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Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

The equations of the k — € turbulence model can be generalized as follows,

Vik+V-(uk)=7%:Vi—e+ V- [(V—F&) Vk] + Ly
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Vie+ V- (Qe) = celfléTR Vi — C€2f2% +V. KH ?) Ve] s

At this point, by changing the values of the coefficients fi, fs, f,, Lx, and L. we can obtain
different formulations of the k — € turbulence model.

For example, by setting the coefficients fi, f2, f., to one and the coefficients L, and L. to zero,
we recast the standard k£ — e turbulence model.



Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

« One of the drawbacks of the standard £ — € model is that it can only be used with wall
functions.

«  Actually, and without any modification to the standard k — € turbulence model, the
equations can be integrated in the viscous sublayer all the way down to wall, but the
results will deteriorate.

« The standard k — € turbulence model is a wall modeling model.

« This also applies to the RNG k — € [1, 2] and realizable k — € [3] turbulence models, as
both models are variants of the standard & — € turbulence model.

« To avoid this limitation, we can integrate the governing equations in the viscous sublayer all the
way to the wall by adding a few modifications to the original formulation.

«  The resulting formulations are known as low-Reynolds number k£ — € turbulence models.

* The terminology low-Reynolds number refers to the Reynolds number measured normal to the
wall (something similar to the y* normal to the wall) and not the system Reynolds number.

[11 V. Yakhot, S. Orszag. Renormalization group analysis of turbulence: 1. Basic theory. Journal of Scientific Computing. Vol. 1, pp. 3-51. 1986.

[2] V. Yakhot, S.A. Orszag, S. Thangam, and C.G. Speziale. Development of Turbulence Models for Shear Flows by a Double Expansion technique. Physics of Fluids A Fluid Dynamics, 4(7), 1992.
[3] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids, 8
24(3):227-238, 1995.



Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

«  The first low-Reynolds number k — € turbulence model was developed by Jones and Launder
[1, 2], and subsequently it has been modified by several authors.

« The primary modifications introduced by Jones and Launder [1, 2] were to include turbulence
Reynolds number dependency functions fi, f2, and f..

» The purpose of these functions is to correct or damp the behavior of the turbulent viscosity as
we approach to the walls.

 The main idea is getting asymptotically consistent near wall behavior.

* Furthermore, additional terms L; and L. were added to the equations to account for the
dissipation which may not be isotropic.

* Recall that the turbulence Reynolds number is related to the Reynolds number of the integral
scales and can be computed as follows,
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[1]1 W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301-314, 1972. 9
[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119-1130, 1973.



Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

« Closure functions and coefficients for the k& — € turbulence models.

Model

Standard

Jones-Launder [1,2]

Launder-Sharma [3]

Hoffman [4]

Nagano-Hishida [5]

Chien [6]
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[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp.
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[3] B. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass

Transfer, Vol. 1(2), pp. 131-138. 1974.
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Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

« Closure functions and coefficients for the k& — € turbulence models.

Model Cu C Ceo Ok Oe¢
Standard 0.09 1.44 1.92 1.0 1.3
Jones-Launder [1,2] 0.09 1.44 1.92 1.0 1.3
Launder-Sharma [3] 0.09 1.44 1.92 1.0 1.3
Hoffman [4] 0.09 1.81 2.0 2.0 3.0
Nagano-Hishida [3] 0.09 1.45 1.9 1.0 1.3
Chien [6] 0.09 1.35 1.8 1.0 1.3
References:
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Generalization of the £ — ¢ turbulence model and low-Reynolds formulation

» Closure coefficient C,, as a function of Re.

« These plots illustrate the damping effect towards the walls of the function f,,.
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The k£ — w SST turbulence model

« The equations of the k — w SST turbulence model [1] are the following ones,

Vik+ V- (ak)=7%:Va— B%w+ V- Ku+ﬁ> Vk]

ot Uy 0w W

Cblk
max (ajw, Fo()
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Magnitude of the vorticity tensor Anti-symmetric part of the velocity gradient (vorticity tensor)

» This model features several closure coefficients, blending functions, and auxiliary relations.

* Many of the coefficients used in this model are computed by a blend function between the
respective constants of the k¥ — ¢ and k£ — w models.

[1]1 F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, Vol. 32, No. 8, 1994, 1598-1605, 1994. 16



The k£ — w SST turbulence model

Letting ¢ denote any one of the parameters «,ox,0.,3,8", it , then each of these parameters
varies between a near-wall state ¢; and a far-wall state ¢, according to,

¢ = F1¢1 + (1 — F1)p2

Where F, and arg, are defined as follows,

. vk 5000\  4pousk
Fy = tanh(arg]) arg; = min [max ( pow2

B*wd’ d?w |’ CDy,d?

Notice that 0 < F, <1, and arg, = 0.

In the equations, d is the distance from the wall. So, as d increases, the two expressions in the
maximum of arg, become smaller as well the term that the maximum is being compared to.

