of high amplitude oscillatory flow about a 

circular cylinder using a discrete vortex method, AIAA Shear Flow Conference, Jul.v 6-9, 1993, Orlando, 

AIAA paper 93-3288. 

Minewitsch, S., Franke, R, and Rodi, W. (1994) Numerical investigation of laminar vortex-shedding flow past 

a square cylinder oscillating in line with the mean flow, Journal of Fluids and Structures, 8, 787-802. 

Minkowycz, C.J, Sparrow, E.M., Schneider, G.E., and Pletcher, RH. (1988) Handbook of Numerical Heat 

Transfer, John Wiley and Sons, Chichester. 

Morton, B.R, (1984) The generation and decay of vorticity, Geophysics, Astrophysics alld Fluid Dynamics, 

28, 277-308. 

Nagano, S., Naito, M., and Takata, H. (1982) A numerical analysis of two-dimensional flow past a rectangular 

prism by a discrete vortex model, Computers and Fluids, 10(4),243-259. 

Nakamura, Y. (1993) Bluff body aerodynamics and turbulence, Journal of Wind Engineering alld Industrial 

Aerodynamics, 49,65-78. 

Nakamura, Y., and Ohya, Y. (1984) The effects of turbulence on the mean flow past two-dimensional 

rectangular cylinders, Journal of Fluid Mechanics, 149, 255-273. 

Nakamura, Y., Ohya, Y., and Tsuruta, H. (1991) Experiments on vortex shedding from flat plates with square 

leading and trailing edges, Journal of Fluid Mechanics, 222, 437-447. 

Nakayama, R, Nakamura, Y., Ohya, Y., and Ozono, S. (1993) A numerical study on the flow around flat plates 

at low Reynolds numbers, Journal of Wind Engineering and Industrial Aerodynamics, 

Nehari, Z. (1952) Conformal Mapping, McGraw-Hill, New York. 

Norberg, C. (1986) Interaction between freestream turbulence and vortex shedding for a single tube m cross-

flow, Journal of Wind Engineering and Industrial Aerodynamics, 23, 501-514. 

Norberg, C. (1993) Flow around rectangular cylinders: Pressure forces and wake frequencies, Journal of Wind 

Engineering and Industrial Aerodynamics, 49, 187-196. 

Norberg, C. (1996) Private Communication. 

Oertel, H. (1990) Wakes behind blunt bodies, Anllual Review of Fluid Mechanics, 22, 539-564. 

O . Y d Ak tso T (1991) Viscous flow simulation using the discrete vortex model -The diffusion gamI, ., an amu,. 

velocity method, Computers and Fluids, 19(3/4),433-441. 



References 219 

Ohya, Y. (1994) A note on the discontinuous change in wake pattern for a rectangular cylinder, fouma/ of 

Fluids and Structures, 8, 325-330. 

Ohya, Y., Nakamura, Y., Ozono, S., Tsuruta, H., and Nakayama, R. (1992) A numerical study of vortex 

shedding from flat plates with square leading and trailing edges, fournal of Fluid Mechanics, 236, -1--1-5-

460. 

Okajima, A. (1982) Strouhal numbers of rectangular cylinders, fournal of Fluid Mechanics, 123, 379-398. 

Okajima, A. (1990) Numerical simulation of flow around rectangular cylinders, foumal of Wind Engineering 

and Industrial Aerodynamics, 33, 171-180. 

Okajima, A. (1995) Numerical analysis of the flow around an oscillating cylinder, in Flow Induced Vibration, 

ed. Bearman, Balkema, Rotterdam, 159-166. 

Okajima, A., and Kitajima, K. (1993) Numerical study on aeroelastic instability of cylinders with a circular and 

rectangular cross-section, fournal of Wind Engineering and Industrial Aerodynamics, 46-47,541-550. 

Okajima, A., Kitajima, K. and Ueno, H. (1993) Numerical study on wake patterns and aerodynamic forces of an 

oscillating cylinder with a circular and rectangular cross-section, foumal of Wind Engineering and 

Industrial Aerodynamics, 50, 39-48. 

Ongoren, A., and Rockwell, D. (1988a) Flow structure from an oscillating cylinder. Part 1. Mechanisms of 

phase shift and recovery in the near wake, fournal of Fluid Mechanics 191, 197-223. 

