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The Boussinesq hypothesis

• The RANS/URANS approach to turbulence modeling requires the Reynolds stress tensor         

to be appropriately modeled. 
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• Remember, we do not want to resolve the instantaneous fluctuations.

• Even if it is possible to derive governing equations for the Reynolds stress tensor    (six new 

equations as the tensor is symmetric), it is much simpler to model this term.

• The approach of deriving the governing equations for the Reynolds stress tensor       is known 

as Reynolds stress model (RSM).

• Probably, RSM is the most physically sound RANS model as it avoids the use of 

hypothesis/assumptions to model this term.



The Boussinesq hypothesis

• We will address the RSM model in Lecture 6.

• If you are curious, this is how the exact Reynolds stress equations look like,
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1. Transient stress rate of change term.

2. Convective term.

3. Production term.

4. Dissipation rate.

5. Turbulent stress transport related to the velocity and 

pressure fluctuations.

6. Rate of viscous stress diffusion (molecular).

7. Diffusive stress transport resulting from the triple 

correlation of velocity fluctuations.

We  get 6 new equations, but we also generate 22 new unknowns.



The Boussinesq hypothesis

• Modeling the Reynolds stress tensor is a much easier approach.

• A common approach used to model the Reynolds stress tensor     , is to use the Boussinesq 

hypothesis.

• This approach was proposed by Boussinesq in 1877 [1, 2]. 

• He stated that the Reynolds stress tensor is proportional to the mean strain rate tensor, 

multiplied by a constant, which we will call turbulent eddy viscosity. 

• The Boussinesq hypothesis reduces the turbulence modeling process from finding the six 

turbulent stresses in the RSM model to determining an appropriate value for the turbulent eddy 

viscosity       .

• This hypothesis (or assumption) simple states that, similar to fluid viscosity in laminar flows, a 

flow dependent turbulent viscosity may be added to the molecular agitation to represent 

turbulent mixing or diffusion (i.e.,                                   ).

• It is a brutal and flawed approximation to the actual physics, but it has been demonstrated that it 

is accurate if good standard practices are followed.

• However, we should be aware of its limitations and deficiencies.

5[1] J. Boussinesq. Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l'Académie des Sciences 23 (1): 1-680, 1877.

[2] F. Schmitt. About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity, Comptes Rendus Mécanique 335 (9-10): 617-627, 2007.



The Boussinesq hypothesis

• The Boussinesq hypothesis is somehow similar to the hypothesis taken when dealing with 

Newtonian flows, where the viscous stresses are assumed to be proportional to the shear 

stresses, therefore, to the velocity gradient.

• Recall that the stress tensor of Newtonian flows can be written as follows,
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• Using index notation, the Boussinesq hypothesis is written as follows, 

where

where

• If we compare both tensors, they look very similar.

Viscous stress tensor Reynolds stress tensor

• This term is not intended in the original assumption.

• We will address the motive of this extra term later.



The Boussinesq hypothesis

• By the way, do not confuse the Boussinesq hypothesis used in turbulence modeling with the 

completely different concept found in natural convection and buoyancy-driven flows, that is, the 

Boussinesq approximation.

• In turbulence, probably is better to talk about Boussinesq assumption instead of hypothesis or 

approximation.

• But have in mind that in the context of turbulence modeling, Boussinesq assumption, 

Boussinesq hypothesis, Boussinesq eddy-viscosity assumption, and Boussinesq approximation 

they all convey the same concept.

• From now on, we will consistently use the terminology Boussinesq hypothesis.

• The so-called assumption lies in the belief that the Reynolds stresses behave in a similar 

fashion as the Newtonian stress tensor.

• This constitutive equation is a linear stress–strain relation.

• And as for a non-Newtonian flows; nonlinear models have been proposed (which we will study 

later).

• The Boussinesq hypothesis inherently assumes an equilibrium between Reynolds stress and 

mean rate of strain. 

• This may be violated in some flows, where the Reynolds stress is not proportional to the mean 

rate of strain, but it works surprisingly well in a wide variety of flows.
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• Where       is the Kronecker delta and is define as follows,

The Boussinesq hypothesis

• Using index notation, the Boussinesq hypothesis is written as follow, 
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where

• In expanded form, the Boussinesq hypothesis is written as follows,



The Boussinesq hypothesis

• Using index notation, the Boussinesq hypothesis is written as follow, 
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Which is equivalent to the 

Kronecker delta



→ turbulent kinetic energy.

→ turbulent eddy viscosity.

The Boussinesq hypothesis

• The Boussinesq hypothesis is a common approach used to model the Reynolds stress tensor.

