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A Study of the Effect of Curvature on Fully Developed
Turbulent Flow

By F rank L. Wattendorf, Ph.D., Research Fellow in Aeronautics, 
California Institute of Technology, Pasadena

( < Communicated by H. Bateman, F.R.S.—Received June 28, 1934)

I Introduction

1— The solution of many important problems in aeronautics and 
hydraulics depends largely on the behaviour of turbulent flow along 
curved surfaces. In flow along plane surfaces the following method has 
proved to be successful. The laws of turbulent velocity distribution 
were investigated in straight tubes and channels o f constant cross-section 
and the results applied to the boundary layer with variable thickness.

The present work was undertaken with the idea of isolating the effect 
of curvature on the turbulent flow as much as possible, by using a curved 
channel o f constant curvature and cross-section. It is hoped that the 
results of these experiments may be applied later to the general case of 
curved boundary layers.

II Previous W ork on Curved F low

2— Hydraulic Experiments—Most of the previous experimental work 
on curved flow has been done in connection with special engineering 
investigations of such problems as pressure loss in pipe bends, and flow 
in turbines and water channels. Most of the investigations have been 
made in channels whose depth and breadth were of the same order of 
magnitude—in other words the mean flow occurring was essentially three- 
dimensional in character.

In such a flow, the fast-moving particles in the centre section tend to 
travel outward, are diverted along the walls toward the upper corners, 
and from there toward the inner wall, thus giving rise to a circulatory 
motion of two longitudinal vortices. The nature of such flow has been 
discussed to some extent by Lell,f Isaachsen, $ Hinderks§, and Nippert.||

t  “ Beitrag zur Kenntnis der Sekund&rstromungen in gekrtimmten Kanalen,”
* Darmstadt D iss.,’ 1913.

t  ‘ Z. Ver. deuts. Ing.,’ vol. 55 (1911).
§ ‘ Z. Ver. deuts. Ing.,’ vol. 71 (1911).
II ‘ Forsch. Ing. Wes.,’ p. 320 (1929).
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If, however, the depth of the channel is large compared with the 
breadth, the influence o f the top and bottom boundaries on the flow is 
negligibly small and the mean motion at the centre part is approximately 
two-dimensional. In this case, therefore, the influence of the centrifugal 
forces on the turbulent flow can be properly studied. The present 
investigations are restricted to this case.

3— Betz-Wilcken Experiments—A series o f experiments on two-dimen­
sional flow in curved channels was started by Betz in 1927. Wilckent 
made the first investigations on the boundary layer flow in a series of 
curved channels. In each case the channel depth was large in comparison 
with the breadth in order to avoid the formation of the above mentioned 
secondary vortices. Wilcken studied especially the development of 
boundary layers along curved surfaces and found that the thickness of 
the boundary layer increases much more rapidly on the concave (outer) 
surface, than on the convex (inner) surface. He explains this by the 
supposition that the centrifugal forces at the outer wall promote, and near 
to the inner wall diminish, the turbulent interchange between fluid layers. 
The rapid increase o f the boundary layer thickness is due, according to 
this explanation, to the increased interchange. In Wilcken’s case, dealing 
with two boundary layers separated by potential flow, it is difficult to 
draw any conclusion regarding the influence of the curvature on the 
turbulence, because the fluid paths are not parallel. We can define as 
the fully developed state o f curved flow the state in which the mean 
velocities are parallel to the walls and depend only upon the co-ordinate 
normal to the walls.

4— Maccoll-Wattendorf Experiments—In 1929, Maccoll and the present 
writer used a modified form of the Wilcken apparatus to study the further 
development o f the flow after the boundary layers have come together 
and approach this fully developed state. In order to obtain a fully 
developed flow, a straight channel 2 metres in length was built before 
the curved channel so that the boundary layers met before entering the 
curved portion of the channel. However, these measurements were of an 
introductory nature and indicated clearly the need for further system atic  
work. It was for this reason that measurements were made in an 
improved type of curved channel at the California Institute of Technology, 
as reported in this paper.

t  * Ingen. Arch.,’ vol. 1, p. 4 (1930).
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III P r e se n t  W o r k

5—Channels and M otor—Investigations were made in two different 
hannels, designated I and II, shown schematically in fig. l . f  The 
hannels had a breadth o f 5 cm and a depth o f 90 cm, so that the ratio 
>f depth to breadth was 18 : 1. The ratio was chosen large to avoid 
o far as possible any disturbing influence o f the top or bottom on the 
low, in other words to avoid the formation of the longitudinal vortices

50— 1
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F ig . 1

mentioned in section 2. The channels consisted o f the following main 
parts:—

(a) A  bell-shaped intake with a honeycomb built into the large portion 
of the funnel to straighten out eddies entering from outside.

( b) A  straight section 305 cm long (61 times the channel breadth) for 
the purpose o f building up the flow into a fully developed state.

(c) The curved section, with the walls bent in concentric circular 
arcs, with the radius of the inner wall =  45 cm for channel I, and 20 cm 
for channel II, and the radius of the outer wall =  50 cm for channel I, 
and 25 cm for channel II. The curvature extended through about 300° 
of arc, in order to obtain so far as possible a fully developed curved flow.

t  Mr. G. S. Lufkin was largely responsible for the construction o f  channel I, as 
well as for preliminary measurements.
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This was an improvement over the Gottingen channel of Maccoll and 
the author which extended only through 180°.

(d) An exit cone which formed the transition between the rectangular 
channel section and the propeller section 55 cm in diameter.

6— Pitot Tubes—The two tubes for measuring total head consisted of 
copper tubes bent at right angles, each with a short length of hypodermic 
needle, 0-76 mm in diameter, carefully soldered into its tip. One of the 
tubes was bent slightly so that the tip would come into good flat contact 
with the inner wall, and the other was adapted for use at the outer wall.

