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• The equations of the              turbulence model can be generalized as follows, 

• At this point, by changing the values of the coefficients    ,    ,    ,     , and      we can obtain 

different formulations of the             turbulence model.

• For example, by setting the coefficients    ,    ,    , to one and the coefficients       and      to zero, 

we recast the standard              turbulence model.  
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• One of the drawbacks of the standard             model is that it can only be used with wall 

functions.

• Actually, and without any modification to the standard             turbulence model, the 

equations can be integrated in the viscous sublayer all the way down to wall, but the 

results will deteriorate.

• The standard             turbulence model is a wall modeling model.

• This also applies to the RNG              [1, 2] and realizable             [3] turbulence models, as 

both models are variants of the standard             turbulence model. 

• To avoid this limitation, we can integrate the governing equations in the viscous sublayer all the 

way to the wall by adding a few modifications to the original formulation.

• The resulting formulations are known as low-Reynolds number             turbulence models.

• The terminology low-Reynolds number refers to the Reynolds number measured normal to the 

wall (something similar to the y+ normal to the wall) and not the system Reynolds number.

[1] V. Yakhot, S. Orszag. Renormalization group analysis of turbulence: 1. Basic theory. Journal of Scientific Computing. Vol. 1, pp. 3-51. 1986.

[2] V. Yakhot, S.A. Orszag, S. Thangam, and C.G. Speziale. Development of Turbulence Models for Shear Flows by a Double Expansion technique. Physics of Fluids A Fluid Dynamics, 4(7), 1992. 

[3] T. Shih, W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids, 

24(3):227-238, 1995. 
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• The first low-Reynolds number             turbulence model was developed by Jones and Launder 

[1, 2], and subsequently it has been modified by several authors.

• The primary modifications introduced by Jones and Launder [1, 2] were to include turbulence 

Reynolds number dependency functions     ,    , and     .

• The purpose of these functions is to correct or damp the behavior of the turbulent viscosity as 

we approach to the walls.

• The main idea is getting asymptotically consistent near wall behavior.

• Furthermore, additional terms       and      were added to the equations to account for the 

dissipation which may not be isotropic.

• Recall that the turbulence Reynolds number is related to the Reynolds number of the integral 

scales and can be computed as follows,

[1] W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.

[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119–1130, 1973.
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• Closure functions and coefficients for the             turbulence models.

Model

Standard 1.0 1.0 1.0 0 0

Jones-Launder [1,2] 1.0

Launder-Sharma [3] 1.0

Hoffman [4] 1.0 0

Nagano-Hishida [5] 1.0

Chien [6] 1.0

References:

[1] W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.

[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 

1119–1130, 1973.

[3] B. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass 

Transfer, Vol. 1(2), pp. 131-138. 1974.

[4] G. Hoffman. Improved form of the low Reynolds number k-epsilon turbulence model. Physics of Fluids, vol. 18(3), pp. 309-312,1975.

[5] Y. Nagado, M. Hishida. Improved form of the k-epsilon model for wall turbulent shear flows. Journal of Fluids Engineering, vol. 109, pp. 156-160, 1987.

[6] K. Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, vol. 20(1), pp. 33-38, 1982.
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• Closure functions and coefficients for the             turbulence models.

Model

Standard 0.09 1.44 1.92 1.0 1.3

Jones-Launder [1,2] 0.09 1.44 1.92 1.0 1.3

Launder-Sharma [3] 0.09 1.44 1.92 1.0 1.3

Hoffman [4] 0.09 1.81 2.0 2.0 3.0

Nagano-Hishida [5] 0.09 1.45 1.9 1.0 1.3

Chien [6] 0.09 1.35 1.8 1.0 1.3

References:

[1] W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.

[2] W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 

1119–1130, 1973.

[3] B. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass 

Transfer, Vol. 1(2), pp. 131-138. 1974.

[4] G. Hoffman. Improved form of the low Reynolds number k-epsilon turbulence model. Physics of Fluids, vol. 18(3), pp. 309-312,1975.

[5] Y. Nagado, M. Hishida. Improved form of the k-epsilon model for wall turbulent shear flows. Journal of Fluids Engineering, vol. 109, pp. 156-160, 1987.

[6] K. Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, vol. 20(1), pp. 33-38, 1982.
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• Closure coefficient        as a function of ReT.

• These plots illustrate the damping effect towards the walls of the function     .

Semi-logarithmic scale Linear scale



Roadmap to Lecture 6

14

1. Generalization of the               turbulence model and 

low-Reynolds formulation

2. The               SST turbulence model

3. Vorticity based models

4. Third-order and higher order moment closure 

methods

Part 7



The               SST turbulence model

16

• The equations of the              SST turbulence model [1] are the following ones, 

• This model features several closure coefficients, blending functions, and auxiliary relations.

• Many of the coefficients used in this model are computed by a blend function between the 

respective constants of the            and             models.

