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Abstract. A series of large-eddy simulations of flow past a square cylinder 
at Re = 21400 have been conducted by seven groups of researchers. A 
comparative report is presented of the time-average results with a view 
to establishing any clear advantage of particular subgrid scale modelling 
approaches, wall treatments, and numerical methods. 

1. Background and Specification 

The flow past a square cylinder at a Reynolds number of 21400 based on 
upstream velocity and cylinder side dimension was studied experimentally 
by Lyn and Rodi (1994) and Lyn et al. (1995). The flow is interesting as a 
test case for LES since it involves semi-coherent shedding of vortices from 
the cylinder, which is mounted transverse to the flow (Figure 1), breaking 
down into turbulence. It was selected by W. Rodi and J. Ferziger as a test 
case for a workshop held at Rottach-Egern, Germany in June 1995, reported 
by Rodi et al. (1996). The same flow was adopted at the First ERCOFTAC 
Workshop on Direct and Large-Eddy Simulation in March 1994 as test case 
LES2 to be studied for the Second Workshop reported here. 

Since the flow involves coherent shedding of vortices from the cylinder, 
both the experimental data of Lyn et al. (1995) and the computations 
submitted to the Rodi-Ferziger workshop involved detailed phase averages 
at various phases through the shedding cycle. The phase averages constitute 
a large mass of data, and do not appear to add greatly to an understanding 
of the advantages and disadvantages of the various LES techniques (subgrid 
and wall models, resolution effects, etc.) over and above that provided by 
time-averaged data. In the present exercise, it was specified that only time­
averaged data should be submitted for comparison. 
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Figure 1_ Geometry of the simulations. 

2. Contributions to the Test Case 

Seven groups have taken part in the test case exercise, though several of 
these have conducted more extended investigations by varying several as­
pects or parameters in their simulations, and have therefore submitted more 
than one dataset. The groups and datasets are as follows: Universitat Karl­
sruhe (datasets UK1 to UK3); University of Groningen (GRO); University 
of Illinois (UOI); Institute of Technology, Niigata and University of Tokyo 
(NT1 to NT7); University of Tokyo Institute of Industrial Science (IS1 to 
IS3); Science University of Tokyo (ST2 to ST5); and the Tokyo Institute 
of Technology (TIT). This exercise is a continuation of that of Rodi and 
Ferziger, since all groups except GRO were participants in the Rottach­
Egern workshop. The details of the simulations resulting in each of the 
datasets is laid out in Table 1. Here and elsewhere all distances are nor­
malised by the cylinder dimension d and velocities by the upstream velocity 
Uo. 

The parameters given are: Nx , Ny, Nz , meshes in streamwise, normal 
and span directions; Lx, the domain length downstream from the cylinder 
centre to the ouflow plane; l1t, time step in terms of dlUo; TITs, the sta­
tistical sampling time in the simulation divided by the shedding period Ts 
(i.e. the number of cycles over which samples were taken, excluding any 
startup or conditioning run time); l1w, the mesh dimension adjacent and 
normal to the cylinder surface, in terms of d; b.c. is the type of boundary 
condition applied at the wall of the cylinder. 

Certain computational conditions were specified or suggested for the 
test case, notably the domain dimensions of 20d x 14d x 4d. (In fact the 
groups used a variety of streamwise dimensions for their computational do-
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TABLE 1. Simulations 

set N x Ny N; Lx 103 Dot TITs Dow h.c. model 

UK1 109 105 20 14 1 13.5 0.02 power C s = 0.1 
UK2 146 146 20 14 1 8.3 0.01 power Cs = 0.1 
UK3 146 146 20 14 1 12.5 0.01 no-slip Cs = 0.1 
GRO 280 210 64 20 1 3 0.005 no-slip none 

NTl-5 104 68 10 14.5 1 8-2 0.022 power varied* 

NT6 107 103 14 14.5 1 2 0.02 power Cs = 0.1 
NT7 140 103 32 14.5 1 8 0.02 power LDMM 
UOl 192 160 48 14 2 11 0.01 no-slip dynamic 
lSI 82 63 16 21 2 13 0.04 no-slip Cs = 0.13 
lS2 82 63 32 21 2 13 0.04 no-slip C s = 0.13 
lS3 112 104 32 20 2 6.7 0.02 no-slip dyn. mix. 

TIT 121 113 127· 10 1 5 0.005" no-slip dynamic 
ST2 109 78 20 7.7 0.5 16 0.024 no-slip Cs = 0.1 
ST3 125 78 20 11 0.5 15 0.024 no-slip numerical 

ST4 107 103 20 15 0.5 12.5 0.017 no-slip C. = 0.1 
ST5 107 103 20 15 0.5 14.5 0.017 no-slip Cs = 0.1 

* Varies: see text. 

mains downstream of the cylinder, but this variation does not appear to 
have affected the results in any obvious way.) This and other suggestions 
were made on the basis of experience from the Rottach-Egern workshop 
results; in fact one simulation from that meeting, the submission UKAHY1 
from the University of Karlsruhe, was laid down as a baseline configuration 
for test case LES2, with the contributing groups encouraged to investi­
gate variations and improvements of that computation. Nevertheless the 
specific numerical methods, subgrid-scale and wall models, mesh concen­
trations and stretching, boundary conditions and computational efficiency 
vary considerably in this exercise; we shall therefore now briefly summarise 
the key aspects of each simulation. 

The Karlsruhe group provided the baseline computation UK1 which 
is identical to UKAHY1 of the Rottach-Egern workshop. UK2 is also in­
cluded, which is essentially the same as UKAHY2 of the previous work­
shop, and has higher streamwise and lateral meshing than UK1 to allow 
a halving of the dimensions of the wall-adjacent meshes. Both UK1 and 
UK2 use the linear/one-seventh power law artificial boundary condition of 
Werner and Wengle (1993). The third computation UK3 is new, but differs 
from UK2 only in applying the no-slip boundary condition on the cylin­
der surface and in the sampling time which was 50% greater. The code 
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used is non-staggered (cell-centred) with second-order central differencing 
and a standard explicit second-order time advancement and pressure cor­
rection scheme. The Smagorinsky model was used in all runs, with Van 
Driest damping functions close to the solid walls. UK3 required 10 hours 
per shedding cycle on a SNI (Fujitsu) S600/20. 

The Groningen group (GRO) used a fourth-order finite-volume method 
which is detailed by Verstappen amd Veldman (1997) in this volume. Their 
grid is stretched using a sinh function, the ratio of the largest to the small­
est grid being approximately 200 in x and 100 in y. Standard inflow con­
ditions, u = 1, v = 0, w = 0, were imposed at x = -7.0. Derivative outflow 
boundary conditions were imposed, d2v/dx2 = 0, d2w/dx2 = 0 and dp/dx 
approximately zero, its value being determined at each time-step such that 
the mass inflow equalled the mass outflow. The outflow boundary was lo­
cated beyond a buffer zone extending from x = 15 to 20, in which the 
Reynolds number was decreased. There was no subgrid model. Samples 
were taken every time step over three shedding cycles following a startup 
period of flow conditioning. The computation required 40 hours per shed­
ding cycle on a Cray J916. 

The group from the University of Illinois (UOI) performed six simu­
lations as part of their study, of which the fourth is considered the most 
accurate and is included in this exercise. Further details of these simula­
tions are given by Wang and Vanka (1996), and for the case included here 
(Wang and Vanka, 1997) later in this volume. The resolution in the span­
wise direction is improved by reducing the spanwise domain dimension to 
7rd and using 48 cells. The inflow boundary conditions were standard, the 
outflow was a convective condition using a convection velocity of 0.7, but 
the lateral boundaries were moved further away so that the predicted CD 
had to be corrected for the different blockage; it is not known what other 
effects this different blockage may have had. The numerical scheme for the 
run utilised fifth-order upwind differencing for the convection terms and the 
fourth-order central scheme for other terms. A dynamic procedure based on 
the Smagorinsky model was used, stabilised by span averaging and bound­
ing the total viscosity below by zero viscosity. The work was performed on 
a Thinking Machines CM-5. 

The group co-operating between Niigata and Tokyo performed a high 
resolution simulation NT7 which will be included fully in the subsequent 
analysis, together with a series of six other test simulations with lower 
spanwise meshing (10 meshes) and box size (2d instead of 4d) and also 
with a very short sampling time (two shedding cycles out of a total run 
time of 4 cycles in each case, apart from NT1 where T = 8Ts). NT6 was 
slightly different; here the mesh of the baseline solution UKAHY1 from 
the Rottach-Egern workshop was closely reproduced, though the statistics 
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were again gathered over two cycles. Since the implications of some of 
these supporting studies are of interest, the main features of the runs are 
summarised in Table 2. It is assumed that statistics gathered over two cycles 
can give no more than an indication of trends. 

TABLE 2. Test Simulations NT1 to NT6 

set Feature ( s) 

NT1 Smagorinsky model with C. = 0.13 and Van Driest damping function 
NT2 Dynamic Smagorinsky model; C bounded by zero 
NT3 Dynamic mixed model; C bounded below by zero 
NT4 Lagrangian dynamic mixed model 
NT5 As NT4 but on a staggered Cartesian grid 
NT6 Mesh and domain as UKAHY1, (107 x 103 x 14, domain width 4d) 

Smagorinsky model with C 5 =0.1 and damping function 

Most of the tests used collocated (centered) meshing. NT5 and NT7 
used staggered meshing. The inflow and lateral boundary conditions were 
standard, the outflow convective, and the cylinder walls were subject to 
the boundary condition of Werner and Wengle (1993) in which a linear 
subayer is matched to a 1/7 power-law region above. In fact the wall-normal 
resolution of these simulations was in all cases not notably inferior to that 
of the other groups, and it is found that the linear law was being used in 
most regions of the upper and lower surface of the cylinder, exept near the 
corners. The numerical methods were second-order central differencing in 
all cases, and time advancement was by Adams-Bashforth for the convection 
terms and Crank-Nicolson for others. The tests that used the Smagorinsky 
model employed wall damping functions, f = 1 - exp( -y+ /25) for NTI 
and f = (1 - exp( -y+ /25)3)0.5 for NT6. The computations were carried 
out on a Hitachi S-3800 machine and required up to 2 hours per cycle for 
NTI to NT6 and 9 hours per cycle for NT7. 

The group from the IIS (Kogaki et ai. (1997), following in this volume) 
performed three simulations with varying resolutions, numerical methods 
and subgrid-scale models. Their first two simulations, lSI and IS2, differed 
only in the spanwise resolution (though lSI was sampled every ten time 
steps and IS2 every step for statistics). Both simulations used a Smagorin­
sky model with Cs = 0.13 and standard Van Driest damping functions 
close to the walls. The differencing schemes were second order (QUICK 
for the convection terms with Adams-Bashforth time advancement, central 
for other derivatives with Crank-Nicolson advancement). The inflow was 
standard and the outflow boundary condition convective. The simulations 
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were conditioned for 13 cycles before being sampled over a similar period. 
The cpu requirements were about 1.5 and 3 hours per shedding cycle on 
a Hitachi S-3800/480. The run IS3 was at higher resolution and required 
over 6 hours per shedding cycle on the same machine; as a result only half 
as many cycles were spent on both conditioning and sampling. The fifth­
order upwind scheme was used for the convection terms and fourth-order 
central differences for diffusion terms. The same time-integration schemes 
were retained as in lSI and IS2, but the run differed in utilising the dy­
namic mixed model of Vreman et al. (1994) and Zang et al. (1993), with 
the least-squares approach, stabilised by span averaging and bounding the 
viscosity below by the limit of zero viscosity. 

