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1 Introduction

The aim of this study is to understand the basic principles that make pimpled or dimpled
surfaces able to reduce aerodynamic drag. The following RANS computation are part
of a major study aimed at optimizing a pimple/dimple pattern on a Ahmed body to
get a proper reduction in drag at the upper diffuser, where great part of the pressure-
drag is generated as boundary-layer detachment occurs. The complete problem of the
Ahmed body with these devices mounted was divided into simpler problems in which
a fast optimization loop is possible using ANSYS tools: the complete Ahmed body is
indeed too computationally expensive for a large set of accurate computations and it is
difficult to see the effect of some basic parameters of the problem, as the flux around this
geometry shows some complex features (vortices near the diffuser, horseshoe vortices near
the ”feet”, BL detachment and relative unsteadiness...). For this reason a flat plate with an
elementary set of pimples/dimples was considered first, to go, with increasing complexity,
to a diffuser duct with a pattern of pimples/dimples with dimensions optimized using the
previous loop and then, using these data, get a better starting point for the complete
Ahmed body problem.

2 Choice of the turbulence model

The turbulence model chosen for the computations are two: for the 2D case the k-ω
SST model with the Kato-Launder production limiter was chosen; it wasn’t added the
curvature correction because it caused a reduction of the wall shear stress component
along the whole plate and not a variation limited to the pimple or dimple region. This
model was chosen because it is wall insensitive and in our application a wall resolving
approach was desired (issue that can be handled by this model). In a second moment also
a transition SST model [1] was used to understand how the pimple made the drag vary
as a function of its positioning with respect to the transition point.
For the 3D case the k-ω SST model was chosen, but for that case the curvature correction
[2] was added (to account for the concentrated vortices generated by pimples and dimples)
as well as the default production limiter (to account for stagnation points). Then the k-ω
SST model is also implemented in Fluent-Adjoint Solver with frozen turbulence [3].
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3 Computational resources

The computational resources for the following simulations are two laptops, one with 4
cores INTEL i-7 7700HQ 2.8GHz and 16 GB RAM and the other with 4 cores INTEL
i7-8550U 1.8GHz and 8GB RAM. Both of them have 64-bit architecture and SSD storage.
The two resources were respectively dedicated to 3D and 2D computations mainly, taking
into account their different attitudes.

4 Part 1: Preliminary computations on a 2D flat

plate

The 2D case was chosen not only to have an idea of what could happen on a flat plate
when a dimple or a pimple was added, but also because if some correlations were found
between the 2D and the 3D case, it could represents an easier and faster way to obtain
some results instead of running a full 3D case.
In the 2D case, 6 different experimental setups were run:

• single pimple setup;

• single dimple setup;

• double pimple setup;

• double dimple setup;

• a pimple followed by a dimple;

• a dimple followed by a pimple.

For each one of those setups a design of experiment (DOE) was made and a response
surface model (RSM) was built to find if there were correlations between the different
parameters.
The flat plate at Re=250000 shows a Drag of 0.13206 N, and at Re=1000000
Drag becomes 1.56 N and the CD = 0.0039. Those values will be used as a
reference to evaluate the goodness of the different geometries.
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4.1 Geometry and mesh

Figure 1: Geometry for the pimple case. Figure 2: Here it can be seen a focus of
the geometry close to the pimple.

For the 2D case, the domain had the following characteristics: it is rectangular, 2 meters
tall and 0.5 meters long; then two bodies of influence were added to have a better resolution
close to the pimple/dimple.
That height was chosen to avoid any influence from the top of the domain (that is a wall
with no shear stress). The pimple/dimple is at 0.2 meters from the beginning of the flat
plate, and it is parameterized to be able to vary its diameter and offset (distance between
the center of the circle and the flat plate). The geometry of the pimple case can be seen
in Fig.2; for the dimple case is the same but instead of a pimple there’s a dimple.
A line was added to divide the domain in two sections: the first with the ”symmetry”
boundary condition and the second with the wall’s one.
For the meshing it was chosen an ”all triangles method”, and were added sizings to the
two bodies of influence (boi) and to the wall; the finest boi has an element size of 0.0008m,
while the other is 0.002m. Those choices were made not to have a too strong difference
of the mesh size between the bodies of influence, that could induce in diffusion errors.
The domain element size is 0.05m while the edge sizing is 0.0005m with curvature capture
enabled with 2◦ of curvature normal angle and a local refinement of 0.0001m. The named
selections applied to the different parts of the mesh can be seen in figure 3.