• This approach is widely used and accurate (to some extension) but is not the only one. 

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the mean 

strain rate tensor (therefore the mean velocity gradient), as follows,

→ Reynolds averaged strain-rate tensor.

→ identity matrix (or Kronecker delta).
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• At the end of the day, we want to determine the turbulent eddy viscosity. 

• Each turbulence model will compute this quantity in a different way.

• Remember, the turbulent eddy viscosity       is not a fluid property, it is a property needed by the 

turbulence model.



The Boussinesq hypothesis
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• The term circled in the Boussinesq hypothesis, is added in order for the hypothesis to be valid 

when traced.

• That is, the trace of the right-hand side must be equal to the trace of the left-hand side,

• Hence, it is consistent with the definition of turbulent kinetic energy 

This term represent normal stresses, therefore, is analogous to the pressure term that arises in the viscous stress tensor

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the mean 

strain rate tensor (therefore the mean velocity gradient), as follows,



The Boussinesq hypothesis
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• In order to evaluate the turbulent kinetic energy, usually a governing equation for       is derived 

and solved.

• Typically, two-equations models include such an option, as we will see in Lecture 6.

• The term circled in the Boussinesq hypothesis can be ignored if there is no governing equation 

for     .

This term represent normal stresses, therefore, is analogous to the pressure term that arises in the viscous stress tensor

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the mean 

strain rate tensor (therefore the mean velocity gradient), as follows,



The Boussinesq hypothesis

• In expanded form, the Boussinesq hypothesis is written as follows,
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• The contracted strain rate tensor (by setting         ) or trace of the strain rate tensor is equal to,

• By taking the contraction (by setting     ) or the trace of the Boussinesq hypothesis without the 

term         , we obtain the following identity that is false, 

From the divergence-free constraint

where



The Boussinesq hypothesis

• In expanded form, the Boussinesq hypothesis is written as follows,
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• Instead, when taking the trace of the Boussinesq hypothesis and adding the term         , we 

obtain the following identity that holds true,

• The term           has a physical meaning, it represents normal stresses. 

• Therefore, is analogous to the pressure term that arises in the viscous stress tensor.

where

Normal stresses



The Boussinesq hypothesis
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• Closure models based on the Boussinesq hypothesis are known as eddy viscosity models 

(EVM).

• As previously mentioned, the Boussinesq hypothesis lies in the belief that the Reynolds Stress 

tensor behaves in a similar fashion as the Newtonian viscous stress tensor.

• In spite of the theoretical weakness of the Boussinesq hypothesis, it does produce reasonable 

results for a large number of flows.

• The main disadvantage of the Boussinesq hypothesis as presented (linear model), is that it 

assumes that the turbulent eddy viscosity is an isotropic scalar quantity, which is not strictly true.

• There are more sophisticated methods where the eddy turbulent viscosity is treated 

as an anisotropic quantity or a tensor.

• Another weakness of the EVM is that they do not have memory. That is, if we remove the mean 

rate strain tensor, the Boussinesq hypothesis predicts instantaneous zero turbulent shear stress. 

This does not correspond to experiments, where the rate of decay is an observable.

• There are more advanced models that to some extension account for this.

• Unlike linear EVM which use an isotropic eddy viscosity, RSM solves all components of the 

turbulent transport; therefore, RSM models are anisotropic.

• This is the main reason why the RSM models are more physically sound.

Final remarks



The Boussinesq hypothesis
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• EVM models have significant shortcomings in complex, real-life turbulent flows.

• For example, EVM perform poorly in the following situations,

• Flows with sudden changes in axial mean strain, e.g., pipes with restrictions.

• Flows with large extra strains, e.g., curved surfaces, strong vorticity, swirling flows.

• Rotating flows, e.g., turbomachinery, wind turbines.

• Impinging jets, e.g., a jet hitting a wall.

• Highly anisotropic flows and flows with secondary motions, e.g., fully developed flows 

in non-circular ducts or square ducts.

• Strongly three-dimensional boundary layers.

• Non-local equilibrium and flow separation, e.g., airfoil in stall, dynamic stall.

• Many EVM models has been developed, corrected, and improved over the years so they 

address the shortcomings of the Boussinesq hypothesis.

• Without no doubt, EVM models are the cornerstone of turbulence modeling.

Final remarks



The Boussinesq hypothesis
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• Gradient models, such as the Boussinesq hypothesis and the gradient diffusion hypothesis (that 

we will study next) play a central role in turbulence modeling.

• Many authors criticize a lot these hypotheses and question their validity.  

• And paradoxically, they still use these models.

• These hypotheses are used widely and pervasively.