Ongoren, A., and Rockwell, D. (1988b) Flow structure from an oscillating cylinder. Part 2. Mode competition 

in the near wake, fournal of Fluid Mechanics 191, 225-245. 

Phillips, E.O. (1957) Functions of a complex variable, Oliver and Boyd, Edinburgh and London. 

Roache, P. (1976) Computational Fluid Dynamics, Hermosa Publishers, New Mexico. 

Roshko, A. (1993) Perspectives on bluff body aerodynamics, foumal of Wind Engineering alld Industrial 

Aerodynamics, 49,79-100. 

Rutherford, D.E. (1966) Fluid Dynamics, Oliver and Boyd, Edinburgh and London. 

Sarpkaya, T. (1975) An inviscid model of two-dimensional vortex shedding for transient and asymptotically 

steady separated flow over an inclined plate, fournal of Fluid Mechanics 68(1), 109-128. 

Sarpkaya, T. (1979a) Vortex-induced oscillations, a selective review, Transactions of the ASME, foumal of 

Applied Mechanics, 46,241-257. 

Sarpkaya, T. (1979b) Inviscid model of two-dimensional vortex shedding by a circular cylinder, AIAA foumal, 

17(11), 1193-1199. 

Sarpkaya, T. (1988) Computational methods with vortices:- The 1988 Freeman scholar lecture, foumal of 

Fluids Engineering, 111, 5-52. 

Sarpkaya, T., (1994), "Vortex Element Methods for Flow Simulation," Advances in Applied Mechanics, 31, 

113-247. 

Sarpkaya, T. and Schoaff (1979) Inviscid model of two-dimensional vortex shedding by a circular cylinder. 

AIAA fournal, 17(11),1193-1200. 

S 1 Y M d F It ' 0 M (1994) Numerical studies of separated flow from bodies with sharp comers 
co an, . ., an a msen, . . 

by the vortex in cell method, fournal of Fluids alld Structures, 8, 201-230. 



References 220 

Smith, P.A., and Stansby P.K. (1988) Impulsively started flow around a circular cylinder by the vortex method, 

Journal of Fluid Mechanics, 194,45-77. 

Smith, P.A., and Stansby P.K. (1991) Viscous oscillatory flows around cylindrical bodies at low Kuelegan­

Carpenter numbers using the vortex method, Journal of Fluids and Structures, 5, 339-361. 

Sohankar, A., Norberg, C., and Davidson, L. (1996) Numerical simulation of unsteady low Reynolds number 

flow about rectangular cylinders at incidence, Presented at the Third Intemational Colloquium on Bluff 

Body Aerodynamics and Applications, July 1996, Virginia. 

Stansby, P.K. and Slaouti, A. (1993) Simulation of vortex shedding including blockage by the random-vortex 

and other methods, International Joumalfor Numerical Methods in Fluids, 17,1003-1013. 

Steggel, N. and Rockliff, N.J. (1997) Simulation of the effects of body shape on lock-in characteristics in 

pulsating flow by the discrete vortex method, Joumal of Wind Engineering and Industrial Aerodynamics, 

69-71, 317-329. 

Summers, D.M., Hanson, T., and Wilson, e.B. (1985) A random vortex simulation of wind-flow over a 

building, Internal Report, Dept. of Architecture, University of Edinburgh, Scotland. 

Utsunomiya, H., Nagao, F., Tojo, K., and Asano, K. (1995) Yaw angle effect on the vortex induced oscillation 

of a rectangular cylinder, in Flow Induced Vibration, ed. Bearman, Balkema, Rotterdam, 55-60. 

Van Dyke, M. (1982) An Album of Fluid Motion, The Parabolic Press, Stanford. 

Voke, P.R., and Collins M.W. (1984) Forms of the generalised Navier-Stokes equations, Joumal of 

Engineering Mathematics, 18, 219-233. 

Williamson, e.H.K. (1996a) Vortex dynamics in the cylinder wake, Annual Review of Fluid Mechanics, 28, 

477-539. 

Williamson, C.H.K. (1996b) Mode A secondary instability in wake transition, Physics of Fluids, 8(6), 1680-

1682. 