The Science University group (Kawashima and Kawamura (1997), fol­
lowing in this volume) performed a set of four simulations, applying to 
this problem their convective schemes which act partially as subgrid mod­
els. The simulations differ slightly in the domain, meshing and sampling 
regimes. In several cases the convection schemes were used in combina­
tion with a Smagorinsky model. STI used central differencing and on the 
mesh employed was numerically unstable. In ST2 the UTOPIA convective 
scheme, which is a combination of fourth-order central and third-order up­
wind interpolation, was combined with the Smagorinsky model. ST3 omit­
ted the Smagorinsky model entirely and relied on UTOPIA as a numerical 
model. ST4, with different lateral meshing, restricted the use of UTOPIA 
to the region -3.5 < y/d < 3.5; and ST5 utilised a different combination of 
fourth-order central and third-order interpolation in which the coefficient of 
the third order term, a, depends on the ratio of the Smagorinsky and molec­
ular viscosities, thus: a = exp( -vt!100v); this we call the variable-alpha 
scheme. Otherwise the simulations use standard methods and boundary 
conditions, though the outflow was governed by zero streamwise gradient 
rather than the recommended convective condition, and the streamwise 
domain lengths varied; ST2 was performed in a rather short domain. 

The group of the Tokyo Institute of Technology performed a single 
LES of some interest using embedded meshes. The outermost mesh was 
121 X 114 X 27, the middle mesh 113 X 97 x 57 and the inner mesh which 
surrounded the cylinder was 91 X 91 X 127. Diagrams of the meshing are given 
subsequently in this volume (Nozawa and Tamura, 1997). By this means 
the resolution close to the upstream face of the cylinder was made very 
fine (0.005) though somewhat coarser near-wall resolution was used on the 
cylinder sides (0.02) and rear faces (0.033). A third-order upwind scheme 
for the convection terms was combined with second-order differencing for 
the other terms and a subgrid eddy viscosity generated by a dynamic pro­
cedure applied to the Smagorinsky model with the least squares approach. 
The computation required 20 hours per cycle on one processor of a Fujitsu 
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vx. 
The groups were invited to estimate the magnitude of the numerical dis­

persion and dissipation of their codes, but little data was submitted on this 
aspect of the LES apart from the specific studies of interaction between sub­
grid models and convection treatments by the lIS and SUT groups. Some 
of the submissions constituted a demonstration of the mesh dependence of 
the results; it does not appear that anyone was able to demonstrate mesh 
independence convincingly. 

3. Results 

The principal integral parameters predicted by the simulations in the ex­
ercise are shown in Table 3. The columns give the dataset followed by the 
predicted recirculation length, Strouhal number of the shedding, the drag 
and lift cofficients of the cylinder (the latter should be zero by symmetry) 
and the r .m.s. variation of the lift and drag. 

TABLE 3. Results: Integral Parameters 

set iT st CD CL r.m.s. CD r.m.s. CL 

UKI 1.32 0.13 2.20 -0.02 0.14 1.01 

UK2 1.46 0.13 2.30 -0.04 0.14 1.15 

UK3 1.44 0.13 2.23 -0.05 0.13 1.02 
GRO 1.61 0.l33 2.09 0.005 0.18 1.45 

NT7 1.39 0.131 2.05 -0.05 0.12 1.39 
UOI 1.20 0.l3 2.03 b 0.04 0.18 1.29 

lSI 1.12 0.13 2.041 _0.2ge 0.26 1.31 
IS2 1.20 0.13 2.067 -0.0066 0.15 1.235 
IS3 1.36 0.133 2.79 -0.125 0.36 1.68 

TIT 1.23 0.l31 2.62 0.0093 0.23 1.39 
ST2 1.06 0.16 2.72 0.01 0.28 1.26 
ST3 1.24 0.15 2.66 -0.005 0.27 1.33 
ST4 1.12 0.139 2.74 0.012 0.29 1.36 
ST5 1.02 0.161 2.78 0.009 0.28 1.38 

LYN 1.38 0.132 2.1 

DUR 1.33 0.138 

LEE 2.05 0.16-0.23 
VIC 2.05 0.68-1.32 
CLC 1.9-2.1 0.1-0.2 0.1-0.6 

MAG 1.9-2.1 0.1-0.2 0.7-1.4 
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In the table the annotation b indicates that the drag coefficient has been 
corrected to allow for blockage, while e indicates a result which is affected 
by a known error, for instance in the boundary conditions. Some experi­
mental results are given below the LES results: Lyn et al. (1995) (LYN) 
and Durao et al. (1988) (DUR) give the recirculation length and Strouhal 
number. Lee (1975) (LEE) gives a mean drag coefficient that agrees with 
a value given by Vickery (1966) (VIC), within the range found by Cheng 
et al. (1992) (CLC) and of McLean and Gartshore (1992) (MAG). These 
experiments were conducted under various conditions of free-stream tur­
bulence and Reynolds numbers, but serve to indicate the general level of 
these quantities. There is broad agreement on the r.m.s. fluctuation of CD, 
while the r.m.s. fluctuation of CL is less clear from the experiments; it is 
probably in the region of 1.3. 

It is not possible to show detailed output from all twenty datasets; we 
therefore select a subset for more detailed study. As the baseline solution 
(and to provide a bridge with the Rottach-Egern workshop) results from 
UK1 are included, and also those from UK3 which represents a significant 
advance in resolution. The results from Groningen (GRO) are based on a 
short sampling time and second-order moments have not converged suffi­
cently to allow their inclusion; some results for the mean streamwise velocity 
only will be compared. Results are given for the finest resolution simulation 
of the Niigata-Tokyo group (NT7), for the simulation of the University of 
Illinois (IOU), and for the finest resolution simulation from the Institute 
of Industrial Science (IS3). The Tokyo Institute of Technology results, ob­
tained on nested meshes, are included. Of the datasets submitted by the 
Science University of Tokyo group, the pure UTOPIA scheme appears to 
perform marginally better than the mixed scheme, Smagorinsky model, or 
the variable-alpha scheme, but is identical to a computation considered in 
the Rottach-Egern workshop; we therefore concentrate on the results from 
the variable-alpha scheme, ST5. 

Thus in addition to UK1, we will present detailed results on one simu­
lation from each group: UK3, GRO, NT7, UOI, IS3, TIT and ST3. These 
datasets are highlighted in bold in Table 3. 

Many of the LES have difficulty in estimating the recirculation length. 
As we shall see, even quite credible streamwise profiles of U may still cross 
the U = 0 axis at the wrong position. Given the difficulty of getting lr 
right, the performance of simulation NT7 seems impressive: this simulation 
predicts most of these integral parameters correctly, apart from the r.m.s. 
lift which may be low. However, we shall see that in other respects this 
simulation may be at fault. The group give some mean integral quantities 
as a diagnostic for their test runs NT1 to NT6; these results are summarised 
in Table 4. The lift coefficients, also estimated, were acceptably low. Several 
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runs appear to be heading towards good mean values on the basis of these 
criteria, including NT6. 

TABLE 4. Recirculation lengths and drag coeffi-
cients for runs NT1 to NT6 

run: NT1 NT2 NT3 NT4 NT5 NT6 

lr 1.11 1.37 1.28 1.45 1.43 1.31 
CD 2.10 2.08 2.06 2.12 2.09 2.03 

The Strouhal number was found to be relatively easy to predict correctly 
both in this exercise and at Rottach-Egern. The rather high values found 
by the Science University group in runs ST2 and ST5 (also ST3 to some 
extent) are worrying, possibly indicating a deleterious effect of resolution 
or the special numerical schemes, including the variable-alpha scheme. 

4. Discussion 

Figure 2 shows the streamwise distributions of normalised mean strea,m­
wise velocity and turbulence intensities over selected ranges of x down­
stream of the cylinder along the centreline. It is immediately apparent that 
the problem of predicting the recovery of the centreline velocity (2a, top), 
noted at Rottach-Egern, has not been solved conclusively. The experiment 
shows the velocity reaching about 0.6 of the upstream free-stream level and 
then apparently tending to level off (though data were not taken beyond 
xld = 8). Some of the LES, in particular UK1, UK3 and NT7, show the 
velocity approaching the original level; others such as TIT and UOI show 
a distinct decline beyond about xld = 5, which is difficult to understand 
physically although it is not necessarily incompatible with the experimental 
data shown, which appears to be levelling off at x I d = 8. 

Figure 2b (top) is a view of U in the recirculation zone and up to 
x I d = 3. We note that those simulations having the lowest velocity at their 
exit planes are those with the shortest recirculation lengths (TIT and UOI) 
while some simulations that recover towards U IUo = 1, such as NT7 and 
UK3, have longer recirculation lengths. The simulation GRO, without a 
subgrid model, has a long recirculation length but a reasonable recovery 
further downstream - a result that is confirmed by the comparisons made 
by Wang and Vanka (1996) with and without a subgrid model, though in 
their case the rather short recirculation was actually improved by removing 
the model. 

It would appear that the simultaneous prediction of the recirculation 
bubble length and the final recovery of the centreline velocity is still diffi-
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Figure 2. (a) Streamwise distributions of mean U and stresses along the centreline y = 0 
for x < IS; Solid line, experiment of Lyn et al.; symbols, simulations: GRO dashed line 
(U only); UKI 0 ; UK3 0; UOI * ; NT7 x ; IS3 + ; TIT. ; STS •. 
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Figure 2. (b) Streamwise distributions of mean U and stresses along the centreline y = 0 
for x < 3. As Fig. 2a 
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Figure 3. (a) Profiles of mean U and stress U,2 at x = 0, the cylinder centre. Solid line, 
experiment of Lyn et al.; symbols, simulations, as Figure 2. The vertical co-ordinate is y. 

cult. The diffusion of streamwise momentum towards the centre is affected 
by the subgrid terms and presumably also by numerical effects which are 
not yet fully elucidated. It is possible that the stretching of the x mesh and 
the resolution further downstream, which differ between the groups, is a 
major factor influencing the numerical diffusion, as suggested by Pourquie 
et al. (following paper). 

Of the submissions shown here, IS3 has both a convincing centreline 
recovery and recirculation length; however a close inspection suggests there 
may be some good fortune in the latter prediction, and the high drag coef­
ficient of this run is not reassuring. It is certainly premature to recommend 
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Figure 9. (b) Profiles of turbulence stresses at x = 0, the cylinder centre, as labelled. 
As Figure 3a. 

a particular method from these results. 

The predictions of stresses along the centreline also shown in Figure 2 
confirm the view that no simulation is perfect. These are the full stresses 
comprising turbulent and coherent motions. NT7 suffers from some statis­
tical scatter, and other simulations, while better converged statistically, fail 
to reveal systematic advantages or defects. There is no experimental data 
for w12 , nor predictions of stresses from G RO. The expanded views of V'2 , 

Fig. 2b, reveal a tendency for all the LES to place the peak slightly closer to 
the rear face of the cylinder (at x/d = 0.5) than the experiment. The fact 
that all the simulations fail to resolve the inner peaks in v' and, especially, 
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Figure 4. (a) Profiles of mean U and stress U /2 at x = 1, in the recirculation, as 
labelled. Solid line, experiment of Lyn et al.j symbols, simulations, as Figure 2. The 
vertical co-ordinate is y. 

w' also shows that we have inadequate resolution on the back face of the 
cylinder. 

Figure 3 shows profiles in the centre of the top surface of the cylinder. 
Agreement for U is adequate, but for the components of the stress the 
variable behaviour of the different numerical schemes and models is abun­
da.ntly clear. Some methods predict a. large spike of u'2 very close to the 
wall, presumably the result of reverse shear at the wall inside the recircula­
tion bubble, in contrast to the experiment. Again no one simulation shows 
a clear advantage in all the quantities plotted. 