4.2 First Setup

A first set of experiments was run at Re=250000, and the geometries that were used
are:

1. single pimple with:

• diameter in the range 0.001-0.005m;

• offset in the range 0-0.00025m.

3



Figure 3: Boundary conditions applied to the mesh.

2. single dimple with:

• diameter in the range 0.001-0.005m;

• offset in the range 0-0.00025m.

3. double pimple;

4. double dimple;

5. pimple dimple;

6. dimple pimple.

To obtain that Reynolds number, and considering the incompressible flow, it was cho-
sen:

• ρ = 1kg/m3;

• µ = 2 · 10−5kg/ms;

• v = 10m/s;

• l = 0.5m

The chosen turbulence model is the k-ω SST with Kato Launder production limiter;
curvature correction wasn’t enabled because it produced some unreal results: the shear
stress was constantly lower than the one from the flat plate and this was not realistic.
The chosen solution method is the COUPLED, that guarantees a fast convergence and
due to the fact that this is a 2D case and it’s not too heavy, it is also quite fast. The
accuracy was set to second order at least for all the parameters and the under relaxation
factors weren’t changed because there were no oscillating behaviours that needed to be
smoothed. Monitors for y+

average and y+
maximum were added and in all the cases those values

were in the range between 1 and 0.1.
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4.3 Results for Re=250000

4.3.1 Pimple

An RSM was built and that showed a smooth behaviour and, once saved the chart results
on a post-processing program, it was possible to find out that it seems that exists a
correlation that joins the diameter and the offset to the drag. In the 2D case it seems
that the drag is only function of how high is the blockage, as it can be seen in Fig.4; so a
simple correlation was found between the drag and the height of the ”blockage” (eq. 1 )
which, on his hand, has also a simple equation 2:

drag = 73.6244 · b2 + 0.3968 · b+ 0.0036 (1)

blockage =
diameterpimple

2
− ·offsetpimple, (2)

This equation was found using a second order least square regression and confirms the
results found in 3D.

Figure 4: Correlation of b and Drag for the single pimple at Re 250000, with the least square
regression.

From this RSM came out that the configuration with diameter of 0.00113m and offset of
0.000108m shows a lower drag than the flat plate equal to 0.1314 N, but this results could
be wrong because of the small dimensions of the objects considered and the consequent
mesh influence.

4.3.2 Dimple

Once done with the single pimple case, another DOE was made with a single dimple case
and the results from the RSM were noisier and it was difficult to find a good correlation
between b and the Drag, as it can be seen in Fig.5.
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Figure 5: Correlation of b and Drag for the single dimple configuration.

Also, in this case a second order least square interpolation was used to fit the results
of the DOE, but the function doesn’t interpolate well the experimental values that are
affected by too much noise.
From the RSM, it came out that the best configuration was the one obtained with a
diameter of 0,0019565 m, an offset 1,0002 mm, that guarantee a drag of 0,13135 N. Also
for the single dimple the result is very close to the flat plate case, so this result can’t be
considered significant.

4.4 Results for Re=1000000

The calculations with such small geometries don’t seem to have good results because they
are too affected by uncertainty; so to have more accuracy (and less dependency on the
mesh) for further investigations, bigger geometries were used and to get closer to what it
can be obtained in a real application it was run at an higher Reynolds number.
For this case, that is more generalizable than the previous ones, data are presented using
the Drag coefficient instead of the Drag force (eq.3).

CD =
D

1

2
· ρ · v2 · A

. (3)

The Reynolds number is obtained changing only the velocity inlet, and keeping constant
all the other parameters:

• ρ = 1kg/m3;

• µ = 2 · 10−5kg/ms;

• v = 40m/s;

• l = 0.5m

4.4.1 ”bigger” pimple

To find out if with bigger pimples there was an advantage, a DOE was run with the
following ranges:
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• diameter in the range 0.01 - 0.015m;

• offset in the range 0.002 - 0.004m;

and an RSM was built using the Kriging method and a set of 15 experimental points.
With bigger pimples it was obtained a solution that is not affected by the small dimensions
of the geometry; as expected the single pimple case increases the drag of the flat plate,
the best solution is the one with the smallest blockage and for the ranges chosen it is
obtained with a diameter of 0.01m and an offset of 0.001m that gives CD = 0.0042.
In the following figures it can be seen the RSM obtained with the Kriging (Fig.6) and the
correlation between b and the drag (Fig.7) using eq.2.

Figure 6: RSM of the single pimple configura-
tion at Re 1000000 using the Kriging method.