A so-called Stanton type tube was used for investigatons of total 
head very close to the walls. It was made by carefully flattening the 
end of a 3/32-inch copper tube. A piece of 0-001-inch shim stock was 
inserted in the end of the tube during the flattening process in order to 
avoid closing of the air passage. The outside dimensions of the tube 
were 0-3 mm X 3 mm and inside 0-15 mm x 2-5 mm.

The tubes were moved through the tunnel by means of a hand operated 
micrometer, adjustable to 0 -01 mm. The location of the measuring 
stations on the channels are shown in fig. 1. There were observation 
holes in the wooden top of the channel above each measuring station, 
so that the position of the tube could be properly adjusted. The stations 
were situated half-way between the top and bottom of the channel. At 
each station there was a small orifice in the wall, even with the tip of the 
pitot tube and displaced 2-5 cm vertically from it, for the purpose of 
measuring the static pressure at the walls.

7— Description o f Measurements—Measurements of total head and 
calculation of static pressure.

Measured points of total head readings at the 180° and 210° sections 
of channel II are shown in fig. 2. It is seen that the curves for 
the two consecutive measurement stations are quite similar, but displaced 
by a constant amount equal to the drop in pressure along the channel 
between the two stations. In straight flow, total head is a maximum at 
the centre of the channel, but for flow in the present curved channels, 
the maximum total head is displaced toward the outer wall, and it is 
fairly flat over a large portion of the channel.

Preliminary work with static pressure tubes indicated that static tubes 
tend to read too low in turbulent flow. It appears that if a static tube 
is placed in an air stream of fluctuating direction, the mean value of the 
pressure reading will be lower than the maximum, the magnitude depend­
ing on the percentage of angular fluctuation of the flow. An additional 
error may also exist in the present case owing to the curvature of the 
streamlines around the tube. At the wall orifices, however, the fluctuation
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lormal to the wall must vanish, and the streamlines will be parallel to 
he wall, so that the readings given by the static orifices are reasonably 
iccurate. For this reason, it was decided to calculate the distribution 
of static pressure from the readings at the wall orifices, according to the 
following method :

Let u and v, fig. 3, be the tangential and normal components o f velocity 
in a curved flow at radius r from the centre o f curvature. Then

Radius m cm
Fig. 2—Total head and static pressure curves for curved channel II, fully developed 

sections, O, 180° section ; x ,  210° section

if we can neglect the effect of the apparent stresses of the type 
The first term represents the centrifugal force, and the second term the 
pressure due to the normal component of velocity. The second term 
vanishes for fully developed flow, and even in the transition region is 
small compared with u2/r.

The calculation for the fully-developed region where the second term 
may be neglected is as follows:
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We have
dp! dr =  p

(1)

Now we assume that the measured value of the total head is accurate 
enough for our purpose
H =  p  +  (2\

It follows from (2)
pu2 =  2 (H — p)
and substituting in (1) gives

dp I dr =  (2 /r(H — p).

Using the pressure at one wall, say the inner 
wall, as reference,

d { p  — Pi)/dr =  (2/r) [(H — pt)  -

F ig . 3

first order whose solution is
This is a linear differential equation of the

P — Pi =  (Mr2) ^ (H — Pi) 2 dr. (3)
Jri

H is taken from the measured total head distribution, p  has been measured 
at the static orifice in the inner wall with good accuracy, and the function 
(H — pi)r is integrated graphically. As a check, the measured value 
of the outer wall pressure was in good accordance with our calculation.

8—Pressure Drop Measurements and Resistance Law—The pressure 
drop along the channels was determined by connecting the static wall 
orifices to a multiple cock so that each orifice could be connected in 
turn to a single micromanometer. A second manometer, connected to 
the orifice at section 9 was used as reference for maintaining constant 
velocity during measurements. Pressure distribution curves at several 
speeds for channel II are shown in fig. 4. For channel I, the pressure 
drop was measured only in the curved portion of the channel, while for 
channel II, the straight section was measured as well. It is interesting 
to note for the case of channel II that the pressures at the outer and 
inner walls begin to diverge about 20 cm in advance of the beginning of 
the curvature. From this divergence point to the 30° section the pressure 
rises at the outer wall and decreases more rapidly at the inner wall until 
the curves proceed as parallel lines. It should be noticed that for the 
straight section the pressures are plotted against length and from the 
beginning of the curvature against angle. The reason for this is that for



resistance law calculations, dp/dx  is used for the straight section, while 
evaluations o f a curved flow are based on the assumptions o f a constant 
dp/dd. That this assumption is justified in the part o f the curved channel 
after the transition stage is seen from the fact that the curves o f pressure 
against angle can be represented by such parallel straight lines.

The resistance coefficient X for channel II, where measurements were 
made in both the straight and curved sections was calculated according 
to the definitions

(4>
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for the straight portion o f the channel, and

=  <5>

U -  7-50 'm/sed Outer wall

j ln n e r

.OuterS -60

F ig . 4— Pressure distribution along channel walls, curved channel II

for the developed curved portion of the channel. In the above formulae 
u — mean velocity, b =  channel breadth, and r0 radius o f the channel 
centre line in the curved portion. The pressure drop along the centre 
line of the curved channel was judged as being the best basis o f comparison 
with straight flow. Fig. 5 shows the result. It is seen that the resistance 
coefficient for the straight entrance is slightly lower than the Blasius 
law for straight pipes with circular cross-section, and that the curved 
portion of the channel has a resistance coefficient only slightly higher. 
Higher resistance coefficients obtained in pipe bends of about the same 2

2 QVOL. CXLVIII.— A.
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curvature may probably be attributed to the secondary vortices of the 
three-dimensional mean flow.