Figure 4, giving profiles at x = 1 which cuts the mean recirculation, 
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Figure 4. (b) Profiles of mean stresses at x = 1, as labelled. 

reveals that at this point there is some agreement on the shape of the 
mean velocity profile, but already great variation in the predicted vertical 
fluctuation and the principal shear stress. Clearly, with such a variation 
in the magnitude (and also extent) of vertical mixing, the simulations will 
inevitably have widely divergent rates of filling of the wake. At this station, 
the results of the UOI simulation are qualitatively and quantitatively the 
closest to the experiment. 

By the x = 5 station, the effects of the different rates of filling of the 
wake are readily apparent in the mean velocity profiles, Figure 5. Since even 
the mean shear rates are quite different between the simulations, we are not 
surprised to find qualitatively divergent pictures from the various groups. 
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line, experiment of Lyn et al.; symbols, simulations, as Figure 2. The vertical co-ordinate 
IS y. 

Most of the simulations seem to suggest a central dip in u' at this stage, 
unfortunately not supported by the experimental data used for comparison. 
The vertical fluctuations are still widely disparate, though the picture for 
v'is not simply a reflection of the situation obtaining at x = 1; NT7, which 
overpredicts the v' fluctuations at x = 1 has dropped back by x = 5, and 
in fact has a worryingly low level of Reynolds stress in the central portion 
of the wake. 

Contours of these quantities in the x-y plane were produced from sub­
mitted data and discussed at the workshop. The foregoing comments reflect 
insights gained from these two-dimensional distributions. 
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Figure 5. (b) Profiles of mean stresses at x = 5, as labelled. 

5. Conclusions 

In the light of the great variation in the predictions of the simulations 
around the cylinder, it is still not possible to make any recommendations 
apart from the obvious one that higher resolution is required at the walls. 
For the near wake region, IS3 and UOI, two simulations performed com­
pletely independently using higher order upwind schemes, dynamic models 
and somewhat similar meshing, produce reasonable quantitative predic­
tions on many scores and an overall impression of qualitative agreement. 
We might be tempted to conclude that, at least for the wake region, this 
combination of methods has much to recommend it, though the data pro-
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duced in this exercise are not extensive enough to indicate a clear advantage 
of particular methods or models at present. 

These simulations, which give reasonable qualitative predictions in the 
wake while still having a number of clear faults, are among those using 
higher spanwise resolution. Only the rather special simulations GRO and 
TIT use higher spanwise resolution, and the latter only for its restricted, 
embedded meshes. In the light of the structural differences shown by Kogaki 
et al. (following paper) as the spanwise resolution is changed, it appears 
that the spanwise meshing used by many of the submissions is inadequate 
to deal with the breakdown of the flow to three dimensions behind the 
cylinder. It would be wise, in any future studies of this test case, to use a 
minimum of 32 meshes across the domain width of 4d. 

The other main conclusion is less firm, being based on the wide varia­
tion of predictions of the vertical fluctuation, resolved Reynolds stress, and 
rate of filling of the wake. The latter disagreement is presumably simply a 
natural consequence of the former. While different subgrid models or dis­
cretisation schemes may be partly to blame for the wide divergence of the 
predictions, another possibility is the different rates of stretching of the x 
mesh in the region downstream of the cylinder. M. Pourquie pointed out 
at the workshop that his centreline filling can be brought into line with the 
experiment simply by retaining a fine x mesh (with low stretching); his re­
marks were based on a further simulation, UK4, not included in this study 
and to be completed. It is important to verify if this is indeed the case 
independently of other variations such as the model or numerical scheme 
employed. Discussion at the workshop mentioned that rapid stretching of 
the mesh in the streamwise dimension can have radical and as yet poorly 
understood effects on simulated turbulence, as resolved eddies are advected 
onto a mesh that can no longer resolve them. 

The flow over and following the square cylinder is therefore proving a 
major challenge to current LES techniques, a stimulus to further inves­
tigation and a problem to which, at present, we cannot claim to have a 
definitive solution. 
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COMPUTED TEST CASE: SQUARE CYLINDER 

M. POURQUIE, M. BREUER AND W. ROm 
Institute for Hydromechanics, 
University of Karlsruhe, Germany 

1. Overview 

Three calculations made with the LESOee code have been completed. 
LESOee is a second order accurate finite volume method on a collocated 
grid in general curvilinear coordinates, used for the calculations at the 
Rottach-Egern workshop. Two were presented at the Rottach-Egern work­
shop (UKAHYl and UKAHY2, called UKl and UK2 here). It was decided 
to continue runs with the UK2 grid, since in the case of the UKl grid the 
near wall boundary resolution was very probably inadequate. The main aim 
is to check some of the conclusions, reached at the Rottach-Egern workshop. 
Among others, conclusions were made regarding the use of wall laws. UK3 
is new; it is equivalent to UK2 except that no wall function was used but 
a simple no-slip Be. It allows conclusions regarding the use of a wall law. 

Results for UK2 and UK3 (wall law versus no-slip) look qualitatively 
the same. Our conclusion so far is that the effect of the wall law on at least 
some of the bulk parameters is indeed small. Two examples are discussed, 
namely recirculation length and drag coefficient (see the table in the next 
section). One conclusion made at the Rottach-Egern workshop, namely 
that the recirculation length is shorter for simulations using no wall func­
tion, is not in agreement with what is found here: the recirculation lengths 
for UK2 and UK3 are only marginally different. A possibility is that one 
finds a shorter recirculation region when no wall law is used and one has at 
the same time a coarse grid near the cylinder, which was the case for the 
calculations presented at the Rottach-Egern workshop. Since the drag co­
efficient is related to the recirculation length (a shorter recirculation length 
corresponding with a higher drag coefficient and vice versa) an analogous 
conclusion for the drag coefficient, namely that using no wall law means 
obtaining a higher drag, also does not hold provided enough resolution is 
used. 
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All of the runs made so far show the same, quick recovery of the mean 
velocity component in the main stream direction. This is connected with 
the resolution far away from the cylinder. 

0.5r---,----r----r---,----r---,r---.----.---,----.---~ 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

2 

turbulent (resolved) -­
periodic ----

turbulent (resolved) + periodic .... . 
subgrid ......... . 

total (resolved turbulent, subgrid trubulent, periodic) ---

4 6 8 10 12 14 
x 

16 

Figure 1. Values for the fluctuations (total, turbulent, periodic, subgrid) on the center­
line: UK3 

The influence of the SG terms is more fully investigated. Using Mason's 
(1983) estimate for the subgrid energy, we get the following picture, Figure 
1, for the relative order of magnitude of SGE and resolved energy on the 
centerline. We distinguish between resolved (total), periodic, turbulent and 
subgrid component. One question here is what to compare the SG part 
with: with the total fluctuation or only with the turbulent. For this reason 
the turbulent part was included in the figure, although the phase averaging 
method used to obtain the turbulent part separately has some points which 
need further discussion. Moreover, other estimates than Mason's may give 
higher values for the SG part. However, we can assess whether the SGE is 
small compared to the resolved energy (on the centerline). Of course, for 
an LES one wants the SG energy to be much smaller than the resolved 
energy. If we use the criterion that the SG part of the turbulent kinetic 
energy should be less than 10% of the total fluctuation or even only the 
turbulent part, then we meet this criterion (on the centerline) if we use 
Mason's estimate. 
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Summarizing, some conclusions of the Tegernsee Workshop have been 
considered using calculations UK2 and UK3 using respectively Smagorinsky 
wall-law and Smagorinsky no-slip. Moreover, the SG energy content on 
the centerline has been found to be small enough compared to the resolved 
motion to meet the 10% criterion if we use Mason's estimate and compare 
SG energy with only the turbulent part of the resolved energy. 

2. Details of calculations 

2.1. GEOMETRY OF COMPUTATIONAL DOMAIN AND GRID 

The calculation domain, viewed from the center of the cylinder is given 
by: 4D in periodic direction, 5D in front of the origin (= 4.5D in front of 
cylinder), 15D after the origin (= 14.5D after the back of the cylinder). The 
grids are equidistant in the direction of the cylinder axis. In the other two 
directions they are non-equidistant, generated with the aid of geometric 
series, separately for the region in front of the cylinder, above and below 
the cylinder, and behind the cylinder. A maximum distance from the wall 
is given for the grid cells nearest to the cylinder wall, and the stretching 
factor is not allowed to become larger than 1.1. As a result, the following 
three grids are applied: 

Key Total no. of grid points grid points 

grid points left-right bottom-top 

UK1 109 x 105 x 20 33,29,45 37,29,37 
UK2 146 x 146 x 20 52,40,52 52,40,52 
UK3 146 x 146 x 20 52,40,52 52,40,52 

Resolution on the cylinder: 

I Key II Grid points on cylinder I 

UK1 

UK2 

UK3 

29 x 29 

40 x 40 

40 x 40 

Stretching factors are always smaller than 1.1. 

along grid size 

aXIS near wall 

20 0.02 
20 0.01 

20 0.01 
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BOUNDARY CONDITIONS 

At the inflow plane constant velocity is imposed (no perturbations added). 
A convective boundary condition is utilized at the outflow boundary. 

Werner & Wengle's wall function approach (1993) is applied on the 
cylinder walls for UK1 and UK2j for UK3 we used a simple no-slip BC. At 
the lateral walls free-slip conditions are used. Periodic boundary conditions 
are applied in the spanwise direction of the cylinder. 

2.2. NUMERICAL METHOD 

The code developed at the Institute for Hydromechanics, University of 
Karlsruhe, Germany, is based on a finite-volume method for solving the 
incompressible Navier-Stokes equations on general body-fitted, curvilinear 
grids (LESOCC = Large Eddy Simulation On Curvilinear Coordinates). 
A non-staggered, cell-centered grid arrangement is used. Both convective 
and viscous fluxes are approximated by central differences of second or­
der accuracy. The temporal discretization consists of a predictor-corrector 
scheme, where the predictor step is an explicit Adams-Bashforth scheme 
for the momentum equations (second order in time) and the corrector step 
covers the implicit solution of the Poisson equation for the pressure cor­
rection (SIMPLE). The linear system is solved by the strongly implicit 
procedure of Stone which is accelerated by a FAS multigrid technique. In 
order to avoid decoupling of pressure and velocity on the non-staggered grid 
the momentum interpolation proposed by Rhie and Chow (1983) is applied. 

2.3. SUBGRID-SCALE MODELS 

Two different subgrid-scale models are implemented, the standard Smagorin­
sky model with Van Driest damping (I = Cs~(1 - exp( -y+ /25)3)0.5) and 
the dynamic model. In the calculations reported here, only the Smagorinsky 
model is used. 

2.4. COMPUTER RESOURCES 

All computations are performed on the mainframe Fujitsu VP S600/20 in­
stalled at the Computer Center of the University of Karlsruhe. It has a 
peak performance of 5 Gflops and a core memory of 2 Gbytes. The code 
written for curvilinear body-fitted coordinates is much more general appli­
cable than for the test cases of the workshop which can be done by applying 
simple Cartesian grids. It should be noted that no tuning is done for the 
specific test cases which results in higher computing costs compared to a 
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program written especially for Cartesian coordinates and applying special 
algorithms. 

Key time step time for simulation time CPU time 

D.t sampling time steps (hours) 

UK1 10-3 104t* 200 t* 104000 ~ 33 

UK2 4 X 10-4 64t* 128 t* 160000 ~72 

I UK3 II 4 x 10-4 I 96t* 140t* 1175000 I ~80 

Sampling rate was every t* /20. 