Figure 7: Correlation between b and Drag
for the single pimple at Re 1000000; the
black line represents the drag obtained with
the flat plate.

The effect of the Area Ratio with the blockage value as a parameter can be studied; to do
this, the value of ”b” that guaranteed the lowest drag was kept constant, and the other
parameters were changed in function of this (eq.4).

offsetpimple = 0.001 + 1− diameterpimple
2

(4)

From the computations, it seems that the area ratio has an influence on the drag produced,
as it can be seen in figure 8.
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Figure 8: Effect of the area ratio in 6 cases that have the same value of the b parameter, equal
to 0.001 m.

The Area Ratio is defined as the total length of the flat plate with the pimple divided
by the length of the clean flat plate. From those computations it can be found that
best pimple’s case is achieved with a b of 0.001m and AR of 1.00026 that guarantees
CD = 0.004071. When the double pimple configuration will be tested, it may be important
to see how extended the recirculation area behind the single pimple is; this may be helpful
in finding if it has an influence on the drag. To find this, it was evaluated where the X-
shear stress changed its sign from a negative value (inside the recirculation area) to a
positive value (outside the recirculation where the reattachment occurs). It was studied
the recirculation area in function of the blockage and it comes out that the smallest the
area ratio, the lower the length of the recirculation is, as it can be seen in figure 9.
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Figure 9: Effect of the Area Ratio on the recirculation area; the vertical lines represents the
Area Ratio of three different geometries.

From what it was obtained so far, the best configurations are the one with the lowest
blockage and the smallest Area Ratio; this makes sense because in this way the pimple’s
case is similar to a flat plate.

4.4.2 ”Bigger” dimple

The same DOE was run also with the dimples in the following ranges:

• diameter in the range 0.01 - 0.015m;

• offset in the range 0.002 - 0.004m;.

With the single dimple configuration, the Drag is lower than with the single pimple
configuration (in this case the CD = 0.0041 with diameter of 0.01m and offset of 0.004m);
the behaviour is in a certain way similar to the one of the pimple: in fact also in this
case the smaller the variation from the flat plate is, the lower the Drag coefficient will be;
the results anyway this time are noisier, as it can be seen in figure 11. The RSM for the
single dimple can be seen in figure 10.
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Figure 10: RSM of the single dimple configu-
ration at Re 1000000 using the Kriging method.

Figure 11: Correlation between b and
Drag for the single dimple at Re 1000000.

As for the single pimple, also for the single dimple it was studied how the drag is affected
by the shape (or Area Ratio) of the dimple, with the blockage as a parameter. It was
obtained a trend that can be seen in figure 12. As for the pimple’s case, the smaller the
Area Ratio is, the lower the drag becomes.

Figure 12: Effect of the Area Ratio on the Drag caused by the dimple with b as a parameter
and set to 0.001m.

From an analysis of the results of the Area Ratio it can be seen that it is achieved a
CD = 0.004074, for the case with the smallest Area Ratio.
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4.4.3 Double pimple

Double pimple configuration DOE was run with the following constrains:

• the ranges were chosen to have a low blockage to make them generate the lowest
drag as possible;

• the minimum spacing was chosen to avoid the pimples to collapse one inside of the
other.

To see if also for a double pimple case the best solution was the one with the highest Area
Ratio, it was put the diameter as a parameter, and for each case the pimples were free
to move in a defined range (Tab.1). The offset was fixed to the one that guaranteed the
lowest drag in the single pimple (that means the lowest blockage between the one tested).
That choice comes out from a first experiment where the pimples were free to move and
the best results were obtained with that value.

diameter [m] min spacing [m] max spacing [m] best CD best spacing [m]
0.1 0.022 0.3 0.00408 0.036
0.05 0.015 0.3 0.0041 0.047
0.01 0.007 0.3 0.0042 0.03

Table 1: Ranges of variations for offset and spacing in function of pimple’s diameter.

The Area Ratio for each one is:

1. AR=1.00054;

2. AR=1.00076;

3. AR=1.00174.

As for the other experiments, the lowest Area Ratio guaranteed the lowest drag.
If the drag vs. spacing is plotted, it can be found a constant behaviour until a certain
spacing, and that value is approximately around 0.2m; in fact for higher spacing than
that, the drag seems to start growing. With reference to figure 9 it seems that there’s
no influence of the recirculation area on the behaviour of the drag in respect to spacing,
because that length (at least for the low Area Ratio geometries taken in account) is smaller
than the minimum spacing tested.