Thus, arg, diminishes with d, causing F, to approach zero and ¢ to approach the
far-field value ¢- (the coefficients of the k — € turbulence model).

The opposite behavior occurs as the wall is approached with,
arg; — 00, F1_>17 ¢_>¢1

That is, we obtain the coefficients of the & — w turbulence model.
17



The k£ — w SST turbulence model

« The additional expressions and coefficients used in the formulation are,

1
C'Dy., = max <2paw2—%a—w 1072 )
w Ox; 8%
2k 500v
F, = tanh(argj) argy = max (5*wd’ 2w )
N By owik? By Owok?
1= - a2 = -
Bx VB px VB

or = 0.85, o =1.0, 0o =0.5, ous = 0.856,
B =0.075, B2 =0.0828, A*=0.09, r =041, a3 =0.31

T
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Plot of the function F, as a function of arg;.

When F, = 0 the formulation is in the far-field
conditions. That is, the formulation uses
the k — € model.

And when F, = 1 the formulation is in the near
wall region. That is, the formulation uses
the kK — w model.

The function F, represents a blending between
the two turbulence models.
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When F1 = 0 we use the parameters of
the kK — ¢ model.

This function indicates how the parameters
vary between a near-wall state and a far-wall
state.

The function ¢ blends the parameters of the
two turbulence models.
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The k£ — w SST turbulence model

It is worth noting that the SST model conforms to the k£ — ¢ model away from walls.
And close to the walls it uses a y* insensitive formulation.
The SST model and the Wilcox £ — w model share many common parameters.

By using the following relationship,
e = B wk

And by taking its substantial derivative, and after substituting for the k£ and w derivatives using
the solvable equations of the SST models, gives a differential equation for € of essentially the
same form as the solvable equation of the dissipation rate € of the &k — ¢ turbulence model.

Substituting the far-field form of the constants into the expression yields an equation for the
turbulent dissipation rate ¢ that conforms to that inthe £k — ¢ closure with only small
differences.

The k£ — w SST model (and its variants), is considered the most efficient and general
RANS/URANS turbulence model.

Therefore, it is strongly recommended to use this model.

20
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Vorticity based models

So far, we have used the Boussinesq hypothesis to model the Reynolds stress tensor.
However, we must be aware that different approaches do exist.

For example, an entirely different approach toward handling RANS was originally considered by
Taylor [1] and subsequent authors [2,3,4].

To avoid the appearance of the Reynolds stress tensor, they proposed the use of the following
identity,

U5 = =
J@xj 8.’1)1

— €k U;W

Using this identity, we can write the momentum equation of the RANS equations in the vorticity
transport form,

du; _ du; _ p/p+k)
875 +u$8:cj - 635’1

+vV3au; + €ijk U Wk

In this approach, a model must be sought for the vorticity flux term u;wy .

Closures schemes based on this approach remain largely undeveloped.

References:

[1] G. Taylor. The transport of vorticity ad heat through fluids in turbulent motion. Proc. Roy. Soc., 135A, 1932.

[2] J. Hinze. Turbulence. McGraw-Hill. 1975.

[3] B. Perot, P. Moin. A new approach to turbulence modeling. Center for Turbulence Research. Proc. Summer Program. 1996.

[4] S. Goldstein. A Note on the Vorticity-Transport Theory of Turbulent Motion. Mathematical Proceedings of the Cambridge Philosophical Society, 31(3). 1935
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Third-order and higher order moment closure methods.

 We have seen that in order to derive the Reynolds stress transport equations, we need to
multiply the Navier-Stokes operator N (u;), by the velocity fluctuations, as follows,

6‘u1- 8u@ ap azui
+ puk — K

wiN (uz) + N (u;) = 0

« Basically, we are multiplying the exact momentum equations by the velocity fluctuations in order
to obtain governing equations for 7;; = *u@uj :

* In doing so, we are increasing the order of closure of the equations, from first-order moment
closure to second-order moment closure (in analogy to statistical moments).

* In theory, we can continue increasing the order of the moment closure up to infinite.

» S0, we can derive third-order moment closure equations and so on.

24



Third-order and higher order moment closure methods.

However, as we keep increasing the moment, higher order correlations will keep appearing in
the equations.

For example, in the exact Reynolds stress transport equations, which are second-order
moment closure equations, a triple correlation appears, namely,

o0,
uiujuk

We could derive a set of governing equations for this triple correlation, but the resulting
equations will contain quadruple correlations.

Therefore, it is easier to model this term.

In the third-order moment closure equations, the quadruple correlation is expressed as follows,

ro b, 0,7
uiujukul

It is worth noting that third-order moment closure models do exist, but they are not widely
diffused, and they do not guarantee better results.

25



Third-order and higher order moment closure methods.

* For example, the equations for the third order moments, read as,
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* For the interested reader, works related to third-order moment closure turbulence models can
be found in references [1,2,3,4].
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