2.5. BULK QUANTITIES 

II calculation I rec len. I St I Cd I CI I rms Cd I rms Cl. II 
UK1 1.32 .13 2.20 -0.02 .14 1.01 
UK2 1.46 .13 2.30 -0.04 .14 1.15 
UK3 1.44 .13 2.23 -0.05 .13 1.02 

TABLE 1. Some bulk quantities for three cylinder calculations 
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FOURTH-ORDER DNS OF FLOW PAST A SQUARE 
CYLINDER: FIRST RESULTS 
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Department of Mathematics, University of Groningen, 
P.O.Box 800, 9700 AV Groningen, The Netherlands 

Abstract. In this paper we present some initial results of a fourth-order 
direct numerical simulation of flow past a square cylinder at Re = 22,000. 
The flow is identical to the second test case which is considered at this 
workshop. Mean velocities, the mean Strouhal number, the mean drag co­
efficient Cd, the mean lift coefficient CI and the rms fluctuations of Cd and 
CI are computed. 

1. Introduction 

In another paper in this volume (Verstappen and Veldman, 1996), we 
present a comparison between two DNS methods: a well-known second­
order finite volume method and a fourth-order finite volume method which 
is constructed as the Richardson extrapolate of the second-order method. 
These two approaches are compared for a turbulent flow in a cubical lid­
driven cavity at Re = 10,000. Experimental results are available for com­
parison. The fourth-order method turns out to be the best (see e.g. Figure 
3 of that paper). 

In this paper we consider a test case of this workshop, the flow past a 
square cylinder at Re = 22,000 at zero angle of attack. Also for this test 
case we find the fourth-order method performs better than the second-order 
method. On a 280 x 210 x 64 grid all our second-order simulations failed due 
to insufficient spatial resolution, while the fourth-order simulation method 
performed well. 

However, even using a fourth-order DNS method the flow past a square 
cylinder at Re = 22,000 is an expensive nut to crack: one shedding cycle 
takes about 40 hours on 16 nodes of a Cray J932. Up till now, the fourth­
order DNS has taken several hundreds of CPU-hours. The simulation has 
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not finished completely: the start-up of the flow plus three shedding cycles 
have been computed, and limited results based on this part of the simulation 
are presented. 

Unfortunately we cannot compute sensible average values of turbulence 
intensities or Reynolds stresses from the three shedding cycles that are 
available now: a period of three shedding cycles is simply too short. How­
ever, some first results - mean velocities, the mean Strouhal number, the 
mean drag coefficient Cd, the mean lift coefficient CI and the root-mean­
square fluctuations of Cd and of CI - can be computed. These results are 
presented in Section 3. Before that, some details of the simulation are given. 

2. Details of the simulation 

We use for this test case the prescribed coordinate system, which has its 
origin at the centre ofthe cylinder, and normalise all quantities by the cylin­
der width and the inflow velocity. The streamwise direction is denoted by 
x, the lateral direction by y and the spanwise (periodic) direction by z. The 
components of the velocity in these directions are u, v and w, respectively. 

The inflow boundary is located at x = -7, i.e., six and a half diameters 
upstream of the cylinder. The inflow condition is u = 1, v = 0, w = o. 
The lateral boundaries are located at y = ±7. At these boundaries we have 
imposed U yy = Wyy = Py = 0, where p is the pressure. The outflow boundary 
is located at x = 20. The outflow conditions are Vxx = Wxx = 0 and Px = 
constant, where the constant is determined such that the mass inflow equals 
the mass outflow at each time-step; this constant is approximately zero. In 
addition, in a buffer zone (x = 15.0-20.0) the Reynolds number is decreased 
from 22,000 to 1,000 to suppress (unphysical) waves which are reflected by 
the artificial outflow boundary. The spanwise boundaries are four diameters 
apart. No-slip boundaries are imposed at the cylinder surface. 

We have used a 280 x 210 x 64 (stretched and staggered) grid to cover 
the computational domain. The first mesh point is spaced 5 x 1O-3d from the 
cylinder surface. The grid is stretched away from the cylinder surface using a 
sinh function; the ratio of the largest to smallest gridsize is approximately 
200 (in x) and 100 (in y). The time-step equals 10-3, and statistics are 
sampled at each time-step. 

The numerical method is identical to the one that is described in Ver­
stappen and Veldman (1996). It should be emphasized that in that paper, 
and also here, we have used constant weights (9/8 and -1/8) in the Richard­
son extrapolation. The reason for this is that the higher-order discretization 
thus obtained is conservative. If the weights are adapted to the stretching 
of the grid to obtain a formally more accurate scheme, the result is non­
conservative. 
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The convective flux is integrated in time using a modified second-order 
Adams-Bashforth method. According to Adams-Bashforth we ought to take 
~f(un) - ~f(un-l); instead we take f(~un- ~un-l). The two approaches 
differ when the right-hand side f is non-linear. For instance for f( u) = A(t)U 
with A(t) < 0 and un > 0 the numerical solution un+! of Ut = f(u) is 
smaller than un (for any time step) as it should be, while the solution 
obtained with the original Adams-Bashforth method does not satisfy the 
inequality un+! < un unconditionally. 

The discrete Poisson equation for the pressure is solved using a com­
bination of a fast Fourier transform method in the spanwise direction and 
a modified incomplete Choleski conjugate gradient method in the result­
ing spectral space. After the Fourier transform (which can be computed 
in parallel over the x and y directions), the discrete Poisson equation falls 
apart into a set of mutually independent 2D equations with additions to 
their diagonals due to the Fourier transform. This set of mutually indepen­
dent equations is distributed over the processors and solved. Thus a 100% 
parallel implementation is achieved. 

3. Predicted data 

In this section averages are shown which are computed over three shedding 
cycles and the spanwise direction. Velocities are also averaged over the top 
and bottom halves. Table 1 shows the mean Strouhal number, the mean 
drag coefficient Cd, the mean lift coefficient CI and the root-mean-square 
fluctuations of Cd and Cl. The experiment is described in Lyn et al. (1995). 

TABLE 1. Comparison of DNS with experiment 

DNS Experiment 

Mean Strouhal number 0.133 0.130 - 0.137 
Mean drag coefficient Cd 2.09 1.9- 2.1 
Mean lift coefficient CI 0.005 
Rms fluctuation of Cd 0.178 0.1 - 0.2 
Rms fluctuation of CI 1.45 0.6 - 1.4 

It may be noted that the mean lift coefficient has not been measured; it 
should be zero. So far, we have only computed three full shedding cycles, yet 
the computed values of all bulk quantities falls within the range set by the 
experiment except for the root-mean-square of the fluctuations of the lift 
coefficient Cl. The rms fluctuation of CI seems to be slightly overestimated 
by the DNS. 
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Figure 1 shows the mean streamwise velocity at four locations past the 
cylinder. 

.. . 
...•.... •. t ...•.........•...•...•...•...•...•..•..•...•.. · .•.. ..................................................... 

Figure 1. A comparison of mean velocities of the DNS with experimental results. The 
experimental data is taken from ERCOFTAC Database Case 43j see also Lyn et al. 
(1995). Shown is the mean streamwise velocity at x=O, x=l, x=3 and x=5. Continuous 
lines, DNSj dots, experimental data. 

Acknowledgements 

The Stichting Nationale Computerfaciliteiten (National Computing Facil­
ities Foundation, NCF) with financial support from the Nederlandse Or­
ganisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for 
Scientific Research, NWO) is gratefully acknowledged for the use of super­
computer facilities. 

References 

Verstappen, R.W.C.P. and Veldman, A.E.P. (1996), A comparison of low-order DNS, 
high-order DNS and LES. Direct and Large-Eddy Simulation II, (eds J.P. Chollet et 
al.) This Volume. 

Lyn, D.A., Einav S., Rodi W. and Park J.H. (1995), A laser-Doppler velocimetry study 
of ensemble averaged characteristics of the turbulent near wake of a square cylinder, 
Journal of Fluid Mechanics 304, 285. 



LES ANALYSIS OF TURBULENT FLOW PAST A SQUARE 
CYLINDER USING VARIOUS SGS MODELS 

s. MURAKAMI AND S. IIZUKA 
l.l.S., University o/Tokyo, 
7-22-1, Minato-ku, Roppongi, Tokyo, 106, Japan 
AND 
A. MOCIDDA AND Y. TOMINAGA 
Niigata Institute o/Technology, 
1719, Fujihashi, Kashiwazaki, Niigata, 945-11, Japan 

1. Outline of computations 

The turbulent vortex shedding flow past a two-dimensional square cylinder at 
Re=2.2x104 (test case LES2) was analyzed by Large Eddy Simulation using 
various dynamic subgrid-scale (SGS) models [1-5]. The types of SGS model 
used are as follows: the static type of conventional Smagorinsky model (S 
model, eqns.(1) and (2) in the Appendix (case 1»; the Dynamic Smagorinsky 
model (DS model, eqn.(6) in the Appendix (case 2»; the Dynamic Mixed model 
(DM model, eqn.(lO) in the Appendix (case 3»; and the Lagrangian Dynamic 
Mixed model (LDM model, eqn.(16) in the Appendix (case 4». 

Table 1 lists the 7 cases computed. Computations were carried out for three 
different computational grids (grids A-C), two different grid systems (colocated 
and staggered grids) and four different SGS models. Details of SGS models 
compared here are given in the Appendix. Preliminary computations were 
carried out on a relatively coarse grid (grid A) using four types of the SGS 
models in cases 1-4. The relative performance of these four SGS models was 
clarified by comparison with those given from the experiment by Lyn et al. [7]. 
As is described later, the LDM model (case 4) provided the best results. 

A colocated grid was used in cases 1-4. In case 5, a computation using a 
staggered grid was carried out in order to assess the difference in prediction 
accuracy between the colocated grid and staggered grid. In case 6, we carried 
out the computation with the same conditions as those of the computation 
UKAHYI by the University of Karlsruhe group for the 1995 Workshop of LES 
of Bluff Body Flows (Rottach-Egern workshop) [6]. The results of case 6 were 
compared with those of case 1. Finally, a computation using the LDM model 
was carried out with a grid spacing (grid C) which was finer than grid A used in 
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Table 1 Computed cases 

case SGSmodel grid computational number of 
domain grid point 

1 S (O.13,sf/\ colocated 

2 DS colocated 20 (x\) x 104 (x\) x 68 (X2) 

3 DM colocated 14 (X2) x x 10 (X2) 

4 LDM colocated 2 (X3) [grid A] 

5 LDM staggered 

6 *2 colocated 107 (XI) x 103 (X2) S (O.l,mf~) 
20 (XI) x 

x 14 (X3) [grid B] 

7 LDM staggered 
14 (X2) x 

140 (XI) x 103 (X2) 
4 (X3) 

x 32 (X3) [grid C] 

hw : the grid interval adjacent to the cylinder wall 
* 1 S (es, damping function*2) 
*2 sf.: standard Van Driest damping (=1-exp(-xn+/25», 

mf.: modified Van Driest damping (=(l-exp(-xn+/25)3)O.S) 

hw 

0.022 

0.022 

0.022 

0.022 

0.022 

0.02 

0.02 

Values are made dimensionless by the cylinder width, D, and the inflow velocity, Uo. 

cases 1-5 or grid B for case 6. 

average time 
(Note 1) 

"" 61 

"" 15 

"" 15 

"" 15 

"" 15 

"" 15 

"" 61 

A second-order centered difference scheme was adopted for the spatial 
derivatives. For time advancement, the second-order Adams-Bashforth scheme 
was used for the convection terms and the Crank-Nicolson scheme for the 
diffusion terms. The interval for time advancement was l.OxlO-3 (except 
2.0xlO-4 for cases 2 and 3) in non-dimensional time units based on Uo and D. 