4.4.4 Double dimple

Double dimple DOE was run with the same constrains of the double pimple’s one; the
shapes of the dimples are the one that gave the best results, which means low blockage
and low Area Ratio (diameter of 0.1m and b of 0.001m); the range of variation for the
spacing is between 0.023m and 0.2m.
The result of the computations gave a minimum CD = 0.004087, that makes the double
dimpled surface almost equivalent to the double pimpled one.

4.4.5 Pimple dimple

In the design of the pimple dimple configuration, it was kept in mind what was found in
the previous computations:
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• the Area Ratio was kept low;

• the spacing between the geometry was kept low (lower than 0.2m) to avoid the
increasing of the drag found before.

It was built the RSM for that case, using the best geometries for the pimple and dimple;
those were free to move but the Drag Coefficient wasn’t affected by the spacing and
remained in the interval 0.0041 and 0.004075.
Also with this geometry, there’s no improvement compared to the single pimple case.

4.4.6 Dimple pimple

The same general guidelines used for the pimple dimple geometry were kept also for this
case.
As the previous geometry there’s no significant dependency of the drag in function of the
spacing, and the value stays in the range between 0.004075 and 0.0041.

4.5 Best case

The best case between the ones that were tested so far, is the single pimple with a small
blockage thickness and a large Area Ratio, as it could be expected because that shape is
the one that most resembles the flat plate. Anyway, also the double pimple geometry is
very similar in terms of drag.
In Tab.2 can be seen the drag (decomposed in total and viscous) for three different shapes
of the single pimple configuration (which means with different Area Ratio, while the
blockage was kept constant) and for four different Reynolds numbers: from 1 million to
4 million. The values in the table are, respectively, the values of the total drag and of its
viscous component.

case b [m] AR [-] 1M 1M v. 2M 2M v. 3M 3M v. 4M 4M v.
1 0.001 1.00088 1.696 1.575 6.060 5.546 12.754 11.628 21.617 19.693
2 0.001 1.00026 1.628 1.605 5.756 5.685 12.082 11.945 20.468 20.247
3 0.001 1.00038 1.633 1.595 5.768 5.648 12.106 11.874 20.509 20.137

Table 2: Drag Decomposition for four different Reynolds numbers and three different shapes of
the single pimple case.

By calculating the CD it was found that the simple pimple, with a CD = 0.004071, was
the best geometry; in fact it is the one that causes the smallest drag increase, between
the ones tested.
In the following plots it can be seen the Velocity Magnitude for each shape of the pimple,
and for each Reynolds number; they are grouped as it follows: Fig.13, 14, 15 and 16 are
relative to case 1, while Fig.17, 18, 19 and 20 are referred to case 2, and finally Fig.21,
22, 23 and 24 are referred to case 3.
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Figure 13: Velocity profiles on the leading edge,
top and trailing edge of the first case of the table.
Re=1000000.

Figure 14: Velocity profiles on the leading
edge, top and trailing edge of the first case
of the table. Re=2000000.

Figure 15: Velocity profiles on the leading edge,
top and trailing edge of the first case of the table.
Re=3000000.

Figure 16: Velocity profiles on the leading
edge, top and trailing edge of the first case
of the table. Re=4000000.
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Figure 17: Velocity profiles on the leading edge,
top and trailing edge of the second case of the
table. Re=1000000.

Figure 18: Velocity profiles on the lead-
ing edge, top and trailing edge of the second
case of the table. Re=2000000.

Figure 19: Velocity profiles on the leading edge,
top and trailing edge of the second case of the
table. Re=3000000.

Figure 20: Velocity profiles on the lead-
ing edge, top and trailing edge of the second
case of the table. Re=4000000.
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Figure 21: Velocity profiles on the leading edge,
top and trailing edge of the third case of the ta-
ble. Re=1000000.

Figure 22: Velocity profiles on the leading
edge, top and trailing edge of the third case
of the table. Re=2000000.

Figure 23: Velocity profiles on the leading edge,
top and trailing edge of the third case of the ta-
ble. Re=3000000.

Figure 24: Velocity profiles on the leading
edge, top and trailing edge of the third case
of the table. Re=4000000.