9— Velocity Distribution at Various Stations along Channel_The
velocity distribution was measured at a series o f stations along both 
channels for one Reynolds’ number. The velocity was calculated from the 
curves o f total head and static pressure according to the equation

H =  p  +  £pw2.
1-2

O■O
S 1*°

&tDO

0-8
4-3 4-5 4-7 4-9 54

log R
F ig . 5-—Resistance law for curved channel II. x , straight sections; O, curved

section

For channel II, measurements across the channel were made at con­
secutive stations from section 9, 20 cm before the beginning of the curvature, 
to 210°. The stations were in steps o f 30° o f arc around the curve. A 
condition o f constant mean velocity was maintained during these 
measurements. The velocity curves for the series o f stations are shown 
in fig. 6. For convenience, the base line for the velocity profile at each 
station is displaced by 4 m/sec from the preceding station. The dis­
tribution at section 9 corresponds well with that o f a fully developed 
turbulent flow in a straight channel. The distribution of the 0° section 
shows the beginning of transition from straight to curved flow. The 
30° section shows a strongly distorted profile, with the peak of maximum 
velocity shifted toward the inner wall. This is in good agreement with 
the pressure distribution along the wall shown in fig. 4, where we have 
seen that through this transition region the pressure rises at the outer 
wall and stops at the inner wall. In a potential curved flow, we would 
expect a higher velocity at the inner wall in accordance with requirements 
of constant moment o f momentum, the distribution would have the 
form

■—fi-X

31 asm s/ i i i xo

law

ur — constant.
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Entrance, section 9

150° base line

Radius in cjn
F ig . 6—Velocity distribution in curved channel II

2 Q 2
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A t the 30° section, however, the velocity throughout the inner portion 
of the channel has increased more than the above formula would require 
but after this, it settles down to a steady slope somewhat less than the 
formula requires, at the 150°, 180° and 210° sections, which will be 
termed the fully developed region.

In order to determine if there were any appreciable scale effect in 
the working range of velocities, distributions at the 210° section were 
taken at several mean speeds. The results are shown in fig. 7, and it is

R adius in cm
F ig. 7—Dimensionless velocity distribution in curved channel II. O, U w =  8*44 

m /sec; x ,  XJm ==■ 17-65 m /sec; A, U m =  25-00 m/sec

seen that one curve can be passed through all points, so that the scale 
effect is negligibly small for the present range.

The potential distribution, ur =  constant is also shown in the figure, 
and it is seen that the velocity profile is tangent to this curve at a region 
about 1 cm from the outer wall, denoted by x  and falls only slightly 
away from it throughout a large central portion of the channel.

The profile at the 0° section of channel I was slightly distorted from the 
characteristic fully developed profile for straight flow and the transition
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to fully developed curved flow was quite similar to that o f channel II, 
except that the slope throughout the central portion was less.

The scale effect for the present velocity range at the 210° section o f  
channel I is seen to be small, see fig. 8. This figure also shows the relation 
of the distribution to the potential distribution, ur =  constant.

It is seen that the fully developed profiles for both channels seem to be 
distorted in the direction o f the potential distribution, therefore it seemed 
of interest to plot the ratio ur/(ur)maxfor both channels, and compare 
with w/wmax for straight flow, which should be the limiting case as r

47 48
Radius in cm

Fig . 8— Dim ensionless velocity distribution in curved channel I. • ,  =  31 0
m /sec; x ,  U OT =  25 0 m /sec; o, U m =  10 0 m /sec

approaches infinity. Fig. 9 f shows the comparison, and it is remarkable 
that the difference between the two channels is very small, although the 
deviation from straight flow is large. This clearly indicates the need for 
experimental data for channels o f weaker curvature.

IV Theoretical D iscussion

10— Calculation o f  the t  Distribution fo r the Curved Channel— The 
distribution of the shearing stress rfor a fully developed curved flow may

t  The curve labelled “ concentric cylinders ” in fig. 9 will be discussed in a later 
section.
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be calculated from a consideration of the moments of momentum about 
the centre of curvature o f the channel.

Consider the forces acting on a small element of fluid in a curved 
channel. Fig. 10 represents an element at radius r. The flow is assumed 
fully developed, that is, there is no change of momentum in the tangential

D istance from inner wall in cm

F ig . 9— Ur/Ur  (max) curves for concentric cylinders and curved channel I and II. 
O. straight flow; x ,  channel I, 210° section; A, channel II, 210° section; 
□, concentric cylinders

direction and the mean value o f the normal component is everywhere =  0. 
The only forces acting are pressure and shearing stress. If we take t 
as the shearing stress, then the shearing force on the area formed by the 
arc rd0 and unit depth is t rdQand the moment of this force about the
centre is

rr2dd.
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I f  p  =  pressure, the moment o f the pressure about the origin is pdr . r. 
Equating moments o f force we have

TrV0 +  -  dr <76 — tr2 <76 =  (W r +  <76 — /?<7rJ r

or

Integrating

d(xr2) ^ d p
—f i T  ae *

F £ s * - J ! S ' *
or

T/*2 + c
30 2 +  ’

F ig . 10

where dp/dQ is taken as constant over the radius. This last assumption 
can be derived from the fact that u is independent o f 6 in the fully 
developed flow. We have only to differentiate the equation

dp-J- — 9 — o r r
with respect to 6, which gives

=  0 or is independent o f r.
dro6 c o

The constant o f integration may be determined if  we know the value 
of t  at one point. If we take the point in the channel where t  =  0  as 
reference, and call the radius at this point , we have

r  =  _ ae 2
and finally,

(6)
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The choice of rm has been the subject of some discussion arising from 
various physical interpretations o f t . For laminar flow in a curved 
path, we have

!du
dr (7)

where jjl is the coefficient of viscosity of the fluid. It is customary to use 
an analogous expression for t  in a turbulent flow, namely,

(8)

where s represents the “ apparent ” coefficient of kinematic viscosity, 
or “ exchange coefficient ” of the turbulent mixing process. From this 
point of view it would seem obvious that t =  0 when

du_u __
~d~r r

In his discussion of turbulent flow, Prandtlf introduces the so-called 
“ mixing length ” lor the mean distance which a fluid element travels 
before losing its identity. By means of “ /,” t may be expressed for a 
straight flow as

By an analysis (discussed more fully in section 13) in which he assumes 
that a displaced fluid element in curved flow maintains its moment of 
momentum, Prandtl gives as the expression for t in a curved flow

T = i  p / » ( |2 + ^ ) *  - (10)

whereby it is seen that t =  0 for ^  ^ =  0.