At the inflow boundary, the approach flow was set to be constant and 
uniform and no velocity fluctuations exist. A convective condition was used at 
the outflow boundary of the computational domain. Symmetry conditions were 
employed for the lateral boundaries, and periodicity conditions were imposed 
for the boundary planes perpendicular to the cylinder axis. For the boundary 
condition at the solid walls, Werner and Wengle's approach [8] was adopted. 

2. Comparison of various SGS models with grid A (cases 1.4) 

Firstly, the relative performance of various SGS models, i.e., S, DS, DM and 
LDM, are compared using grid A (cases 1-4, cf. Table 1). 

Fig.1 shows the time-averaged velocity (uI ) along the centerline. In front of 
the cylinder, the results are not influenced by the difference of the SGS models 
used, but there are fairly large differences in the wake region. Case 1 (S model) 
underestimates the length of the reverse flow region considerably. Both cases 2 
(DS model) and 3 (DM model) show better agreement with the experiment than 
does the S model, and there is little difference between the results obtained with 
these two types of dynamic SGS models in the region of 0.5<xl<1.5. Further 
downstream (Xl> 1.5), case 3 (DM model) seems to give a more reasonable 
result than does case 2 (DS model). 

Fig.2 compares the time-averaged velocity (uI ) along the centerline between 
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case 3 (DM model) and case 4 (LDM model). In the LDM model, the model 
coefficient C (C=Cs2) is calculated using the averaged quantities along the path 
line following the approach developed by Meneveau et ai. [5] (eqns.( 12)-( 17) in 
the Appendix). Although both results show good agreement with the experi­
ment, case 4 (LDM model) provides more accurate results than case 3 (DM 
model). The LDM model seems to provide the best result of these four SGS 
models. Furthermore, the use of the LDM model contributes to a remarkable 
improvement of calculation stability, as shown in Fig.3. Consequently, the CPU 
time was reduced by 33% in comparison with the DM model. 

(iiI) 1 
Uo 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-2 -I 0 2 

-~-

case 1 (S model) 

case 2 (OS model) 

case 3 (OM model) 

+ EXP(Lyn) 

3 4 5 ~ 6 
o 

Fig.1 Comparison of the time-averaged velocity (iiI) 
along the center line for S, DS and DM models 

.@JI 
Uo 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-2 -1 0 

- _. case 3 (OM model) 

k---!t:I---; - case 4 (LDM model) 

+ EXP(Lyn) 

2 3 4 5 ~ 6 
o 

Fig.2 Comparison of the time-averaged velocity (iiI) 
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Fig.3 Comparison of the time-history of model 

coefficient C between DM and LDM models 

3. Influence of difference in grid spacings (cases 1 and 6) 

The conditions for computation (the grid spacing, SGS model, etc.) employed in 
case 6 are almost the same as those in the computation of UKAHY1 presented 
at the Rottach-pgem workshop [6]. 

The result of this reference case (case 6) is compared with case 1 in Fig.4. 
Spatial oscillation of the velocity is observed in the region of xl>2 in case 6, 
while this oscillation does not appear in the result of case 1. As described in 
Note 3, this difference is mainly caused by the difference in the grid spacings 
for these cases. The spacing of grid B (case 6) in the streamwise (XI) direction is 
coarser than that of grid A (case 1) in the region behind the cylinder (xl>l). The 
spacing in the spanwise (X3) direction of grid B (case 6) is also coarser than that 
of grid A (case 1) for the whole domain. With the coarse spacing of grid B, 
spatial oscillation of velocity was caused in case 6 in the region behind the 
cylinder, as indicated in Fig.4. On the other hand, the resolution of grid B in the 
XI and X2 directions is finer than that of grid A in the vicinity of the cylinder 
wall (-l<xl<l). Hence, the computation with grid B provided more accurate 
results in the vicinity of the cylinder wall in comparison with the results using 
grid A. Considering these points, a new grid (grid C) was designed. The 
resolution of grid C in the XI and X2 directions is almost the same as that of grid 
B in the vicinity of the cylinder wall, but much finer than that of grid B in the 
region behind the cylinder. ill this region, the resolution of grid C in the XI 

direction becomes identical to that of grid A. Furthermore, the grid spacing in 
the spanwise (X3) direction is much finer in grid C than those in grids A or B. 
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FigA Comparison of the time-averaged velocity (O l ) 
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4. Performance ofLDM model with grid C (case 7) 

Hereafter the results of the computation using the LDM model with grid C 
(case 7) are shown. In this case the staggered grid was used (Note 4). Integral 
parameters are compared in Table 2. The statistical quantities were determined 
by using the time-history of predicted flowfields during 8 vortex shedding 
periods for this case. The correspondence between the results of case 7 and 
experiments is satisfactory except for the value of CDnns• Fig.5 compares the 
time-averaged velocity (01) along centerline. The result of case 7 reproduced 
the velocity distribution in the reverse flow region behind the cylinder 
accurately. 

Table 2. Integral parameters 

LIX~X~ Nl xN2 xN3 hw St <CD> CDnns CLnns 

case 7 20Dx 14Dx 4D 140x103x32 0.02 0.131 2.05 0.12 1.39 

(LDMmodel) 

l.yn [7] Experiment (Re=2.2 X 104) 0.132 2.1 - -
Vickey [12] Experiment (Re:l X lOs) - 2.05 - 1.32 

Lee [13] Experiment (Re:1.76 X 105) - 2.05 0.23 1.22 

Li : computational domain in Xi CD : drag coefficient 
direction ( i=I,2,3) CL : lift coefficient 

Ni : mesh resolution in Xi direction hw : the grid interval in the normal direction 
St : Strouhal number adjacent to the cylinder wall 
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Fig.5 Comparison of the time-averaged velocity (u)) 
along the centerline ofLDM model (case 7) 

5. Conclusions 

(1) Dynamic SGS models provide much more accurate predictions of the sizes of 
the reverse flow region behind the cylinder than does the static type of 
conventional Smagorinsky model (S model). 

(2) The method for stabilization by averaging over particle trajectories employed 
in the LDM model can contribute a remarkable improvement of calculation 
stability. In the experience of our group, the LDM model seems to be most 
suited for the analysis of the flowfield around a cylinder, since it provides 
good calculation stability and also good prediction accuracy. 

Notet 

The time-averaged values were determined by the time-averaging over 8 vortex 
shedding periods (61 in the non-dimensional time scale) in cases 1 and 8 as well 
as by averaging over the spanwise direction. 

Fig.6 compares the time-averaged velocity determined by time-averaging 
over 2 shedding periods with that averaged over 8 shedding periods for case 1 (S 
model). The difference between values based on these two different averaging 
times is very small as far as time-averaged velocity is concerned. Thus, the 
averaging time for time-averaged values was reduced to 2 vortex shedding 
periods (15 in the non-dimensional time scale) in cases 2-6. 
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In Werner and Wengle's approach [8], a linear or 117 power-law distribution of 
the instantaneous velocity is assumed : 

u + 
-=Xn 
u* 

(x!:S11.81), 

~=83 +117 (+ 1181) . Xn xn >·· 
u* 

This wall function becomes identical to the no-slip boundary condition when 
x! :S 11.81. Fig.7 illustrates the distribution of time-averaged values of x! of the 
grid points adjacent to the cylinder walls. In most areas, the value of x! is lower 
than 11.81. Thus the linear-law, i.e., the no-slip boundary condition, is applied 
in these areas. At comer areas, the value of x! exceeds 11.81 a little. 

Note 3 

As shown in Table 1, four factors, (grid spacings, values of Cs, wall damping 
functions and sizes of computational domain in the spanwise direction) are 
different between cases 1 and 6. In the earlier research by our group (Murakami 
et al. [9]), the influence of the Cs value and the size of computational domain 
was examined. In that study, computations were carried out for two different 
values of Cs (0.13 and 0.1 adopted in cases 1 and 6 respectively) with grid A. 
As shown in [9], the difference between the results of these two cases was very 
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Fig.7 Distribution of time-averaged values of x! (case 7) 

small. Furthermore, two computations were carried out and compared for two 
sizes of different computational domain in the spanwise direction, 2D and 4D, 
in [9]. Regarding the time-averaged velocity (uI ), the result of the case with a 
larger computational domain (4D) provided a slightly smaller reverse flow 
region behind the cylinder. However, we noted that there were no outstanding 
differences for each computational domain size. 

We have also carried out another computation (case 6') in which only the 
damping function was changed from mfl' (=(1-exp(-xn+125)3)0.5) adopted in case 
6 to the function used in case 1 (fl'=1-exp(-xn+/25». Through the comparison 
between the results of cases 6 and 6', it was confirmed that the results were not 
much affected by the difference in the forms of wall damping functions. 

The remaining factor that differs between cases 1 and 6 is grid spacing. We 
consider that the difference in the grid spacing is the main factor contributing to 
the differences between the results for these cases. 

Note 4 

A colocated grid (Rhie and Chow [10]) was used for cases 1-4 and 6. However, 
recently it was reported that the result based on a staggered grid provides more 
accurate prediction than that based on a colocated grid in a LES computation of 
channel flow, because the result based on colocated grid includes some 
numerical errors (Ooka et al. [11]). 

In this study, we compared the result based on colocated grid (case 4) with 
that based on staggered grid (case 5). As for the time-averaged velocity (uI ), 

both results are almost the same, but case 5 is slightly better (figures are omitted 
here). So we used the staggered grid for case 7. 
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Nomenclature 

Xi: spatial coordinates (i=1,2,3 :streamwise, lateral, spanwise) 
Ui : components of the velocity vector 
f: instantaneous value of a quantity, f : filtered value off, 
<f> : time averaged value off 
Xn: distance from the wall, Xn+ = xnu*/v, u* : friction velocity 
D : width of the square cylinder, 
Uo : <til> value at inflow of computational domain 

Values are made dimensionless using D, Uo and air density p. 
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Appendix: SGS models 

In the Smagorinsky model, the anisotropic part of the SGS stress 'tij is modeled 
as follows: 

1 -2~~ -
't jj -"30jj'tkk =-2C~ ISISjj =-2vsGsSjj (1) 

where the SGS viscosity VSGS is 
_ (C =Cs2) 

VSGS =CLl21~ (2) 

Here,- (overbar) denotes the grid-filtered values and Li is the width of the 
grid-filter, Sjj is the resolved-scale strain rate tensor, 

- 1 (au. aU j 1 fS1 - - 112 s·· =- -' +- , S = (2S .. S .. ) 
'J 2 a a 'J 'J Xj Xj 

(3) 

In the S model (cases 1 and 6), C is treated as a constant. The value of 
0.0169 and 0.01 were selected for cases 1 and 6, respectively. These values 
correspond to 0.13 and 0.1 of the so-called Smagorinsky constant Cs (cf. Table 
1). Li is multiplied by the Van Driest wall damping function fll, l-exp(-xn+125) 
in case 1 and mfll, {1-exp(-xn+125ilo.s in case 6 in order to account for the near 
wall effect in S model, while fll is not necessary in dynamic SGS models. 