In the plots it can be seen (only in the lines referrend to the Trailing Edge) a small region,
close to 0, where the profile is sharp and that represents a recirculation area: the ”flattest”
the pimple is, the smallest that region is and the smallest the drag. That drag reduction
is constant for every Reynolds number but, if decomposed, it can be seen that the viscous
part of the drag has the opposite behaviour; in fact it is smaller with the highest Area
Ratios and then tends to increase.
For the best pimple configuration, it was run a simulation with the transition SST model
to find out where it was the optimal position of the pimple in respect to the point where
transition occurs; the pimple was moved in three different positions respectively before,
on and after the coordinate where transition occurs (that corresponds to 1m, 1.2m and
1.4m from the inlet). Results of those simulations can be found in the plots of figures 25
and 26.
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Figure 25: Wall shear stress for the flat plate
and for the pimple case, in three different posi-
tions at Re 1000000.

Figure 26: Drag decomposition for the
three configurations of the pimple at Re
1000000.

For the case of pimple behind the transition point, it has been plotted the y+ vs u+; in
figure 27 can be found the comparison of the non-dimensional velocity plot of the flat
plate with pimple and the simple flat plate; from the plot it comes out that the behaviour
is the same.
In figures 29 and ?? the non-dimensional velocities evaluated on the leading edge and on
the trailing edge of the pimple were plotted.

Figure 27: y+ vs u+ for the case of the flat plate with pimple and the clean one calculated at
the same coordinate.
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Figure 28: y+ vs u+ plot in front of the pimple.

Figure 29: y+ vs u+ plot in front of the pimple.

From those plots, it comes out that right before and after the pimple, the behaviour of
the non-dimensional velocities are above the log-law and this means that the velocities
keep following the viscous sublayer behaviour for a short section; here the flow is laminar
and not turbulent and for this reason the viscous drag will be lower than on the rest of
the plate, where there’s turbulent flow. This can also be seen directly in the wall shear
stress plot in fig.30.
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Figure 30: Wall shear stress plot with reference lines for the pimple leading edge and trailing
edge and the reference plot line.

Behind the pimple, there’s a small recirculation region, which implies a lower velocity at
the wall, with a resulting lower viscous drag. Instead, on the leading edge, the pimple
causes a reduction of the velocity of the flow caused by stagnation, that makes the bound-
ary layer thickness increases with the pressure. The pressure at the wall can be seen in
figure 31.

Figure 31: Static pressure at the wall close to
the pimple

Figure 32: Contours and vectors of veloc-
ity magnitude around the pimple.

4.6 Conclusions

From the 2D calculations, it was obtained that the best geometrical configuration (to
have the smallest drag in respect to the flat plate) is the single pimple configuration. The
double pimple configuration, anyway, is close to the best one and, in the 3D case, it could
be interesting to study the interactions between pimples and their wakes, to find if there’s
a location of those devices, that varies the drag. A summary of what it was found can be
seen in Tab. 3.
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case
Drag force normalized

on the flat plate

Percentual variation in

respect to the flat plate
CD

high AR pimple 1.083 8.3% 0.0042
high AR dimple 1.056 5.6% 0.0041
low AR pimple 1.0435 4.4% 0.004071
low AR dimple 1.044 4.5% 0.004074
low AR double pimple 1.046 4.6% 0.00408
low AR double dimple 1.048 4.8% 0.004087
low AR pimple dimple 1.044 4.5% 0.004075
low AR dimple pimple 1.044 4.5% 0.004075

Table 3: Resume of the results found.

4.7 Optimization

For the optimization of pimple’s shape, it was chosen the adjoint method; it was first run
a direct case with only a convergence criteria for the continuity to 10−6, that was reached
in around 180 iterations. The setup for the adjoint is the following:

• it was chosen a force observable and it was applied to the wall, and the objective
orientation was set to minimize;

• to use the adjoint properly it was made reference to [4]; the solution method chosen
for the adjoint solver was the Green-Gauss Cell Based with Default options for
Pressure and Momentum; that choice was made to avoid the solver to become
unstable;

• the Adjoint Residual convergence criteria monitors were set to 10−6 for continuity
and adjoint velocity, while was left the default value for Adjoint local flow rate;

• for the Design it was chosen a box of morphing that included the whole pimple.

For first iteration, it was chosen a desired reduction of drag of -0.5% and the shape
obtained by the morphing of the pimple can be seen in fig.33. Drag coefficient before
the morphing was CD = 0.00389, while after the first iteration became CD = 0.00388;
that corresponds to a lower reduction than the expected one: -0.3% against the expected
-0.5%.
The morphing caused by the adjoint was predictable; in fact, to reduce the drag, it tries
to flatten the pimple to make it closer to a flat plate.
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Figure 33: Shape morphing obtained with the adjoint method.