Since most theoretical discussions involve a knowledge of the t dis­
tribution, the importance of determining t  experimentally is evident. 
It was for this reason that an approximate method of determining t0 
at the walls, by means of the Stanton tube, was developed for channel II.

11—Measurement o f  Shearing Stress at the Walls—The Stanton tube 
used for the shearing stress measurements had a mouth opening of 
dimensions about 0-15 mm x 2*5 mm. For orifices of such small 
dimensions, Stanton found that the total head reading of the tube does

t  ‘ Verh. int. Kong. Tech. Mech. Zurich,’ 1926.
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not correspond with the total head at the geometrical centre o f the tube 
but with the pressure at an “ effective ” centre, at a distance 8* from the 
wall of the channel, when the tube is in contact with the wall. Stantont 
determined the effective centre by calibrating his tubes in a channel where 
the flow was laminar in character. For the present experiments, how­
ever, an approximate method was used, as fo llow s:

The shearing stress t 0 at the wall o f the straight entrance section is 
determined by the pressure drop,

t 0 =  b/2 {dpjdx),

where b is the breadth o f the channel. In the region quite close to the 
wall we have a so-called “ laminar sub-layer,” where the shearing stress 
is given essentially by the formula

t 0 =  y.(duo,

(x is the coefficient o f viscosity and (du/dy)0 represents the velocity 
gradient at the wall.

If we define the distance from the wall to the effective centre as 8*, 
and the reading o f the total head of the tube as H*, then the effective 
velocity is given as

^pw*2 =  H* —

where p  =  the measured static pressure at the wall.
We have then for t 0 approximately

t0 =  [x (U */8*)

from which 8 *  may be calculated, since t 0 is known for the straight 
channel. Now we assume that 8*is the same function of U* and the 
breadth of the orifice of the Stanton tube in the curved channel as has 
just been found in the straight channel, when in both cases the Stanton 
tube is in contact with the wall. t 0 for the curved channel is determined 
from the measured U* and the corresponding value o f 8* taken from the 
curve of 8* vs. U*.

In each case 8* is determined at several speeds so that the value of 
t 0 can be plotted against Reynolds’ number while the other physical 
parameters involved, such as the breadth of the orifice, and p. remain 
unchanged. The Reynolds’ number is based on the mean velocity in 
the channel, and the channel breadth b.

Curves of the distribution of t  in the fully developed curved region of 
channel II, at R =  25400, on the basis of several different assumptions 

t  Stanton, Marshall and Bryant, ‘ Proc. Roy. Soc.,’ A, vol. 97, p. 413 (1920).
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as to the point where r  = 0 are shown in fig. 11. Curve a corresponds
0 ^

to the assumption that t= 0 for +  -  =  0, whereby rm =  24 0, curve c

corresponds to t =  0 for —  — -  =  0, whereby — 21 *2 cm.

The actual value o f t 0 at the walls as determined by the Stanton tube 
measurements at this Reynolds’ number are indicated by the two small

Straight 
J  sectiond u

d r  r

-0 0 2

Radius in cm
F ig . 11— Distribution o f  t for curved channel II

squares. Curve b is the calculated curve which most nearly satisfies 
both wall values. This curve passes through zero at the point rm =  21*7, 
which lies between the curves c and , although close to c.

Physically this may mean that since both expressions for t  represent 
approximations to the true conditions, they may both be partly right, 
and the actual flow may be a combination of several processes, so that 
the corresponding curve lies between the two theoretical curves. The
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ucceeding evaluation o f results for channel II was made on the basis o f  
he curve b corresponding to the measured wall points. ( — 21 -7.)

12—Measurements with Concentric Cylinders—It was thought o f  
nterest to compare the flow in the curved channel with the Couette 
ype of curved flow, namely flow between concentric cylinders. For this 
purpose a rotating cylinder apparatus, shown in fig. 12, was built, in 
vhich the inner cylinder rotated while the outer was stationary. The 
adius o f the inner cylinder was 20 cm and that o f the outer 25*4, so 
that the curvature was nearly the same as that for channel II.

F ig . 12

For comparison with the curved channel, consecutive measurements 
were made with the Stanton tube, first at the outer wall o f the curved 
channel, and then at the wall o f the stationary outer cylinder. In order 
to obtain equal wall friction for the two cases, the speed of the inner 
rotating cylinder was adjusted until the reading of the Stanton tube was 
the same as for the curved channel. This condition was found to occur 
when the product ur in the centre region between the cylinders, where 
approximately ur =  constant, was the same as the maximum value of ur 
for the curved channel. The distribution of Mr/(Mr)max for the cylinders,
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compared with the curves for the curved channels, is shown in fig. 9 
For the cylinders, (wr)max represents the maximum value o f (ur) excluding 
the region near the inner cylinder.

Fig. 13 shows the measured total head and calculated static pressure 
distribution for the cylinders. It is seen that the total head is practically 
constant throughout a large region, corresponding to the condition of a 
flow with constant circulation. Dimensionless velocity distributions for 
two speeds are shown in fig. 14.

R ad iu s in cm
F ig . 13— Total head and static pressure curves for concentric cylinders, x ,  total 

head ; -------, calculated static pressure

The distribution o f x for the rotating cylinder may easily be calcu lated  
from the value measured by the Stanton tube at the outer wall, using the 
equation o f constant moment o f force

t r =  constant.