Williamson, C.H.K., and Roshko, A. (1988) Vortex formation in the wake of an oscillating cylinder, Journal of 

Fluids and Structures, 2, 355-381. 

Wolochuk, M.e., Plesniak, M.W., and Braun, J.E. (1994) The effects of turbulence and unsteadiness on the 

performance of vortex shedding flow meters, Joumal of the American Society of Mechanical Engineers, 

Fluids Engineering Division, 183, 1-8. 

Wolochuk, M.C., Plesniak, M.W., and Braun, lE. (1996) The effects of unsteadiness on vortex shedding from 

sharp-edged bluff bodies, Transactions of the ASME, Journal of Fluids Engineering, 118, 18-25. 

W J C d S k r N L (1980) Aerodynamic force and moment in steady and time dependent viscous flows u, . ., an an a, . . 

AIAA paper 80-0011. 

X
· L B' T L'- uan Z and Xie-yuan Y. (1994) Numerical study on the vortex structures in the l-yun, ., 109-gang, ., 1 x ,. , 

wake of an oscillating circular cylinder in uniform flow, Journal of Hydrodynamics, Series B, 1, 12-22 

Y R M d V 
'dh th M (1993) Flow past oscillating cylinders, Journal of Offshore Mechanics Gnd eung, . ,an al yana an, . 

Arctic Engineering, TrailS. ASME, 115, 197-205. 

. S M d G d I H k M (1994) Numerical and experimental investigation of 110\\1 past a freely 
Zakl, T.G., en, . an a -e - a, . 

rotatable square cylinder, Journal of Fluids alld Structures, 8, 555-582. 



221 

Bibliography 

Anagnastopoulos, P., Iliadis, G. and Ganoulis, J. (1995) Flow and response parameters of a circular cylinder 

vibrating in-line with the oscl'llatl'ng st . Fl I ul d ream, In ow I uce Vibration, ed. BeamlaJl, Balkema, 

Rotterdam, 167-179. 

Barnard, R.H., and Philpott, n.R. (1989) Aircraft Flight, Longman Scientific and Technical, Essex. 

Bearman, P.W., Graham, J.M.R., Lin, X.W., and Meneghini, J.R. (1995) Numerical simulation of tlow­

induced vibration of a circular cylinder in uniform and oscillatory flow, in Flow Induced Vibration, ed 

Bearman, Balkema, Rotterdam, 231-240. 

Beannan, P.W., and Obasaju, E.D. (1982) An experimental study of pressure fluctuations on fixed and 

oscillating square-section cylinders, Journal of Fluid Mechanics, 119, 297-321. 

Bearman, P.W., and Takamoto, M. (1988) Vortex shedding behind rings and discs, Fluids Dynamics Research, 

214-218. 

Blackburn, H.M., and Melbourne, W.H. (1992) Lift on an oscillating cylinder in smooth and turbulent flow, 

Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 79-90. 

Braza, M., Chassaing, P., and Ha Minh, H. (1986) Numerical study and physical analysis of the pressure and 

velocity fields in the near wake of a circular cylinder, Journal of Fluid Mechanics 165 ,79-130. 

Deng, G.B., Piquet, J. Queuety, P., and Visonneau, M. (1994) 2-D computations of unsteady flow past a square 

cylinder with the Baldwin-Lomax model, Journal of Fluids and Structures, 8, 663-680. 

Deniz, S., and Staubli, T. (1995) An oscillating rectangular profile and its vortex formations, in Flow Induced 

Vibration, ed. Bearman, Balkema, Rotterdam, 15-25. 

Downie, M.J., and Graham, J.M.R. (1995) Effects of transverse vibration on the hydrodynamic damping of an 

oscillating bluff body, in Flow Induced Vibration, ed. Bearman, Balkema, Rotterdam, 213-220. 

Efthymiou, M. and Narayanan, R. (1982) Current-induced forces on submarine pipelines: a discrete vortex 

model. Proc. Inst. Civil Engineers 73(2), 109-123. 

Guocan, L. (1992) Numerical study on bluff body flow structures, Proceedings of The Fifth Asian Congress on 

Fluid Mechanics, Aug. 1992, Taejon, Korea, 326-335. 