• But instead in focusing all efforts in questioning these hypotheses, it is better to understand why 

they produce reasonable results for a large number of flows, as stated by Saffman [1],

Final remarks

“The continual preaching against the eddy diffusivity hypothesis …              

has not served any useful purpose. The effort would have been better spent trying to 

understand the reasons for the apparent success and the circumstances in which it 

must (not ought to) fail.”

[1] P. Saffman. “Problems and progress in the theory of turbulence”. Structure and mechanism of turbulence II, Lecture notes in physics, Vol. 7, 183, Springer-Verlag, Berlin, 1978.



The Boussinesq hypothesis
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Final remarks – Relationship for the turbulent eddy viscosity

• In most turbulence models, a relationship for the turbulent eddy viscosity is derived using 

dimensional arguments (as we have seen so far and will study later).

• This can be done by using any combination of dimensional groups, that is, velocity, 

length, time, etc. In the end, we should have viscosity units.

• This relationship can be corrected later or validated based on empirical and physical arguments, 

e.g., asymptotic analysis, canonical solutions, analytical solutions, consistency with experimental 

measurements, and so on.

• It is also possible the use numerical arguments to correct, calibrate, and validate the 

relationship. To achieve this end, we rely on scale resolving simulations (most of the time DNS 

simulations).

• Regardless of the approach used, we see a recurring behavior. Specifically, eddy viscosity and 

length scale are all related on the basis of dimensional arguments.

• Historically, dimensional analysis has been one of the most powerful tools available for deducing 

and correlating properties of turbulent flows.

• However, we should always be aware that while dimensional analysis is extremely useful, it 

unveils nothing about the physics underlying its implied relationships.



The Boussinesq hypothesis
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References:

P. Runstadler, S. Kline, W. Reynolds. An experimental investigation of the flow structure of the turbulent boundary layer. Rep. MD-8, 

Stanford Univ., Mech. Eng. Dept., Stanford, 1963.

Final remarks – Turbulent boundary-layer flow structure

• Water flowing in a channel made visible by 

the pulsed hydrogen-bubble technique.

• In the bottom figure, the velocity 

fluctuations are illustrated. As it can be 

seen, the velocity fluctuations are large.

• In the top figure, we can clearly observe the 

strong three-dimensional characteristics of 

the flow. The water is flowing from top to 

bottom.

• Resolving these kind of three-dimensional 

flows using EVM models is difficult.

• The Boussinesq hypothesis will assign the 

same turbulent viscosity value in all 

directions (that is, to all Reynolds stress 

components), indifferently of the strong 

three-dimensional nature of the flow.

• Isotropy is the biggest weakness of the 

EVM models.

• However, many EVM models has been 

developed, corrected, and improved over 

the years so they address the shortcomings 

of the Boussinesq hypothesis.

• The complete sequence of images is 

shown in the next four slides.

x

y

z

When using the Boussinesq hypothesis, the 

turbulent viscosity is the same in all directions



The Boussinesq hypothesis
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Final remarks – Turbulent boundary-layer flow structure

• Water flowing in a channel made visible by the pulsed hydrogen-bubble technique.

• This figure shows the flow in the wake region.

• The velocity fluctuations are weak. There are no strong three-dimensional effects. 

Flow conditions:

a. u = 0.430 ft/sec, y = 3.25 in., y+ = 531. 

References:

P. Runstadler, S. Kline, W. Reynolds. An experimental investigation of the flow structure of the turbulent boundary layer. Rep. MD-8, 

Stanford Univ., Mech. Eng. Dept., Stanford, 1963.



The Boussinesq hypothesis
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Flow conditions:

b. u = 0.430 ft/sec, y = 2.50 in., y+ = 407.

References:

P. Runstadler, S. Kline, W. Reynolds. An experimental investigation of the flow structure of the turbulent boundary layer. Rep. MD-8, 

Stanford Univ., Mech. Eng. Dept., Stanford, 1963.

Final remarks – Turbulent boundary-layer flow structure

• Water flowing in a channel made visible by the pulsed hydrogen-bubble technique.

• This figure shows the flow in the wake region.

• The velocity fluctuations are larger than in the previous figure, and the three-dimensional effects are much 

stronger.



The Boussinesq hypothesis
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References:

P. Runstadler, S. Kline, W. Reynolds. An experimental investigation of the flow structure of the turbulent boundary layer. Rep. MD-8, 

Stanford Univ., Mech. Eng. Dept., Stanford, 1963.

Flow conditions:

c. u = 0.430 ft/sec, y = 0.50 in., y+ = 82. 

Final remarks – Turbulent boundary-layer flow structure

• Water flowing in a channel made visible by the pulsed hydrogen-bubble technique.