The value o f t< for the inner wall is then given by

— voAv
As a check on the accuracy o f the Stanton tube measurement, the 

value of Tf for the inner cylinder obtained by the calculation first men­
tioned was compared with measurements o f Wendt, o f Gottingen, who
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actually measured the torque on the inner rotating cylinder in a similar 
experiment with water. The values check within 3%.

13—Discussion o f PrandtVs Theory for Curved Flow—The influence 
of curvature on turbulent flow has been discussed by Prandtl.f His 
considerations are an extension of Rayleigh’sj investigations on the 
stability of curved flow in an ideal fluid. Rayleigh’s theory will be 
briefly reproduced below,

22 23
Radius in cm

Fig. 14— Velocity distribution between concentric cylinders, inner cylinder rotating ; 
outer cylinder stationary. O, U* =  22-8 m /sec; x ,  U t- = 3 6 - 4  m/sec 
U f =  tangential velocity at inner cylinder

Consider the undisturbed flow of a fluid in a curved path, fig. 15. If 
a fluid element moving with tangential velocity at a distance r from the 
centre of curvature o, be displaced by a disturbing force acting along the 
radius, the moment of momentum of the element, taken around the axis

t  ‘ Vortiage aus dem Gebiete des Aerodynamik Aachen Ks.’ (1929), p. 1.
% “ On the Dynamics o f a Revolving Fluid,” Sci. Pap., vol. 6 (1916).
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perpendicular to u through o, must remain unchanged, since there is no 
component of the disturbing force in the tangential direction. In the 
undisturbed flow, the pressure gradient along r is in equilibrium with 
the centrifugal force.

‘£ - ’7<">

neglecting smaller order terms, such as friction.
Let us consider now a flow where the product decreases with 

increasing r. The accompanying sketch, fig. 16, shows the distribution

7*

6
i 0

F ig. 15

of centrifugal force for such a case. If a fluid element at r0, where 
it has the velocity u0, be displaced outward along r, the requirement for 
constant moment of momentum is

uer =
or .

,. _  oUe 5

where ue is the velocity of the fluid element in its displaced position. The 
centrifugal force of the element is

U 2
Pf

w02 r02
r3

( 12)

We have chosen, however, a flow with decreasing value of ur along the

radius, so that u <  — — for r> r 0, where is the local fluid velocity. 
r

Hence for the centrifugal force

m2 m02 
P - < P - 7 5 - (13)



Substituting equations (1) and (2) in the above inequality we have

dp< p w / ( 1 4 )
d r ^

Hence the centrifugal force o f the displaced fluid element is greater 
than the centripetal pressure gradient, and the motion is unstable, because 
the tendency is for the displaced particle to move further in the same 
direction. Conversely, if the displacement is inward, the centrifugal 
force will be less than the centripetal pressure gradient, and the element 
will be forced further inward.

In a similar manner we arrive at the conclusion that in a flow where 
ur is increasing outward, the elements displaced from their equilibrium 
positions will be forced back to their positions, and the action will be 
stabilizing. If we are dealing with a flow where ur =  constant the con­
clusion is that the stability is neutral.

Fig. 9 shows the curves ur/(ur)max for the curved channels and the 
concentric cylinders. Applying Rayleigh’s criterion, it is concluded that 
the flow is unstable at both walls o f the concentric cylinders as well as 
at the outer wall o f the curved channel, while at the inner wall o f the 
curved channel the flow is stable.

This instability criterion was first stated as far as the author is aware 
by Rayleigh (loc. cit.) in 1916 and was applied and refined by taking the 
viscosity effect into consideration by G. I. Taylort in 1923 in his work 
on the instability o f laminar flow between two rotating cylinders. Later 
this criterion was found independently by Bjerknes and SolbergJ in the 
course o f their meterological investigations in 1927.

Prandtl applies Rayleigh’s reasoning to developed turbulent flow in 
the following way : he assumes that the transfer o f momentum between 
circular sheets is due to a displacement o f fluid particles perpendicularly 
to the mean streamlines. For this displacement it is assumed, according 
to Rayleigh’s considerations, that the product ur remains constant. The 
path of convection or mixing length will be denoted by /, and the mean 
value of velocity by u. Obviously the moment o f the shearing stress t 
is equal to the transfer of moment o f momentum per unit area. This 
latter quantity is given by d(ur)

 ̂  ̂ dr
Thus we obtain the equation

r d  (ur)
t r =  p Iv —  dr

t  ‘ Phil. Trans.,’ A , vol. 223, p. 289 (1922).
J ‘ Avh. norske Vidensk Akad.,’ vol. 50, N o. 7, Oslo (1929).
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or

The quantity

T = p/vd  ( u) 
rdr

d_ (ur)_ ,
rdr dr r

( 15)

represents the amount of vorticity at the point considered. This formula 
is identical with Prandtl’s formula for shearing stress in parallel motion

except that the slope of the velocity is replaced by ^  +  - .  In both
dr r

cases the vorticity is the same.
Using the expression (15) for the turbulent shearing stress, Prandtl 

concludes from energy considerations that turbulent motion can be 
permanently maintained when, assuming w >  0

(a) ~  0 
dr r

or
(b) duU- q 

dr r and du
dr —  2 -  >  0 . r

Prandtl concludes from his energy considerations, that the stabilizing
XJL I f *effect depends on the value of the parameter 0 — T . T ------r . If 0 isdujdr — u/r

positive / is decreased (stabilizing effect), if 0 is negative / is increased 
(labilizing effect) in comparison with the value of / prevailing at a corre­
sponding place in a straight channel.

Unfortunately essential difficulties are encountered in attempting to 
apply the conclusions of Prandtl’s theory over the whole range of the 
channel.