In dynamic SGS models, the model coefficient C is determined 
dynamically. Following Germano [1], a test filter (denoted as /\ ) is introduced 
to derive an expression for C. The width of the test-filter is taken to be twice the 
width of the grid-filter. Germano et al. defined the resolved turbulent stress as 
follows: 

(4) 
~ A A 

£ij can be related to the SGS stress 'tij and the subtest stress Tjj = lljllj - UjUj by 

£jj = Tjj -iij (5) 

The DS model (case 2) employs the dynamic procedure using a least square 
method proposed by Lilly [2] to determine the coefficient C : 

C(x t)=-.!.. £jjMij 
, 2 M2 

~ ~I~ kl ____ 

where Mjj = Li21S Sjj - Li21~Sjj 

(6) 

(7) 

In DM model (case 3) a linear combination of the dynamic Smagorinsky 
model and the scale similarity model is adopted [4, 14]. In the DM model, the 
anisotropic part of 'tij is expressed as [4, 14] : 

1 - 1 
't jj - "30jj'tkk = -2v SGSSij + Bij - "30ijBkk (8) 

- --
where Bij = lljllj - llillj (9) 

The first and the second terms on the right-hand of eqn.(8) derive from the 
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Smagorinsky and the scale similarity models respectively. C is determined by 
_ 1 Mjj(£jj - H jj ) 

C(x,t)=- 2 . M2 (10) 
kI 

where Hij is the term originating from the scale similarity model, written as [4] ; 
/"'-.. ~ ~ /"'-.. /"'-.. - --

H jj =ujUj -UjUj -(ujUj -UjUj ) (11) 

The value of C obtained from eqns.(6) and (10) can be either positive or 
negative. A negative value of C implies a locally negative value of eddy­
viscosity which causes the numerical instability. In cases 2 and 3, we set the 
coefficient C equal to zero wherever C was estimated to be negative (clipping 
procedure) . 

Previous authors have used averaging over homogeneous directions to 
avoid the numerical instability (Germano et ai. [1], Akselvoll et ai. [15], Zang et 
ai. [3] ). The disadvantages of this treatment is that the plane-averaging can only 
be applied to flowfields that have a homogeneous direction. This treatment 
cannot be applied to three-dimensional flowfields such as a flow around a cube; 
thus this treatment excludes the application of LES to more challenging flows of 
engineering interest. In the Lagrangian Dynamic Smagorinsky model (LDS 
model), the model coefficient C is calculated following the approach developed 
by Meneveau et ai. [5] in which the residual in eqn.(5) is minimized along fluid 
trajectories rather than flow homogeneous directions, resulting in an expression 
for the model coefficient: 

- 1 ILM (12) C(x,t)=---
2IMM 

The numerator and denominator of eqn.(12) are obtained using a simple time 
discretization, resulting in 

I~~(x) = H{e£"+1 M n+1(x) + (1- e)I~M (x - tl j
n ~t)} (13) 

1.1 1.1 

n+l - n+1 n+1 - n - - n A (14) IMM(X)=EM jj M jj (x)+(1-E)IMM (x-uj ut) 

where H{x} is the ramp function (H{x}=x ifx>O and zero otherwise), and 
At/Tn 

E = (15) 
(1 + At! Tn) 

The technique of Lagrangian averaging can be easily added to the Dynamic 
Mixed model. We call it the LDM model. 

C(-)- 1 ILM -IHM X t - - - -""'-.!!!!!-
, 2 IMM 

where I nH+M1 (x) = EHn+IMn+l(x) + (1- E)I~M(x - uj n At) 
1.1 1J 

The LDM model was used in cases 4, 5 and 7 in Table 1. 

(16) 

(17) 

The time-scale T in eqn.(15) is defined as T=an (n= ~ ILM-1/4). Meneveau et 
al. [5] recommend a value of 2 for a based on the filtered DNS data of isotropic 
turbulence. In the experience of our group, this value of 2 was not optimum for 
a for flow around a bluff body. Here, the value of 0.2 was selected for a 
(T=0.2n) in cases 4, 5 and 7 as a result of numerical experiments. 
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Abstract. In the present study we have performed LES of flow over a 
square cylinder at a Reynolds number of 21,400. Several calculations with 
progressive improvements in numerical accuracy and grid resolution have 
been conducted, and the results from one of these are included in the test 
case exercise. 

1. Introduction 

The problem considered is the flow over a square cylinder that is placed 
normal to a uniform free stream. We present the results of one of several 
Large-Eddy Simulations of high Reynolds number turbulent flow over the 
square cylinder. 

In the following sections, we provide details of the numerical schemes 
use in our study and of the implementation of the dynamic subgrid-scale 
model. A full report of the various simulations performed is given by Wang 
and Vanka (1996). 

2. Governing Equations 

In large eddy simulations, the resolved flow field is separated from the 
sub-grid field by applying a spatial filter to a continuous function in space 
and time. After applying a suitable filter to the continuity and momentum 
equations, the filtered equations of motion can be written as : 

fJUi 8 ( __ ) 8p 8Tij 1 82ui - + - UiUj = -- - - + --::----
8t 8xj 8Xi 8xj Re 8x j 8Xj 

397 

i.-P. Chollet et al. (eds.), Direct and Large-Eddy Simulation /I, 397-400. 
© 1997 Kluwer Academic Publishers. 

(1) 

(2) 



398 G. WANG AND S.P. VANKA 

where the index i = 1,2,3 refers to the streamwise (x-direction), cross­
wise (y-direction) and spanwise (z-direction) directions, respectively. In the 
above equations, the velocities are non-dimensionalized by the freest ream 
velocity, Uo, and the pressure is non-dimensionalized by the inlet dynamic 
pressure, pU02• 

The subgrid-scale stress Tij in equation (2) represents the effects of small 
scales, and must be modeled. The key to success in large eddy simulations is 
the accurate representation of the unresolved subgrid-scale motions. In the 
Smagorinsky model the subgrid stresses are related to the resolved strain 
rates through an isotropic viscosity, VT. Thus, 

(3) 

where 8ij is the Kronecker delta. The eddy viscosity, VT, and the large scale 
strain rate tensor, Sij, are defined as 

(4) 

Si' = ~ (Oui + [Jfij) 
J 2 {)Xj {)Xi 

(5) 

Cs is the dimensionless model coefficient, Ll = (LlxLlyLlz)1/3 is the grid 
filter width. In the dynamic model, the value of the Cs coefficient is calcu­
lated at every time step, as the flow evolves, by examining the instantaneous 
energy transfers. A second filter, called the test filter (denoted by~ ), is ap­
plied to the resolved velocity field and the resolved turbulent stresses, £ij, 

the subgrid scale stresses, Tij, and the subtest-scale stresses are related to 
determine the coefficient Cs • We currently use the modification proposed 
by Lilly (1992) to the original Germano model (1991) which provides the 
following expression for Cs • 

(6) 

where <> denotes averaging in the spanwise direction. £ij and Mij are 
defined as : 

(7) 

(8) 

The test filter has been applied only in the spanwise (homogeneous) direc­

tion. Thus, ~/ Ll, which is the ratio of the filter widths, is 21/ 3 according 
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to the definition of ~ = (~x~y~z)1/3. Further, negative Cs is truncated 
to ensure that the total viscosity (v + VT) remained positive. 

3. Numerical Procedure 

The above equations are numerically integrated in time by a two-stage 
fractional step procedure with Adams-Bashforth explicit differencing for 
both convection and diffusion terms. 

Ui - Uin = ~H~ _ !H!I-1 

~t 2' 2' 

V. (Vp) = ~ f)ui 
~t f)xi 

u~+1 = U. _ f)p ~t 
, , f)xi 

where Ui is the intermediate velocity field, and Hi is given by 

f) f)Tij 1 f)2 Ui 
Hi = -~(UiUj) - ~ + -R f) f) 

UXj UXj e Xj Xj 

(9) 

(10) 

(11) 

(12) 

A collocated arrangement has been used for the velocities and pressure 
and the spatial derivatives are integrated with a finite-volume methodol­
ogy. The values at the cell faces are evaluated with either third-, fifth-, 
or seventh-order accuracy for the convection terms and second-, fourth- or 
sixth-order accuracy for the diffusion terms. 

The above equations are solved on a grid which may in general be 
curvilinear in the x - y plane. Volume fluxes at the cell faces are given by 
the relation : 

u = J(~xu + ~yv) 
V = J(",xu + ",yv) 

W = J('Yzw) 

(13) 

(14) 

(15) 

where ~x, ~y, "'x, "'Y' and 'Yz are the metrics and J is the Jacobian of trans­
formation. The volume fluxes at the cell faces are required to satisfy the 
continuity equation. 

The pressure is computed from the pressure Poisson equation. The so­
lution of the pressure equation on a general curvilinear grid requires an 
iterative procedure, and the same conjugate gradient method was used in 
the present computations on a Cartesian mesh. In order to enforce mass 
conservation, the Poisson equation for pressure was discretized using the 
finite-volume approach. In the computational space, the equation is inte­
grated over a cell volume centered at the collocation point. Computation of 



400 G. WANG AND S.P. VANKA 

the pressure is the most computationally intensive operation of the entire 
algorithm. The convergence rate of the iterative solver can be accelerated 
by the utilization of a preconditioner with the conjugate gradient method. 
In the present algorithm, provision is made to perform several Jacobi iter­
ations alternating with every CG iteration to accelerate the convergence. 

4. Simulation Results 

The results from a single LES (Run 4 of Wang and Vanka (1996)) are 
included in this test case exercise. This run utilised a total of 192 X 160 X 48 
grid points on a domain extending from -8d to 16d in the streamwise 
direction, from -10d to 10d in the crosswise direction, and of dimension 7rd 
in the spanwise direction. This simulation used fifth-order differencing for 
the convection terms and fourth-order differencing for the diffusion terms. 
The time step was 2 X 10-3 and statistics were gathered over 11 shedding 
cycles (60000 time steps). 

Selected results are given in the preceding review paper in this volume 
by Yoke. For detailed comparisons of all the simulations in the study, see 
Wang and Vanka (1996) and Wang (1996). 
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Large-eddy simulations (LES) of turbulent flow around a square cylinder 
at Reynolds number of 2.2x 104 are conducted. The subgrid-scale (SGS) 
models used here are the standard Smagorinsky model and a dynamic mixed 
SGS model. Simulation results indicate that the spanwise flow structure 
behind the cylinder is highly influenced by the spanwise mesh resolution and 
that the artificial dissipative effects of upwind schemes cannot be ignored 
even in the case of higher order upwind schemes. 

1. SGS model 

The standard Smagorinsky model (Smagorinsky, 1963; Deardorff, 1970) is 
expressed as follows: 

(1) 

(2) 

where the value of the model coefficient is Cs set to be 0.13, which is 
conjectured by Mochida et al. (1993). 

On the other hand, the model coefficient is computed dynamically in 
a dynamic SGS model (DSM) (Germano et al., 1991). Zang et al. (1993) 
modified the DSM by incorporation of the mixed model of Bardina et al. 
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(1983). Moreover, Vreman et al. (1994) rewrote the dynamic mixed SGS 
model in order to remove a mathematical inconsistency (hereafter the dy­
namic version of mixed model developed by Vreman et al. is referred to as 
DMSM). SGS stresses of the DMSM are given by 

1 -21-1- 1 Tij - 30ijTkk = -2Cd S Sij + Li] - 30ijLkic , (3) 

where Li] is the modified Leonard term represented by 

L~ - U'U' - U·U· '} - '} '} . (4) 

Using the least-square approach suggested by Lilly (1992), the model coef­
ficient C of DMSM is computed as 

Lij = u{Uj - fLifLj , 

Hij = fiifij - ~i~j - (UiUj - UiUj) , 

(5) 

(6) 

(7) 

(8) 

where brackets '()' in eq. (5) denote averaging operations in homogeneous 
directions. 