Other two iterations were run and each one with a desired percentage reduction of the
drag of -1%; from those, it was obtained relatively: CD = 0.00387 and CD = 0.00385 that
correspond to a reduction of -0.3% and -0.5%. From the first of those two iterations, is
obtained the shape in fig.34 and, from the second, a similar shape that differs mainly in
the rear of the pimple, where the focus was made (figure 35).

Figure 34: Shape morphing of pimple’s geometry obtained with the first of the two iteration
with a drag objective reduction of -1%.
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Figure 35: Shape morphing of pimple’s geometry obtained with the second of the two iteration
with a drag objective reduction of -1%.

Those results show that the best solution that will be reached with further adjoint’s
iterations, will be to totally flatten the pimple to recreate a simple flat plate.
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5 Part 2: 3D flat plate: single device

This computation was made to understand what are the main characteristics of a flux
near a single pimple/dimple whose free parameters are those reported in the following
drawing: offset and diameter. These two parameters correspond to the way this geometry
is generated: in both cases a sphere is subtracted or added by a Boolean operation to the
main rectangular extrusion to make the pimple or the dimple. This was the easiest way
to generate both geometries in the least number of steps.

The operating conditions are chosen to have a Rel = ρvl
µ

= 106 on the pimple, where ”l”

is the distance between the center of the pimple/dimple and the leading edge of the flat
plate. For this reason and taking into account that we are in incompressible, Newtonian,
isothermal regime, we can get this Rel by changing l, µ, v at the same time. The values
taken in this case are:

• ρ = 1.225 kg/m3

• µ = 3.43 · 10−6 kg/ms

• v = 40 m/s

• l = 0.07 m

5.1 Geometry and mesh

Figure 36: 3D fluid domain in case of pimple and dimple, dimensions are in [mm], geometrical
parameters are underlined
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The fluid domain was chosen after some iterations to have at the same time a good ap-
proximation of the external aerodynamics conditions (i.e. no pressure gradients induced
by the interaction with the lateral walls), a reasonable number of cells (no more than 512
000, in our case about 300 000 using ”make-polyhedra” in Fluent) and RL = l0/lcell ≈ 3 in
the zone near the pimples/dimples for most of computations (this is the lowest acceptable
value of this parameter for a RANS: a RL of about 5 should be more indicated, but for
the moment we have to accept this limit as it is only a preliminary computation). The
height of the fluid domain is 20 times the maximum blockage height considered in this
case, while laterally there are more relaxed limits. Downstream to the pimple/dimple
there is a refined body of influence to capture the horseshoe vortices generated by the
pimple or the ”cyclone” generated by the dimple. Of course, it would have been better to
lengthen the body of influence until the end of the domain, but this would have required
too many cells, so some numerical diffusion was accepted as a good compromise.

The mesh in this case was obtained with Ansys mesher, using the following parame-
ters:

• mesh max size: 25mm

• body of influence: element size 2.8mm

• face sizing on the bottom sides: 2,8mm, curvature max angle 5 ◦

• inflation layers: first layer height 0.005mm, growth rate 1.16, 31 layers

and then the mesh was converted to polyhedral in Fluent. This passage allows a more
rapid and less oscillatory convergence, certainly desirable to reduce the number of oper-
ations needed to get a correct estimate of the output parameters. The mesh is set for a
wall resolving approach and, to get a uniform value of wall y+, the inflation layer was
applied also in the ”entrance” region, that has a ”symmetry” boundary condition, so it
wouldn’t need a wall treatment.
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Figure 37: sections of the meshes for single pimple and dimple before the conversion to poly-
hedral in Fluent. The skewness remains always under 0.85 and the orthogonal quality is always
higher than 0.14

5.2 Setup

The setup was made considering that, to have a stable behaviour, the top and lateral
boundaries of the domain couldn’t be set as ”pressure-outlets” but had to be set as
symmetry walls: this allowed the program not to compute reverse flows which would have
made the solution unstable and let the flow go without the no-slip condition, but could
have had an influence on pressure distribution, which was verified to be negligible, above
all for a small pimple/dimple.The boundary conditions are:

• velocity inlet: velocity magnitude: 40 m/s, directed along x-axis, Turbulence Inten-
sity 1%, viscosity ratio 2 (external aerodynamics conditions)

• pressure outlet: gauge pressure zero (operating pressure is 101325 Pa)

• plate and device: no-slip wall, default roughness

• left, right, top, entrance: symmetry
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Figure 38: zone names and boundary conditions, dimensions are in [mm]. the surface of the
flat plate is S = 0.032m2