• This figure shows the flow in the logarithmic region. 

• The velocity fluctuations are strong. This region of the boundary layer is very energetic.



The Boussinesq hypothesis
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References:

P. Runstadler, S. Kline, W. Reynolds. An experimental investigation of the flow structure of the turbulent boundary layer. Rep. MD-8, 

Stanford Univ., Mech. Eng. Dept., Stanford, 1963.

Flow conditions:

d. u = 0.430 ft/sec, y = 0.050 in., y+ = 8. 

Final remarks – Turbulent boundary-layer flow structure

• Water flowing in a channel made visible by the pulsed hydrogen-bubble technique.

• This figure shows flow extremely close to the wall. 

• The velocity fluctuations are still noticeable but small  in comparison to the previous images. The strong three-

dimensionality has disappeared (compare with figures b and c). 



The Boussinesq hypothesis
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Final touches to the incompressible RANS 

equations



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• Using vector notation, the exact RANS/URANS NSE can be written as follows,

• By using the Boussinesq hypothesis,

• And after doing some algebra, we can now write down the exact RANS equations in the form of 

solvable equations, as follows,

where



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• The solvable RANS/URANS equations, are written as follows,

Normal stresses arising from the 

Boussinesq hypothesis

Turbulent viscosity

Effective viscosity

• In the solvable equations we introduce approximations.  

• All terms are now expressed in function of mean quantities.

• These are the equations that are actually solved by the solver.

• Instead, in the exact equations, we do not use approximations.

• Fluctuating terms appear in the equations.



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• Or using index notation, the exact RANS/URANS NSE can be written as follows,

where

• By using the Boussinesq,

• And after doing some algebra, we can now write down the exact RANS equations in the form of 

solvable equations, as follows,



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• The problem now reduces to computing the turbulent eddy viscosity        in the momentum 

equation.

• This can be done by using any of the models that we will study in Lecture 6.

• Zero equation models.

• One equation models.

• Two equation models.

• Three, four, five, … , equation models.

• Reynolds stress models.

• And so on.



The Boussinesq hypothesis
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The total normalized stress (using wall shear stress), as a function of the 

distance r from the centerline of a pipe with diameter D. The total stress 

consists of a contribution from the Reynolds stress (black circles) and 

the viscous stress (empty circles). Experimental data for a turbulent pipe 

flow at Re = 10000 [1].

The same data as in the left figure, but now as a function of the 

dimensionless distance y+ from the pipe wall in a semi-log plot. In the 

figure, I = core region; II = logarithmic wall region; III = viscous sublayer; 

IV = buffer layer. Note that r = 0 corresponds to y+ = 312 and r = 0.5D to 

y+ = 0 [1].

Exact RANS equation Solvable RANS equation

W
a
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W
a

ll
* ** ***

Reynolds and viscous shear stresses distribution – Turbulent flow in a pipe (experimental data)

[1] F. Nieuwstadt, B. Boersma, J. Westerweel. Turbulence. Introduction to Theory and Applications of Turbulent Flows. Springer, 2016.

* Viscous stress 

** Reynolds stress
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The total normalized stress (using wall shear stress), as a function of the 

distance r from the centerline of a pipe with diameter D. The total stress 

consists of a contribution from the Reynolds stress (black circles) and 

the viscous stress (empty circles). Experimental data for a turbulent pipe 

flow at Re = 10000 [1].

The same data as in the left figure, but now as a function of the 

dimensionless distance y+ from the pipe wall in a semi-log plot. In the 

figure, I = core region; II = logarithmic wall region; III = viscous sublayer; 

IV = buffer layer. Note that r = 0 corresponds to y+ = 312 and r = 0.5D to 

y+ = 0 [1].

[1] F. Nieuwstadt, B. Boersma, J. Westerweel. Turbulence. Introduction to Theory and Applications of Turbulent Flows. Springer, 2016.

• Close to the walls, the viscous stress dominates, and as we get far from the wall, the Reynolds stress 

increases.

• In reference to the right figure. In region I and II the Reynolds stress dominates. In region III the viscous stress 

dominates. In region IV, both, the Reynolds stress and the viscous stress are important.

• The buffer layer is very energetic.
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Reynolds and viscous shear stresses distribution – Turbulent flow in a pipe (experimental data)
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[1] F. Nieuwstadt, B. Boersma, J. Westerweel. Turbulence. Introduction to Theory and Applications of Turbulent Flows. Springer, 2016.

Results from tutorial 1

• Comparison of numerical results (top row) and experimental results (bottom row)

Reynolds and viscous shear stresses distribution

Turbulent flow in a pipe (experimental and numerical results)
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[1] F. Nieuwstadt, B. Boersma, J. Westerweel. Turbulence. Introduction to Theory and Applications of Turbulent Flows. Springer, 2016.