Firstly, the formula (15) requires that t should become zero at the 
point at which the maximum of ur is reached. If the shearing stress is 
represented by a transfer of the quantity ur by the mechanism assumed 
by Prandtl, it must have opposite sign in the ranges of increasing and 
decreasing values of ur. Accordingly the shearing stress distribution 
would correspond to curve ( a) in fig. 11.

Secondly, according to the Prandtl criterion, turbulent motion can 
only exist under the conditions (a) or ( ) above. These are satisfied 
between the inner wall and the point y  and between the outer wall and 
the point x, fig. 7. Therefore, the criterion obviously cannot be applied 
between a: and y, i.e., in the centre part of the channel. Hence, the con­
clusion must be drawn that the Prandtl theory is not suitable for describing



the turbulent exchange in curved flow except perhaps in the neighbour­
hood o f the walls.

It is easy to see that Prandtl’s parameter 6 is positive at the inner wall 
and negative at the outer, so that a stabilizing effect is to be expected at 
the inner wall and a labilizing effect at the outer one.

We arrive at the same result if  Rayleigh’s simple criterion is used as 
an indication for the stabilizing or labilizing effect. The essential 
difference is that the region o f  zero stabilizing effect w ould coincide,

according to Prandtl’s conception, with the point =  +  , while

according to Rayleigh’s criterion, it would coincide with the point

_  =  — - .  It is not possible to decide between these alternatives, but 
dr r
the experiments indicate that the general conclusions o f both are valid 
in the regions near the walls.

t 0 has been measured for channel II so that the product Iv — s, also 
called exchange factor, can be calculated. In order to carry out these 
calculations the slope dujdr has to be determined. Graphical differentia­
tion o f velocity curves appeared to be a rather inexact procedure, there­
fore the following method, suggested by von Karman, was used. Fig. 17 
represents

u
V  W p

denoting the log J V ^ o/ p by x

du/ — r dg  1 
dy  ^ T° ^  d x  ' y  '

N ow  dg/dx  can be determined with a fair accuracy ( fig. 17) and so
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T

can be obtained. In order to compare the exchange factors for the 
straight and curved channel the dimensionless quantity is used,
where b =  channel breadth and u — mean velocity in the channel. In 
fig. 18 the three curves are compared. It is seen that the exchange factor 
is less than for the straight flow at the inner wall, and greater at the outer 
wall, which is in accordance with our expectations o f stability at the 
inner wall and instability at the outer wall.

log p
V

2 RVOL. CXLVIII.— A,
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60 80 100 200 300 400

F ig . 17— x ,  Inner wall, cijrved channel II; o, straight section; □, outer wall
curved channel II
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The calculation of the mixing length / is somewhat uncertain, because 
the expression for the relation between the normal velocity v and / is 
not definitely known. Prandtl himself has used different expressions in 
different publications. For the straight channel, v can be expressed as

v =  / ^ , but it is difficult to see which of the generalizations for curved

flow, namely, v — l 4* or v — l(^pr — is more justified. The

mixing length calculated for both assumptions is shown in fig. 19.

14— The Exchange Coefficient—The difficulty o f deciding between the

expressions ~  and ^  — -  which has appeared in the precedingdr r dr r
section is also made apparent by a discussion of the exchange coefficient 
e which was defined in section 10. Whereas, according to Prandtl’s

reasoning we wrote -
P

s in the generalization of the equation

for laminar flow we have to assume t proportional to the rate of shear, 
i.e., == e — tpj . If such an assumption is justified, then the shearing

stress would disappear at the point where +  ^ . This point can be

determined by drawing a tangent from the centre of curvature to the

2 r  2
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velocity distribution curve. The corresponding curve is given in fig. lj 
curve c.

The point t —. 0 obtained in this way is nearer to that obtained from 
the actual measurements than the point where the vorticity == 0, 
but the difference is also too considerable to be explained by inexact 
measurements. It seems to be probable that the shearing stress in 
curved flow is not the determining factor for the velocity distribution. 
Other possible explanations for the measured velocity distributions are 
given in a later section.

15—Representation o f Velocity Distribution for the Region Outside 
of the Wall Neighbourhood—von Karmanf has shown for the straight 
channel at reasonably large Reynolds’ numbers that the function

-max----- , where wmax denotes the maximum velocity in the centre of the
V t#/p

channel and t 0 the shearing stress at the walls, is independent of Reynolds’ 
number and also of the physical properties (roughness) of the walls. 
This means that, except for the immediate neighbourhood of the walls 
and the range of comparatively low Reynolds’ number, the viscosity 
has no noticeable influence on the turbulent interchange and we obtain 
a family of similar curves for all velocities, dimensions and grades of 
roughness. Dr. von Karman suggested to the author the introduction 
of the pressure drop dp/dx instead of the shearing stress into this repre-

sentation, so that the universal function becomes ---- max —. Here
. dp .bdx

b represents one-half the width of the channel considered. The author 
tried to extend this method of representation to the curved channel. 
Using von Karman’s representation for the straight flow wmax — repre­
sents the difference between the velocity corresponding to a uniform or 
potential flow and the actual velocity. In curved flow it seems to be 
logical to take the difference between the velocity corresponding to the 
potential flow, ur =  constant, and the actual velocity. Accordingly, 
the curve ur =  constant has been drawn tangential to the measured 
velocity distribution curve. The velocity corresponding to the first 
curve is denoted with up and the difference is used in the repre­
sentation. By this procedure the channel is divided into two unequal 
parts, and it is logical to use instead of the half breadth b, the distances 
from the point corresponding to («r)max to the two walls, denoted by be.

t  ‘ Nach. Ges. Wiss. Gott.,’ p. 58 (1930).
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The function
\ /  1 / p .

dp
is plotted in fig. 20 as function o f

where y  denotes the distance from the reference point ( — ( )
the walls, and r v denotes the radius o f  the reference point.

k) to

0 -2 -4 y A -6 -8 1-0

F ig . 20— D im ensionless velocity distributions in  curved channels I and II. □, Channel 
I in n er; A, channel II in n er; o ,  channel I o u ter ; x , channel II outer

It is a remarkable coincidence that a single curve can be drawn through 
the points obtained from the velocity distribution for both walls o f the 
two channels o f different curvature. Hence all these four velocity 
distributions appear as similar. However, it should be noted that the 
velocity distribution corresponding to the straight flow shows a distinctly 
different character.