The dynamic versions of the SGS model require an explicit filter oper­
ation. The test-scale filtering and the grid-scale filtering with the top-hat 
filter or the Gaussian filter are evaluated using Simpson's rule as follows: 

(9) 

-2 

f = 1 + ~4 . v21 + 0 (d 4) (10) 

2. Methods 

2.1. RESOLUTION 

The computational domain, total numbers of node points and SGS models 
used in our computation are given in Table 1. The computational domain 
is the same one prescribed by the organizer except for the length from the 
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TABLE 1. Mesh Configurations 

Case Domain Resolution SGS model 

lSI 21.IDx 14.0D x4.0D 76,880 (82x63x16) Smagorinsky 
IS2 21.lDx 14.0Dx4.0D 153,760 (82x63x32) Smagorinsky 
IS3 20.4D x I4.0D x 4.0D 347,648 (112x104x32) DMSM 

center of the cylinder to the outlet, which is extended up to more than 
20D (D = side of the cylinder). The mesh used in case IS3 has the same 
resolution in the (x,y)-plane as the mesh used by the University of Karlsruhe 
group (UKl). 

2.2. NUMERICAL METHODS 

The finite volume method (FVM) was employed and the coupling scheme 
between the continuity equation and the pressure was based on the HSMAC 
method proposed by Hirt et al. (1972). The second order upwind scheme 
QUICK for the convection terms and second order central differencing for 
the diffusion terms were used for case lSI and IS2. A combination of the 
fifth order upwind scheme (Rai and Moin, 1991) and fourth order central 
differencing was used for case IS3. The time marching method was a semi­
implicit method with the second order Adams-Bashforth method for the 
convection terms and the Crank-Nicolson scheme for the diffusion terms. To 
stabilize the dynamic mixed model, the model coefficient C was averaged 
in the spanwise direction and the total viscosity was clipped to be non­
negative. Moreover, in laminar flow regions where Mij becomes almost zero, 
the model coefficient became excessively large. Therefore, we set C = 0 
wherever Mij X Mij is less than 10-6 (Mochida et al., 1995). 

2.3. BOUNDARY CONDITIONS 

A no-slip condition was adopted on the surface of the cylinder, while free 
slip conditions were used on the top and bottom domain boundaries. At the 
entrance to the flow domain, a constant velocity with no perturbations was 
imposed. At the exit of the flow domain, a convective boundary condition 
was used (Pauley et al., 1990; Dai et al., 1992): 

8Ui U, 8Ui - 0 
8t + C 8x l -

(11) 

where Uc is the convection velocity which we set equal to the mean velocity 
at the entrance. The span wise boundary condition was periodic. 
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3. Results 

Contours of the instantaneous streamwise component of the vorticity vec­
tor qx in the (x,z)-plane at the centerline are compared between the three 
cases in figure 1. Comparing lSI and IS2, it is found that the size of the 
stream wise vortices behind the cylinder is highly affected by the number of 
node points in the spanwise direction. In the case of the flow around a cir­
cular cylinder, the mean spacing of the streamwise vortex pairs behind the 
cylinder observed experimentally was approximately one cylinder diameter 
over the wide range of Reynolds number 320 to 21,000 (Bays-Muchmore et 
al., 1993). It is expected that the spanwise mesh resolution for lSI was not 
sufficient to resolve the appropriate spanwise structure. The spanwise flow 
structures for case IS3 have the same tendency as the case IS2 near the 
cylinder up to x ~ 2; however the arrangement of the streamwise vortex 
pairs becomes unstable in the far wake region. 

To evaluate the effects of the upwind schemes at the scalar level (Clark 
et al., 1979), the GS energy equation with additional artificial terms in the 
upwind schemes is considered: 

where 

(13) 

The second and third terms on the right-hand side of eq. (12) are the 
molecular viscous dissipation and the turbulent viscous dissipation eval­
uated by the SGS models, respectively. The artificial additional terms of 
QUICK and of the fifth order upwind scheme are given by 

~X5 86u. 
E - 1- 1 J ~ = Ui Uj 60 8x~ 

J 

(QUICK) , (14) 

(5th order upwind scheme) . (15) 

The additional artificial terms of QUICK have dispersive and dissipative 
effects on the numerical solution while the fifth order upwind scheme has 
only dissipative effects. 

Figure 2 shows distributions of the instantaneous values of the addi­
tional artificial terms of QUICK compared with the total viscous dissipa­
tion in the GS energy eq. (12) for IS2. In the vicinity of the cylinder and 
the near wake region, the dissipative effect of QUICK is larger than the 
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Figure 1. Contours of the stream wise component of the vorticity vector qx In the 
(x,z)-plane at the centerline. (a) 181; (b) 182; (c) 183. 

total viscous dissipation. In the case of the fifth order upwind scheme (fig­
ure 3), the region that exhibits high values of the additional artificial terms 
becomes small but the maximum values was comparable to that of QUICK 
(Emax S::! 4 x 10-1 for both cases of QUICK and the 5th order upwind 
scheme in the wake region). 
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Figure 2. The distribution of the instantaneous values of the additional artificial terms of 
QUICK and the total viscous dissipation in the G8 energy equation for 182: (a) dissipative 
term; (b) dispersive term; (c) total viscous dissipation. 
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Figure 3. The distribution of the instantaneous values of the artificial additional term of 
the fifth order upwind scheme and the total viscous dissipation in the GS energy equation 
for IS3: (a) dissipative term; (b) total viscous dissipation. 

4. Discussions and Conclusions 

The effect of the spanwise mesh resolution was investigated using comp­
utational grids that have the same mesh resolution in the (x, y)-plane. The 
spanwise flow structure is highly affected by the number of spanwise node 
points; therefore more than 10 node points in the spanwise direction per 
cylinder length is appropriate to capture the. proper spanwise structure. 

Moreover, the qualitative effect of introducing upwind schemes for the 
convection terms was investigated in the GS energy equation . In the case of 
the second order upwind scheme QUICK (lSI and IS2), the artificial dissi­
pative effect due to the upwinding was larger than that of the Smagorinsky 
model. Therefore, the SGS model was covered by the upwinding. To reduce 
the effect of upwinding, the fifth order upwind scheme of Rai and Moin 
and a finer mesh resolution in the (x, y)-plane was adopted in case IS3. 
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The effect of the upwind scheme could not be ignored even in this case in 
the instantaneous GS energy equation. However, the profile of the time­
averaged velocity and turbulence intensities were in fairly good agreement 
with the experimental data (Lyn, 1994) in all the cases. Therefore, in engi­
neering terms, it is too early to conclude that the use of the upwind scheme 
is purposeless. 
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AND 

TETSURO TAMURA 

Tokyo Institute of Technology, 
4259, Nagatsuta-cho, Midori-ku, Yokohama-shi, 
Kanagawa 226, Japan 

1. Introduction 

This paper presents the result of a large-eddy simulation of the complicated 
turbulent flow past a square cylinder. The technique of embedded meshes 
is employed for the computation of turbulent flows with various scales. We 
also apply the 3rd-order upwind scheme (Kawamura et al., 1984) to the 
convective terms to avoid numerical instability. 

In the flow past a bluff cylinder, there is a large area of high shear 
rate which it must be very expensive to cover with a fine mesh. Without 
using any stabilizing technique, we can hardly avoid numerical instability. 
However, using a high-order upwind scheme to avoid numerical instability, 
there will be excess damping in the area where the flow is turbulent and 
the subgrid viscosity of LES must work, if the mesh is not sufficiently fine. 

Figure 1 shows the results of LES for the ReT =180 turbulent channel 
flow in which a 3rd-order upwind scheme is applied and the subgrid-scale 
eddy viscosity is generated by a dynamic procedure. In the simulation, by 
using a larger width filter of 2h or 4h (h is grid size) for LES instead of 1h 
and reducing the coefficient of the numerical dissipation terms of the 3rd­
order upwind scheme, it becomes closer to the DNS results. This means it 
is possible to suppress the numerical effects through the choice of the filter 
width. 
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Figure 1. Re.,.=180 channel flows: left, mean-velocity profiles; right, root-mean-square 
velocity fluctuations normalized by the wall shear velocity. 

Accordingly in the present calculation we refine the mesh by using em­
bedded meshes and make the filter width to be double the grid size to 
reduce the influence of the numerical dissipation terms in the turbulent 
area. The flow structures in the wake of a square cylinder are investigated, 
especially focusing on the behavior of the separated shear layers. 

2. Embedded mesh 

The technique of embedded meshes is used over the computational domain 
(15d X 14d X 4d). Figure 2 shows the embedded meshes sliced transversely 
in the spanwise direction, and the size and the location of each embedded 
mesh are shown in Table 1. 

TABLE 1. Size and Location of Embedded Meshes 

inner mesh 
middle mesh 
outermost mesh 

Size 

91 x 91 x 127 
113 x 97 x 57 
121 x 114 x 27 

Location of subdomain 

(-ld,2d) x (-1.5d, 1.5d) x (0,4d) 
( -3d, 4d) x (-3d, 3d) x (0,4d) 
(-5d,10d) x (-7d, 7d) x (0,4d) 

The inner mesh which surrounds the cylinder is stretched to refine the 
resolution of the near-wall region of the cylinder. The finest resolution at the 
cylinder surface is d/200 at the front, d/50 at the sides and d/30 at the rear 
face, and no-slip velocity boundary conditions are imposed on the surface of 
the cylinder. The other meshes have uniform grids. The advantage of using 
embedded meshes is to get high resolution while avoiding the disadvantage 
of using strongly flattened (anisotropic) grids in LES. 
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Figure 2. Embedded mesh: left, whole domain; right, vicinity of the square cylinder. 

Using embedded meshes, the computed quantities must be exchanged 
on the interior boundaries. Since we use symmetric Dirichlet condition on 
the interior boundaries, we have to overlap the computational grids. The 
Dirichlet boundary condition is calculated using linear interpolation in the 
overlapped zone. All physical quantities except pressure are exchanged be­
tween meshes at every time step. The Poisson equation for pressure is solved 
by SOR, so we have to exchange pressure data at every iteration. 

3. Numerical method 

The numerical procedures are based on the MAC method. For the time 
marching, the first order explicit scheme is used. For discretization, the 
second-order central spatial differencing is employed except for the convec­
tive terms. A non-staggered mesh system is employed, where all physical 
quantities are defined at the same location for a grid. 

In this simulation, the dynamic subgrid-scale model (Germano et al. 
1991) based on the Smagorinsky model is applied. The coefficient C is 
evaluated using the least square approach (Lilly, 1992). To stabilize the 
dynamic model, the coefficient C is bounded to be non-negative but it is 
not averaged over the spanwise direction. 
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Figure 3. Instantaneous flow pattern around a square cylinder; left, vorticity(wz ) con­
tours; right, contours of 0 (contour lines: 0=0.01). 

4. Computational conditions 

The approaching flow is assumed to be uniform(Uo) on the inflow surface 
boundary and the convective condition is employed on the outflow bound­
ary. The convection velocity is set to be equal to the uniform inflow velocity. 
Periodic boundary conditions are used in both spanwise and transverse di­
rections. The Reynolds number based on the incoming velocity Uo and the 
depth of the square cylinder d is 22,000. 

The time step size of this calculation is 0.001 (tUo/ B) and it cost about 
19 hours per shedding cycle on one processor of a Fujitsu VX. Total sam­
pling time is about 39(tUo/d), which is equal to 5 shedding cycles, and the 
sampling rate' of data is about 0.1(tUo/d). 

5. Predicted data 

Time- and span-averaged values of the reattachment length, Strouhal num­
ber, drag coefficient Cd, lift coefficient Cl, rms fluctuation of Cd and rms 
fluctuation of CI are give in the preceding paper in this volume by Yoke. 