The turbulence model is the SST k − ω, which is able to go low-Re and is suitable also
for a wide range of problems: in this case the model was corrected using the production
limiters (the pimple/dimple is a bluff body, above all in case of big ones) and curvature
correction to cope with the horseshoe vortex and the dimple’s ”cyclone”. The setting
coefficients were kept as default, as there was no possibility to go for a calibration of these
parameters: no similar studies are, in fact, available in literature.
The fluid (air) properties were kept as default except for the dynamic viscosity, whose
value was changed to µ = 3.43 · 10−6 mg/ms as previously described.
The pressure-velocity coupling technique is the COUPLED, which allows a faster conver-
gence but has a higher cost per iteration. The pseudo-transient formulation was switched
on and left with the default parameters and, to cope with warped faces in the polyhedral
mesh, the corresponding correction was enabled, accepting an increased cost per iteration.
The under-relaxation factors were left as default or decreased a little in case of oscillatory
behaviour. In that case, resulting force reports were averaged over the last 20 iterations.
Convergence was generally reached before 160 iterations.
Reports of y+ (average, max, min), mass-flow-rate imbalance between inlet and outlet,
drag on the plate and the device and the integral of x-wall shear stress were created.
Pressure drag on the device (which is the only component with non-zero projected area
in the streamwise direction x) is computed as

Dpress =
∑
i

piAx,i = Dtot −Dvisc (5)

where

Dvisc =

∫ ∫
S

τxdA ≈
∑
i

τx,iAi (6)

25



The solution was initialised in the standard way, computing from inlet: most of the
domain is, in fact, at the inlet velocity, so this should be a good initial guess. However,
initializing with full-multi-grid or with a converged solution on a flat-plate doesn’t result
in big differences on the convergence rate.
The solution shows a rapid transitory that lasts until about 70 iterations, then becomes
stable/oscillating. Residuals show a rapid descent at first and then stabilize or decrease
less rapidly. These behaviours are due to the intrinsic unsteadiness of most of cases:
if the pimple/dimple is bigger, the vortex shedding is strong enough to perturbate the
solution (an unsteady simulation would be required to capture better this behaviour)
while for small devices the RANS simulation is much closer to reality, as vortex shedding
is negligible.

5.3 Results

The single-device geometry was studied with a device-diameter between 15 and 21.5mm
and an offset between 5 and 7mm: these limitations were chosen in such a way that the
device never becomes too big for the chosen domain nor its shape becomes too flat or ab-
normal (the slope of the device LE should always be of the same sign). Then, to confirm
the trends, some refinement points were added.
Some quantitative and qualitative post-processing was made on these simulations to iden-
tify the most important flow structures: first a qualitative analysis of Q criterion iso-
surfaces in case of big pimples/dimples was useful to identify the coherent structures and
understand the working principles of these devices. For this purpose, an iso-surface of
Q-criterion was created, where

Q =
1

2

(
tr(∇u)2 − tr(∇u2)

)
(7)

(where Q > 0 points out the presence of a vortex). This iso-surface was calibrated to
show the main vortices without losing minor-but-important structures. Over this surface
a velocity vector plot was made to show the direction of the recirculating flows. A x-wall
shear stress plot was then created in the same ”scene” to show whether there are or not
correlations between the viscous drag and the main vortices.
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Figure 39: single Pimple: vector plot on Q-criterion iso-surface and x-wall shear stress contour
on the plate, general view and zoom on the recirculating zone

Figure 40: single Pimple: vector plot on Q-criterion iso-surface and x-wall shear stress contour
on the plate, detail of the horseshoe vortex and the recirculating zone
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Figure 41: single Dimple: vector plot on Q-criterion iso-surface and x-wall shear stress contour
on the plate, general view and zoom on the recirculating zone

Figure 42: single Dimple: vector plot on Q-criterion iso-surface and x-wall shear stress contour
on the plate, detail of the vortex structure: the flow enters the dimple, rotates about the z-axis
and, at the same time, the y-axis, generating the cyclone. The cyclone then exits the dimple
asymmetrically. This last stage may happen on both sides of the dimple and is very unsteady

From the previous plots we can say that:
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• the pimple, even if shows a region of detached flow, has more stable vortex struc-
tures than the dimple, as they become elongated in the streamwise direction nearly
immediately. The horseshoe vortex, in particular, shows a strong-vorticity zone in
front of the pimple and then the vortex starts diffusing in the wake. Another vor-
tex structure seems to be released from the detached zone. It is not clear if this
structure has or not two branches (it should have, according to Kelvin circulation
theorem: in the streak some kind of secondary vortex structure seem to appear and
its circulation should be conserved)