The author feels that before definite conclusions can be drawn from  
this similarity relation for the velocity distribution, further experiments, 
especially with weaker curvature, are necessary.

It is evident that the above representation cannot be applied to the

rotating cylinders, since in this case ^  =  0. However, another procedure

was followed, whereby similarity was obtained between the cases o f equal 
curvature (channel II and cylinder), namely, the outer wall o f the channel 
and the outer cylinder, and the inner wall o f the channel and the inner 
cylinder. For the inner rotating cylinder, the velocity relative to the 
cylinder must, o f course, be used for the comparison. The representation
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differs from that mentioned in the last paragraph in that — is divided 
hy a/ t 0/ p, where t0 denotes the measured shearing stress at the walls. 
The dimension be is the same as before for the channel, but for the cylinder it 
denotes the breadth in which the product ur changes from its value at the 
wall to the constant value which it maintains through the greater part of the

F ig . 21.— Curves o f  “pote”tial. - where t 0 =  measured wall friction 
VWP

O, curved channel II outer w all; x , outer cylinder; A, curved channel II inner 
w all; □, inner rotating cylinder; • ,  straight channel

region between the cylinders. The breadth be is only about 4 mm at 
the inner cylinder, and about 18 mm at the outer cylinder. The dimension­

less velocity curves representing Unr -  as a function of ylbe where y
V  T0/p

denotes the distance from the reference point as before, is shown in 
fig. 21.
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16— Discussion o f  Taylor's Considerations o f  Vorticity Transport—In 
the considerations o f the last section, the introduction o f  the pressure 
drop seems to be purely arbitrary. However, some justification can be 
found by following the ideas o f  G. I. Taylort concerning the mechanism  
o f turbulent interchange. Taylor considers the transfer o f  vorticity 
between adjacent fluid layers in a turbulent flow, and shows that for a 
two-dimensional parallel mean flow, the transfer o f  vorticity is pro­
portional to the pressure drop. In fig. 22, the distribution o f vorticity

R adius in  cm

-1600
F ig . 22— Vorticity distribution in channel II

over the cross-section is represented. First we notice that the slope o f the 
vorticity has the same sign through the cross-section. We remember in 
Prandtl’s theory the difficulty that the shearing stress and the transfer 
of moment o f momentum, which are supposed to be identical, pass 
through zero at very different points o f the cross-section. Such a dis­
crepancy is avoided in Taylor’s theory, since, as we have noted, the rate o f  
change o f vorticity has only one sign across the channel. It seems, 
therefore, that the consideration o f the transport o f vorticity governed

t  ‘ Proc. R oy. Soc.,’ A , vol. 135, p. 678 (1932).
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by the pressure drop may give a more adequate starting point for the 
understanding of the velocity distribution in a curved turbulent flow 
than the consideration of the transport of momentum and the shearing 
stress.

17— Velocity Distributions in the Neighbourhood o f the Walls—It is 
known that the velocity in the neighbourhood of a smooth straight surface 
can be expressed as a function of the shearing stress t 0 acting on the 
wall, the distance y  and the two physical parameters, the density p and 
kinematic viscosity v, i.e., u== F (T 0y p v ). Dimensional analysis shows 
that the only possible form of this function is

u — V W p  • F [ V T0/p

The quantity V ^ol9 represents a velocity so that the ratio T 0/p  
appears as a function of the dimensionless combination V p y/v.  In 
order to approximate the function F T0/p y/v]  power formulae are 
frequently used von Karman has shown that such power formulae 
with different exponents in different ranges of Reynolds’ number are to 
be considered as interpolation formulae for the following unique logarith­
mic law which he deduced by theoretical considerations

=  a +  b log [ V T0/p y/v]•

Nikuradsef found this relation to be substantiated very well by his 
experiments. He called it the universal velocity law in the neighbourhood 
of a wall. To be sure, the equation fails in the immediate neighbourhood 
of the wall because of the presence of a laminar sub-layer, which apparently 
is important for V x 0/p y/v <  30 (cf. fig. 20). ___

In the flow along a curved surface, we cannot expect the ratio 
to be a function only of the above-mentioned dimensionless quantities, 
because with the curvature a new parameter with the dimension of a 
length enters. We can expect, indeed, that the deviation from the 
universal distribution is opposite for concave and convex curvatures. 
In fig. 23 the ratio u/VT0/p is represented as function of V ^o/ p y /v f°r 
channel II and the inner and outer cylinders. Unfortunately the exact 
value of t0 has only been measured for channel II. However, the 
difference in x are comparatively small so it seemed to be allowable to 
take a value of xfor channel I gained by interpolation between the straight

f  * Proceedings o f the 3rd International Congress for Applied Mechanics, 
Stockholm (1930).
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channel and curved channel II. The curves /  and g  are obtained in this 
way and represent the dimensionless velocity distribution in channel I. 
It is seen that the deviation from the straight flow curve is, in fact, in 
opposite directions for opposite signs of curvature, and that the magnitude 
of the deviation increases with curvature.