• Comparison of numerical results (top row) and experimental results (bottom row)

Reynolds and viscous shear stresses distribution

Turbulent flow in a pipe (experimental and numerical results)

Results from tutorial 1
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The gradient diffusion hypothesis

• When deriving the exact scalar transport RANS/URANS equation, a new term arose, the 

turbulent dispersion. 

34

• This extra term can be seen as the vector flux diffusing the transported quantity    .

• This term has a similar meaning to the Reynolds stress tensor.

• And as for the Reynolds stress tensor, it requires modeling.

• The simplest model, and most widely used is the gradient diffusion hypothesis.

• Using this model, the scalar turbulent diffusion term            is approximated as follows, 

Scalar turbulent diffusion

• Mathematically, the gradient diffusion hypothesis is analogous to Fourier’s law of heat 

conduction and Fick’s law of molecular diffusion.



The gradient diffusion hypothesis

• By using the gradient diffusion hypothesis, we can obtain the following equation,
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• After some minor algebra, we can write down the exact scalar transport RANS/URANS 

equations in the form of a solvable equation, as follows,

Effective diffusivity

Turbulent diffusivityMolecular diffusivity

• At this point, specification of the turbulent eddy viscosity        and the turbulent eddy         

diffusivity        solves the closure problem.



The gradient diffusion hypothesis

• In the scalar transport RANS/URANS solvable equations,
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• Since turbulent transport of momentum and the scalar (heat, mass, concentration, and so on) is 

due to the same mechanism, i.e., due to eddy mixing, it is often assumed that the eddy turbulent 

diffusivity        is proportional to the turbulent eddy viscosity      .

• At this point, we can write the laminar and turbulent eddy diffusivities as follows,

• Where PrL is the molecular Prandtl number (a property of the fluid), and PrT is the turbulent 

Prandtl number (a property of the flow).

• The Prandtl number is used when dealing with heat transfer.

• Instead, when dealing with species concentration or mass transfer, we use the                    

Schmidt number ScT.

• So, if we know the eddy turbulent viscosity, we can prescribe the turbulent eddy diffusivity.



The gradient diffusion hypothesis

• Values of the turbulent Prandtl number PrT  and of the turbulent Schmidt ScT  are commonly 

found between,

• 0.6 ≤ PrT ≤ 1  – Prandtl number in heat transfer.

• 0.6 ≤ ScT ≤ 1 – Schmidt number in mass or species transport.

• Experimental measurements suggest that a value of PrT ≈ 0.9 can be used in turbulent boundary 

layers, while PrT ≈ 0.7 is often more suitable in free-shear flows. 

• The recommended value often found in the literature is PrT ≈ 0.85.

• However, have in mind that the values of the turbulent Prandtl number PrT  and that of the 

turbulent Schmidt ScT  greatly depends on the physics involved. 

• No single value is valid for all flow conditions.

• The particular case of PrT = 1 or ScT = 1 corresponds to the Reynolds analogy, for which 

turbulent momentum and thermal transfers lead to similar turbulent boundary layer profiles for 

the mean velocity, temperature, and mass transfer.

• The same Reynolds analogy suggests that,
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The gradient diffusion hypothesis

• It is worth mentioning that the gradient diffusion hypothesis and the Boussinesq hypothesis are 

both gradient based hypothesis and therefore very similar,

38

• In a direct analogy to the Boussinesq hypothesis, in the gradient diffusion hypothesis the 

turbulent transport of the scalar is assumed to be proportional to the gradient of the transported 

quantity times a proportionality constant. 

• While the gradient diffusion hypothesis seems to be a little bit simplistic, it does produce 

reasonable results for a large number of flows.

• The main deficiency of this hypothesis is the same as for the Boussinesq hypothesis, the model 

is isotropic.

• Despite the deficiencies of this hypothesis, it is used in more advanced turbulence models, such 

as the Reynolds stress models, to eliminate triple correlations and other terms and thereby 

achieve closure.

• It is worth mentioning that more advanced scalar transport closures exists.



The gradient diffusion hypothesis

• Let use the enthalpy definition                in the exact scalar transport RANS/URANS equation,
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From the scalar transport RANS equation to the incompressible energy RANS equation

• After substitution, we get the following equation, 

• Where the turbulent thermal flux q is defined as follows,

• After substitution and regrouping, we get the incompressible solvable energy RANS equation,

Laminar thermal diffusivity Turbulent thermal diffusivity

Turbulent thermal heat flux