Magnitude of the vorticity tensor Anti-symmetric part of the velocity gradient (vorticity tensor)

[1] F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, Vol. 32, No. 8, 1994, 1598-1605, 1994. 
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• Letting     denote any one of the parameters                            , then each of these parameters 

varies between a near-wall state      and a far-wall state      according to, 

• Where F1 and arg1 are defined as follows,

• Notice that 0 ≤ F1 ≤ 1, and arg1 ≥ 0. 

• In the equations, d is the distance from the wall. So, as d increases, the two expressions in the 

maximum of arg1 become smaller as well the term that the maximum is being compared to.

• Thus, arg1 diminishes with d, causing F1 to approach zero and      to approach the                  

far-field value      (the coefficients of the            turbulence model).

• The opposite behavior occurs as the wall is approached with,
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• The additional expressions and coefficients used in the formulation are, 

or
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• Plot of the function F1 as a function of arg1.

• When F1 = 0 the formulation is in the far-field 

conditions. That is, the formulation uses           

the             model.

• And when F1 = 1 the formulation is in the near 

wall region. That is, the formulation uses              

the              model.

• The function F1 represents a blending between 

the two turbulence models.

• Plot of any of the parameters        of the 

turbulence model as a function of F1.

• When F1 = 0 we use the parameters of          

the              model.

• This function indicates how the parameters 

vary between a near-wall state and a far-wall 

state.

• The function      blends the parameters of the 

two turbulence models.

2 is equivalent to

1 is equivalent to0 is far away from the walls -

1 is near the walls -

Blending – Stress limiter
Blending
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• It is worth noting that the SST model conforms to the            model away from walls.

• And close to the walls it uses a y+ insensitive formulation.

• The SST model and the Wilcox              model share many common parameters.

• By using the following relationship,

• And by taking its substantial derivative, and after substituting for the     and     derivatives using 

the solvable equations of the SST models, gives a differential equation for     of essentially the 

same form as the solvable equation of the dissipation rate     of the             turbulence model.

• Substituting the far-field form of the constants into the expression yields an equation for the 

turbulent dissipation rate     that conforms to that in the              closure with only small 

differences.

• The            SST model (and its variants), is considered the most efficient and general 

RANS/URANS turbulence model.

• Therefore, it is strongly recommended to use this model.
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• So far, we have used the Boussinesq hypothesis to model the Reynolds stress tensor.

• However, we must be aware that different approaches do exist.

• For example, an entirely different approach toward handling RANS was originally considered by 

Taylor [1] and subsequent authors [2,3,4].

• To avoid the appearance of the Reynolds stress tensor, they proposed the use of the following 

identity, 

• Using this identity, we can write the momentum equation of the RANS equations in the vorticity 

transport form,

• In this approach, a model must be sought for the vorticity flux term           .

• Closures schemes based on this approach remain largely undeveloped. 

References:

[1] G. Taylor. The transport of vorticity ad heat through fluids in turbulent motion. Proc. Roy. Soc., 135A, 1932.

[2]  J. Hinze. Turbulence. McGraw-Hill. 1975.

[3] B. Perot, P. Moin. A new approach to turbulence modeling. Center for Turbulence Research. Proc. Summer Program. 1996.

[4] S. Goldstein. A Note on the Vorticity-Transport Theory of Turbulent Motion. Mathematical Proceedings of the Cambridge Philosophical Society, 31(3). 1935.
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• We have seen that in order to derive the Reynolds stress transport equations, we need to 

multiply the Navier-Stokes operator            , by the velocity fluctuations, as follows,

• Basically, we are multiplying the exact momentum equations by the velocity fluctuations in order 

to obtain governing equations for                      .

• In doing so, we are increasing the order of closure of the equations, from first-order moment 

closure to second-order moment closure (in analogy to statistical moments).

• In theory, we can continue increasing the order of the moment closure up to infinite.

• So, we can derive third-order moment closure equations and so on.
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• However, as we keep increasing the moment, higher order correlations will keep appearing in 

the equations.

• For example, in the exact Reynolds stress transport equations, which are second-order 

moment closure equations, a triple correlation appears, namely,

• We could derive a set of governing equations for this triple correlation, but the resulting 

equations will contain quadruple correlations.

• Therefore, it is easier to model this term.

• In the third-order moment closure equations, the quadruple correlation is expressed as follows,

• It is worth noting that third-order moment closure models do exist, but they are not widely 

diffused, and they do not guarantee better results.
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• For example, the equations for the third order moments, read as,

References:

[1] R. Amano, J. Chai. Closure models of turbulent third-order momentum and temperature fluctuations. NASA-CR-180421. 1987

[2] R. Amano, P. Goel. A study of Reynolds-Stress closure model. NASA-CR-174342. 1985.

[3] R. Amano, P. Goel. Improvement of the second- and third-moment modeling of turbulence: A study of Reynolds-stress closure model. NASA-CR-176478. 

1986.

[4] R. Amano, J. Chai, J. Chen. Higher order turbulence closure models. NASA-CR-183236. 1988.

• For the interested reader, works related to third-order moment closure turbulence models can 

be found in references [1,2,3,4].