F ig . 23—Dimensionless velocity distribution near wall for curved channel II and 
concentric cylinder, a, O straight; b, x  curved channel II inner; c, curved 
channel II outer; d, A inner rotating cylinder; e, ■  outer stationary cylinder; 
/ ,  •  curved channel I inner; g, y  curved channel I outer

As has been mentioned above, the velocity distribution for the straight 
smooth wall can be approximated in a certain range of Reynolds’ numbers

by a power law 7==r  —  constant [V^o/p>7v]1/n- It seemed interesting
v W p

to try such a representation also for flow along the curved surfaces.
In order to express the influence of the curvature, a new dimensionless 

parameter composed of curvature, shearing stress, and the physical
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parameters must be introduced. It is easy to see that the only such
V

dimensionless combination is given by — 7==- where r. denotes
w W  p

the radius of curvature. Fig. 24 represents the smooth curve obtained 
by plotting the exponent n of the above power formula against the 
dimensionless curvature parameter. Straight flow corresponds to

---- v .. =  0 and for this case the value of is 7 *2. The exponent n has
''cV W p
greater and smaller values for positive and negative values of curvature 
respectively. It seems to the author that such an extension of the uni-

5̂
boO

r—l|S

5*
&JDO1—i
g

r-C

£
O
mo

!S

Outer w all | .. 
curved,channel it

Outer wall I 
curved channel i

m r ln n er  w all— 7 
curved channel i

Inner w all 
curved channel II

Fig . 24

versal velocity distribution near the wall to the case of curved surfaces 
has some importance especially for the calculation of boundary layers 
along such surfaces. Unfortunately the curve plotted does not represent 
a generally valid universal function since the results obtained for the 
rotating cylinders do not fit on it.

In fig. 23 the curve e represents the velocity distribution corresponding 
to the neighbourhood of the stationary outer cylinder and curve the 
velocity in the neighbourhood of the rotating inner cylinder. It is seen 
that these curves do not fit in the family of curves otained for the 
curved channel. For instance, the curvature in cases b and c is almost 
exactly the same as for cases d  and e and the curves are distinctly 
different. It should be noted that the case of the rotating inner cylinder



Fully Developed Turbulent Flow 597

differs from the case of the flow along a stationary wall since the action 
of the centrifugal force is quite different in the two cases. However, if 
a kind of general velocity distribution exists depending only on shearing 
stress, curvature, and on the physical constants, the curves for the outer 
concave cylinder and the outer wall of the curved channel II should be 
practically coincident. It appears that further experiments are necessary 
to clear up this point. The difference may perhaps be explained by the 
fact that, in the case of the rotating cylinder, the pressure is constant 
along the wall, while in the case of the curved channel a pressure drop 
exists.

V Conclusion

The measurements with these two channels of different curvatures, 
and with the concentric cylinders have shown the following general facts:

1— There is only slight increase in channel resistance due to the present 
curvature and there are indications that previous results with curved 
pipes were probably influenced greatly by the secondary vortices of three- 
dimensional mean flow.

2— The velocity distributions are strongly influenced by curvature and 
the flow through the centre region approaches the potential flow following 
the law ur — constant.

3— Rayleigh’s stability criterion predicts instability and increased 
mixing at the outer walls of the curved channels, and stability and 
decreased mixing at the inner wall. Calculations of exchange factor 
and mixing length lend support to this idea.

4—Two kinds of similarity may be obtained. Case (a) : The channel

is divided into two unequal parts, at the point where +  -  =  0, at a
dr r

radius denoted rp, and the distance from this point to the channel walls 
denoted as the effective breadth, be. Similarity between the flow in the 
two regions of the channels may be obtained by taking the difference 
between the actual velocity and the potential velocity corresponding to

ur =  (ur)max, dividing by the quantity / y / 1 / p be, and plotting

against the dimensionless distance from the wall y/be. That both 
channels appear similar is probably due to the fact that the difference 
in curvature between the two channels is not great enough to be noticeable 
for this type of representation. The rotating cylinders cannot be repre­
sented in this manner, since the pressure is constant along the walls. 
Case (b): by means of a difference representation, however, similarity
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between the outer wall of the curved channel II and the outer cylinder 
and between the inner wall of the channel and the inner cylinder has been 
obtained. The representation differs from that just mentioned in that 
up — w is divided by V t 0/ p , where t 0 =  measured wall friction. The 
inner and outer walls are now different and both differ from the corre­
sponding curve for straight flow.

The Vertical Distribution of Atmospheric Ozone in
High Latitudes

By A. R. M eetham, D.Phil., and G. M. B. D obson, D.Sc., F.R.S.

( Received October 15, 1934)

In conjunction with Dr. Gotz we have recently given an account* 
of a new ■ method of finding the vertical distribution of ozone in the 
atmosphere, and have used this method to determine the distribution 
above Arosa, Switzerland. It was found that the average height of 
the ozone in the atmosphere was much lower than had previously been 
thought, and these results have since been confirmed by Professor Regenerf 
who has obtained ultra-violet spectra from small balloons up to a height 
of 30 km. So far the vertical distribution of ozone has not been found 
anywhere except in Switzerland and in view of the connection between 
the variations in amount o f ozone and atmospheric pressure distribution, 
and with polar and equatorial air currents, it was of interest to know 
the distribution in high and low latitudes also. By the kindness of 
Professor Vegard and the Norwegian Committee for Geophysics arrange­
ments were made to take one of the special photoelectric spectro­
photometers:!: for measuring ozone to Troms0 (latitude 69° 40' N., 
18° 57' E.) where observations were carried out at the Nordlysobserva- 
torium during May and June, 1934. It had been hoped that by taking 
observations in the early summer some days with very high ozone content 
would have been found; unfortunately this did not occur and the ozone 
content only ranged from 0-230 cm to 0-294 cm, 13 good days’ observa­
tions being obtained in all.

* ‘ Proc. Roy. Soc.,’ A, vol. 145, p. 416 (1934).
t  ‘ Phys. Z.,’ vol. 35, p. 19 (1934).
% Dobson, ‘ Proc. Phys. Soc. Lond.,’ vol. 43, p. 324 (1931).