Figure 3 shows the instantaneous pattern of vorticity and C around the 
square cylinder (innermost mesh). The shear flow separating from the front 
corner of the square cylinder is in the early stage of transition to turbulence 
and C is estimated below 0.01 in these areas. 
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NUMERICAL ANALYSIS OF LES OF 
FLOW PAST A LONG SQUARE CYLINDER 
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Abstract. The flow past a bluff body is frequently associated with periodic 
vortex shedding. In this paper, the turbulent flow past a square cylinder 
is simulated by larg-eddy simulation. The Smagorinsky model (1963) is 
adopted as the SGS model for the subgrid Reynolds stress term. In addition, 
an upwind-biased scheme is used for discretizing the convection term to 
stabilize the numerical calculation. The effect of the upwinding is found to 
be rather significant. The magnitude of the numerical viscosity term of the 
upwind scheme is controlled to minimize its effect. 

1. Introduction 

Most practical engineering flows are turbulent and complex in geometry. 
Large eddy simulation (LES) provides an effective tool for complex tur­
bulent flows. Subgrid scale (SGS) models are introduced to represent the 
unresolved subgrid scale motions. The SGS model used most widely is the 
Smagorinsky model (1963). On the other hand, the dynamic SGS model 
proposed by Germano et al. (1991) has been applied for determining the 
unknown variable model coefficient from the information of the resolved 
velocity field. 

For the flow past a square cylinder, Mochida et al. (1992) simulated the 
flow using the LES method. A workshop on LES was held coordinated by 
Rodi and Ferziger in 1995, in which the flow past a square cylinder was one 
of the cases in the workshop. Several groups submitted the time-averaged 
and the phase-averaged velocities and turbulent intensities, and compared 
their results with the experimental data (Lyn et at. 1994). 
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The Smagorinsky model was applied by Breuer et al. (Cs = 0.1) and by 
Kobayashi et al. (Cs = 0.13), using respectively the 2nd order central and 
QUICK schemes for the convection term. Wang and Vanka, Archambeau 
et al. and Tamura et al. employed the dynamic model, and their calcu­
lations were performed with QUICK, the 2nd order central and the 3rd 
order upwind schemes respectively. The present authors' group calculated 
the flow using the 3rd order upwind scheme (UTOPIA) for the convection 
term without the SGS model to investigate the influence of the numerical 
viscosity on the result. 

The main incentive of LES is to perform turbulent simulation with the 
use of a rather coarse mesh, because if a fine enough mesh could be adopted 
one could perform a direct numerical simulation. Since it is inevitable to 
utilize a rather coarse mesh, LES is often associated with problems of nu­
merical instability. A common way to resolve this problem is to introduce 
an upwind-biased scheme such as QUICK or UTOPIA in the convection 
term of the momentum equation. The upwind-biased scheme, however, in­
troduces numerical viscosity and contaminates the effect of the SGS model. 
This is a dilemma in LES work. 

In this paper, the turbulent flow past a square cylinder is analyzed by 
LES using the Smagorinsky model (1963) with the non-slip condition over 
the solid surface. An upwind-biased scheme is introduced to stabilize the 
numerical calculation, and an attempt is made to minimize its effect on the 
numerical results. 

2. Fundamental equations 

Unsteady incompressible flow is considered. The continuity and grid-filtered 
Navier-Stokes equations are 

(1) 

(2) 

where 

(3) 

We assume that the summation of the Leonard term Lij and the cross term 
Cij is zero. The standard Smagorinsky model (1963) is adopted as the SGS 
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model for the Reynolds stress term Rij, 

v2 

KSGS = (CK
t/}.) 2 ' 
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(4) 

(5) 

(6) 

where KSGS is the subgrid scale turbulent kinetic energy. Sij and ~ are the 
grid scale (GS) strain-rate tensor and the grid-filter width, respectively, 

-S . _ 1 ( 8Ui 8Uj) . - -+­
lJ - 2 8xj 8X i 

(7) 

(8) 

Here, ~xi(i = 1,2,3) is the grid spacing in the i direction. In eqs. (5) and 
(6), the coefficients Cs and CK are given as 

Cs = 0.10, CK = 0.094. (9) 

To take account of near wall effects, ~ is multiplied by the van Driest wall 
damping function: 

fw = 1-exp(-y+jA+). (10) 

The common value adopted for the empirical coefficient A+ is 26. 

3. Calculation methods and conditions 

The governing equations are discretized on a staggered grid using the finite 
difference method. Second order central differencing is adopted for both the 
pressure and diffusion terms. 

The coupling scheme between the continuity and momentum equations 
is based on the fractional step method. Time marching is performed with 
use of the 2nd order explicit Adams-Bashforth scheme for both the convec­
tion and viscous terms. 

The calculation domain is shown in Fig. 1. The number of grids is 
109 x 78 x 20 for cases 1 and 2, 125 x 78 x 20 for case 3, and 107 x 103 x 20 
for cases 4 and 5. The Reynolds number based on the inflow mean velocity 
and the square cylinder side length is 22,000. The time increment ~t is 
0.0005 for all cases. 

The non-slip condition is applied on the surface of the cylinder, while 
free-slip conditions are adopted on the top and bottom domain boundaries. 
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TABLE 1. Parameter a 

I SGS I Parameter a 

case 1 yes no ( 2nd order central scheme ) 
case 2 yes a = 1.0 : ( whole domain) 
case 3 no a = 1.0 : ( whole domain ) 
case 4 yes a = 1.0 : ( -3.5 :::; y/ D :::; 3.5 ) 

a = 0.0 : ( otherwise) 
case 5 yes a = ao exp(-vt/lOOv) ( ao = 1.0 ) 

The periodic boundary condition is used in the spanwise direction. At the 
inflow boundary, constant velocity without perturbation is imposed. For the 
exit boundary condition, we assume a zero gradient condition for velocity 
and a constant value for pressure. 

Firstly, a calculation has been made using the Smagorinsky model (1963) 
and with no use of the upwind scheme (case 1). The results, however, suf­
fered from numerical instability. To avoid the numerical instability, the 
upwind-biased scheme is introduced into the convection term of the Navier­
Stokes equation. It is represented by 

f O<PI = ox x=i 
f . -<Pi+2 + 8<Pi+l - 8<Pi-l + <Pi-2 
, 12~x 

+ If.1 <Pi+2 - 4<Pi+l + 6<Pi - 4<Pi-l + <Pi-2 
a , 12~x ' (11) 

a is a parameter to control the magnitude of the upwinding. When a = 0, 
it tends to the 4th order central scheme; when a = 1, to UTOPIA. The 
upwind scheme is introduced in the whole region to stabilize the calculation 
(case 2). On the other hand, the calculation can proceed even without 
introducing the SGS model (case 3). Thus, the effect of the upwind scheme 
is quite significant. Then an attempt is made to minimize its effect through 
control of the magnitude of the parameter a (cases 4 and 5). The model 
and calculation conditions are summarized in Table 1. 

4. Results 

An instantaneous velocity field from case 1 is shown in figure 2. Numer­
ical oscillation is observed in the region at the front of the square cylinder. 
The upwind scheme was introduced for the convection term to prevent 
occurrence of this numerical instability, as given in Table 1. 

The Strouhal number St and the drag coefficient CD are given in Table 
2. The LES calculations (cases 2 to 5) give fairly good agreement with the 
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Figure 1. Geometry of the domain. Figure 2. Velocity vectors for case 1. 

experimental data (Lyn et al. 1994) but are somewhat higher than the 
experiment. 

Figure 3 gives the time averaged streamwise velocity u along the vertical 
line at the center (x = 0) of the cylinder top surface. In the following, the 
over bar and the prime mean the time averaged value on the grid scale 
and the difference from it, respectively. (Note the different definitions from 
Eqs.(l) to (4) .) In the vicinity of the wall, the calculations underpredict u 
in comparison with the experimental data (Lyn et ai. 1994). The numerical 
viscosity in cases 2, 4 and 5 are different, but they do not affect the results in 
this region much. The cases with the SGS model give a slightly better result. 
Closer inspection indicates that the reattachment does not take place on the 
top (or bottom) surface of the cylinder in the experiment while it does in 
the LES calculations. Moreover a small counterclockwise 'sub-recirculation' 
is observed in the calculations with the SGS model (cases 2, 4 and 5). These 
are the reasons for the discrepancies in the present calculations. 

Figure 4 shows the distribution of the time averaged streamwise velocity 
u along the centerline. All the calculations underpredict the length of the 
time averaged separation behind the square cylinder. In front of the square 
cylinder, the results are not much influenced by the calculation methods, 
but fairly large differences are found in the wake region . The centerline 

TABLE 2. Strouhal number and drag coefficient 

I St I CD II I St I CD 

Exp. 0.132 2.1 case 4 0 .139 2.73 

case 2 0 .160 2.72 case 5 0 .161 2.78 

case 3 0.150 2.65 
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Figure 3. Time-averaged velocity u profile Figure 4. Time-averaged velocity u along 
at the cylinder center x = O. the centerline y = O. 

velocities calculated with the SGS model (cases 2, 4 and 5) approach the 
free-stream velocity faster than is measured by the experiment (Lyn et ai. 
1994). The centerline velocity of the case 2 (SGS+UTOPIA) first over­
shoots and then asymptotes to the experimental level. The result of case 
3 (UTOPIA only) is lower than the experiment. Among the present cal­
culations, the results with the controlled magnitude of the upwind scheme 
(cases 4 and 5) give the best agreement with the experiment. 

The contours of the mean streamwise velocity u are shown in figure 7. 
The behavior of the calculated results is similar to that of the experimental 
data. Note that in the region behind the square cylinder, the width of the 
interval in each contour is different. 

Contours of the mean streamwise normal stress u'u' are shown in figure 
8. Two peaks are observed close to the top and bottom surfaces of the 
square cylinder, the position and the magnitude of the peak agreeing fairly 
well with the experimental data. All the calculations give somewhat higher 
peaks than the experiment. 

Contours of the mean crossflow normal stress v'v' are shown in figure 9. 
The position of the maximum point is very close to that of the experiment; 
however, its peak value is significantly higher than the experimental data. 
In addition, the fluctuation decays more slowly than the experiment with 
increasing x. This means that the vertical oscillation of the wake behind 
the square cylinder is more prominent than that of the experiment. 

Figure 10 shows the averaged Reynolds shear stress u'v'. The peak val­
ues of the calculations with the SGS model are higher than those of the 
experiment. In this respect, the calculation with UTOPIA only (case 3) 
gives the best agreement with the experiment. 

Figure 5 shows contours of the instantaneous vt/v for case 2. The value 
is low in the vicinity of the cylinder surface. In the region with the periodic 
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vortex, the magnitude of vt/v is high; in other words, the effect of the SGS 
model is larger in this region than in the close vicinity of the cylinder. 

An attempt has been made to reduce the effect of the upwinding. In 
case 4, the upwind scheme is introduced only in the central region of the 
domain, i.e. -3.5 ~ y/ D ~ 3.5; if the region of nonzero a is restricted 
further, the numerical calculation becomes unstable. In case 5, the magni­
tude of parameter a is decreased as a function of vt/v as given in Table 1. 
Though the parameter a is not uniform in cases 4 and 5 (see Figure 6), the 
calculations proceed stably and their results are in better agreement with 
the experiment. A refinement of the method to control a is left for further 
investigation. 

5. Conclusions 

The turbulent flow past a square cylinder has been calculated by LES using 
the Smagorinsky model. Because of a rather coarse mesh, which is unavoid­
able in LES, numerical instability was observed in the front region of the 
cylinder. To avoid the instability, an upwind-biased scheme (UTOPIA) was 
introduced in the whole calculation region; however, its effect on the calcu­
lated flow field was rather significant. Thus an effort was made to reduce 
the region in which the upwind scheme is introduced. The calculation was 
numerically stable and an improvement was obtained compared with LES 
using the upwind scheme in the whole region. 
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