Hansen E.A. (1993) A note on diffusion of vorticity in the discrete vortex method, Institute of Hydrodyn. and 

Hydraulic Eng., Tech. Univ. Denmark, Progress Report no.74, 11-23. 

Kondo, N., and Yamada, S. (1995) Third-order upwind finite element computation of the incompressible Navier­

Stokes equations. Part I: Computation of flow around rectangular cylinders, CompliTer Methods in Applied 

Mechanics and Engineering, 127, 87-97. 

K d N d Y d S (1995) Third-order upwind finite element computation of the incompressible Navier-
on 0, ., an ama a, . 

Stokes equations. Part II: Aerodynamic characteristics of a rectangular cylinder with an angle of attack. 

Computer Methods in Applied Mechanics and Engineering, 127,99-113. 



Bibliography 222 

Kwon, K. and Choi, H. (1995) Control of laminar vortex shedding behind a circular cylinder using splitter 

plates, Physics of Fluids, 8(2), 479-486 

Lam, K.M. (1996) Phase-locked eduction of vortex shedding in flow past an inclined flat plate, Physics of 

Fluids, 8(5), 1159-1168. 

Luo, S.C. and Bearman P.W. (1990) Predictions of fluctuating lift on a transversely oscillating square section 

cylinder, Journal of Fluids and Structures, 4, 219-228. 

Luo, S.c., Yazdani, Md.G., Chew, Y.T., and Lee, T.S. (1994) Effects of incidence and afterbody shape on flow 

past bluff cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 53, 375-399. 

Meneghini, 1.R., and Bearman, P.W. (1995) Numerical simulation of high amplitude oscillatory flow about a 

circular cylinder, Journal of Fluids and Structures, 9,435-455. 

Meneghini, 1.R., and Bearman, P.W. (1996) An investigation of the effect on vortex shedding of a sudden 

transverse disturbance applied to a circular cylinder, Presented at the Third International Colloquium on 

Bluff Body Aerodynamics and Applications, July 1996, Virginia. 

Moorty, S., and Olson, M.D. (1989) A numerical study of low Reynolds number fluid-structure interaction, 

Journal of Fluids and Structures, 3, 37-60. 

Murakami, S. and Mochida, A. (1995) On turbulent vortex shedding flow past 2D square cylinder predicted by 

CFD, Journal of Wind Engineering and Industrial Aerodynamics, 54/55, 191-211. 

Nakamura, Y. (1994) Galloping of a circular cylinder in the presence of a splitter plate, Journal of Fluids cold 

Structures, 8, 355-365. 

Nakamura, Y. (1996) Vortex shedding from bluff bodies and a universal Strouhal number, Journal of Fluids cold 

Structures, 10, 159-17l. 

Naudascher, E. and Wang, Y. (1993) Flow-induced vibrations of prismatic bodies and grids of prisms, Journal of 

Fluids and Structures, 7,341-373. 

Prasad, A., and Williamson, C.H.K. (1996) The instability of the separated shear layer from a bluff body, 

Physics of Fluids, 8(6), 1347-1349. 

Shirayama, S., Kuwahara, K., and Mendez, R.H. (1985) A new three-dimensional vortex method, AIAA 7th 

Computational Fluid Dynamics Conference, AIAA-85-1488. 

Stansby, P.K. (1976) The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders 

in uniform and shear flows, Journal of Fluid Mechanics, 74,641-655. 

T a T Itoh Y and Wada A. (1995) Three-dimensional simulations of an oscillating rectangular cylinder, amur,., ,., ' 

in Flow Induced Vibration, ed. Bearman, Balkema, Rotterdam, 181-192. 

T T It h Y Wada A. and Kuwahara (1995) Numerical study of pressure fluctuations on a rectangular 
amura, ., 0,., " 

cylinder in aerodynamic oscillation, Journal of Wind Engineering and Industrial Aerodynamics, 5..t1 55, 

239-250. 

T T d K h a K (1990) Numerical study of aerodynamic behaviour of a square cylinder, Journal of 
amura, ., an uwa ar, . 

Wind Engineering and Industrial Aerodynamics, 33, 161-170. 

I 
'd J S . J and Welsh M. (1994) An experimental investigation of streamwise vortices 

Wu, lC., S len an, ., ona, ., , 

in the wake of a bluff body, Journal of Fluids and Structures, 8, 621-625. 


	246049_0001
	246049_0002
	246049_0003
	246049_0004
	246049_0005
	246049_0006
	246049_0007
	246049_0008
	246049_0009
	246049_0010
	246049_0011
	246049_0012
	246049_0013
	246049_0014
	246049_0015
	246049_0016
	246049_0017
	246049_0018
	246049_0019
	246049_0020
	246049_0021
	246049_0022
	246049_0023
	246049_0024
	246049_0025
	246049_0026
	246049_0027
	246049_0028
	246049_0029
	246049_0030
	246049_0031
	246049_0032
	246049_0033
	246049_0034
	246049_0035
	246049_0036
	246049_0037
	246049_0038
	246049_0039
	246049_0040
	246049_0041
	246049_0042
	246049_0043
	246049_0044
	246049_0045
	246049_0046
	246049_0047
	246049_0048
	246049_0049
	246049_0050
	246049_0051
	246049_0052
	246049_0053
	246049_0054
	246049_0055
	246049_0056
	246049_0057
	246049_0058
	246049_0059
	246049_0060
	246049_0061
	246049_0062
	246049_0063
	246049_0064
	246049_0065
	246049_0066
	246049_0067
	246049_0068
	246049_0069
	246049_0070
	246049_0071
	246049_0072
	246049_0073
	246049_0074
	246049_0075
	246049_0076
	246049_0077
	246049_0078
	246049_0079
	246049_0080
	246049_0081
	246049_0082
	246049_0083
	246049_0084
	246049_0085
	246049_0086
	246049_0087
	246049_0088
	246049_0089
	246049_0090
	246049_0091
	246049_0092
	246049_0093
	246049_0094
	246049_0095
	246049_0096
	246049_0097
	246049_0098
	246049_0099
	246049_0100
	246049_0101
	246049_0102
	246049_0103
	246049_0104
	246049_0105
	246049_0106
	246049_0107
	246049_0108
	246049_0109
	246049_0110
	246049_0111
	246049_0112
	246049_0113
	246049_0114
	246049_0115
	246049_0116
	246049_0117
	246049_0118
	246049_0119
	246049_0120
	246049_0121
	246049_0122
	246049_0123
	246049_0124
	246049_0125
	246049_0126
	246049_0127
	246049_0128
	246049_0129
	246049_0130
	246049_0131
	246049_0132
	246049_0133
	246049_0134
	246049_0135
	246049_0136
	246049_0137
	246049_0138
	246049_0139
	246049_0140
	246049_0141
	246049_0142
	246049_0143
	246049_0144
	246049_0145
	246049_0146
	246049_0147
	246049_0148
	246049_0149
	246049_0150
	246049_0151
	246049_0152
	246049_0153
	246049_0154
	246049_0155
	246049_0156
	246049_0157
	246049_0158
	246049_0159
	246049_0160
	246049_0161
	246049_0162
	246049_0163
	246049_0164
	246049_0165
	246049_0166
	246049_0167
	246049_0168
	246049_0169
	246049_0170
	246049_0171
	246049_0172
	246049_0173
	246049_0174
	246049_0175
	246049_0176
	246049_0177
	246049_0178
	246049_0179
	246049_0180
	246049_0181
	246049_0182
	246049_0183
	246049_0184
	246049_0185
	246049_0186
	246049_0187
	246049_0188
	246049_0189
	246049_0190
	246049_0191
	246049_0192
	246049_0193
	246049_0194
	246049_0195
	246049_0196
	246049_0197
	246049_0198
	246049_0199
	246049_0200
	246049_0201
	246049_0202
	246049_0203
	246049_0204
	246049_0205
	246049_0206
	246049_0207
	246049_0208
	246049_0209
	246049_0210
	246049_0211
	246049_0212
	246049_0213
	246049_0214
	246049_0215
	246049_0216
	246049_0217
	246049_0218
	246049_0219
	246049_0220
	246049_0221
	246049_0222
	246049_0223
	246049_0224
	246049_0225
	246049_0226
	246049_0227
	246049_0228
	246049_0229
	246049_0230
	246049_0231
	246049_0232
	246049_0233
	246049_0234