• the vortices induced by the pimple divide the x-wall shear stress contours in a zone
where the stress is higher than that on the flat plate (red) and a zone where it is
much lower, nearly negative (fuchsia). The stress is higher where the vortex pushes
air towards the wall (flattening the BL) and lower where the vortex pulls air up
(heightening the BL without causing separation. The pressure distribution on the
pimple, however, causes always a pressure drag and never a thrust, obviously)

• the structure induced by the dimple shows a more unsteady behaviour, as described
in [5] and rotates also about the vertical axis, generating a streak that can change
lateral position. In this case it is harder to identify the coherent structures: it seems
that the structures affect a very limited portion of the domain, on the contrary of the
Pimple. Again, the x-wall shear stress in the streak seems only to diminish, without
alternating zones of increase and decrease, like in the Pimple case. The viscous drag
in the Dimple cavity can be either positive or negative: the bigger the dimple, the
more negative the viscous drag. This can be easily explained considering that, for
very flat dimples, detachment is much reduced and the cyclone is nonexistent.

To get a quantification of the amount of viscous drag generated by these devices, a plot
of friction coefficient of x-wall shear stress along the plate centerline was generated:

Figure 43: Single pimple: x wall shear stress friction coefficient vs streamwise coordinate x.
”o” is the offset parameter, ”D” is the diameter of the pimple
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Figure 44: Single dimple: x wall shear stress friction coefficient vs streamwise coordinate x.
”o” is the offset parameter, ”D” is the diameter of the dimple

where

Cf =
τx

0.5ρv2
τx = µ

∂u

∂y
(8)

These plots do not aim at describing completely the generation of viscous drag on the
dimpled/pimpled plate, but can be used as a measure of how distant -on the centerline-
the effect of a pimple/dimple can be detected and might show some correlation with drag
production. For example, a main difference between pimples and dimples is that dimples
induce less sharp changes in Cf,x than dimples: this can be explained considering that
dimples make a sharp diffusion at their leading edge, forcing detachment, then the flux
that does not take part into the cyclone (but runs over it) bumps against the final part
of the dimple, causing the second peak of Cf,x.
Another difference is that the pimple causes a variation in the slope of the Cf,x curve: this
happens mainly in the zone immediately downstream the pimple, but also a little bit after
that. Instead, the dimple shows curves that are much more attached to that of the base
flat-plate in the downstream region. This analysis is also coherent with the previous one,
done qualitatively on the Q-criterion iso-surfaces. These curves were compared with two
correlations by Schlichting for fully turbulent flat- plate, available in literature [6]. The
numerical computation underestimates a little bit the friction coefficient at the leading
edge of the plate, but then the behaviour is correctly captured downstream.
A similar feature the two plots show is that, even if referred to different sizes of the device,
they do not show very sharp changes in the overall behaviour, this suggests that there are
no sharp changes in the viscous structures that govern the problem.
To be precise, a comparison between the drag at the centerline and in the zone where the
device shows a reduction in τx may be useful. This comparison is made for simplicity for
just one of the previous cases, which corresponds to the worst examined case in terms of
drag:
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Figure 45: x wall shear stress friction coefficient vs streamwise coordinate x. ”o” is the offset
parameter, ”D” is the diameter of the pimple/dimple

In the zone where the vortices produce a τx reduction the x-wall shear stress shows also
a variation in slope, becoming lower than the correspondent flat plate τx. The Pimple
shows zones where τx is increased and zones where it is decreased, while the dimple shows
only a decrease in τx. One would say that taking into account this result, a dimple is
always more efficient than a pimple, but it wouldn’t be correct, as we have not discussed
pressure drag so far.
At this point, we can say that:

• the zone of viscous-drag reduction provoked by a dimple is only one while a pimple
creates alternating zones of viscous-drag reduction and addition. In both cases those
zones are elongated in the streamwise direction

• the vortex exiting from the dimple can show a lateral movement in time, while that
provoked by a pimple is more steady.

• the zone of viscous-drag reduction provoked by a dimple is generally thinner than
those provoked by a pimple

• to optimize viscous drag reduction, a correct juxtaposition of the devices should take
into account both longitudinal distance between the devices (as there is a variation
in τx(x) slope) and lateral distance (as there are zones of alternating drag reduction
and addition or, however, lateral variations in τx)

5.4 Optimization

So far, we have not discussed pressure drag. It is natural to think that the bigger the
projected area in the direction of the flux, the bigger the pressure drag. This relation is
qualitatively correct, but it is not trivial to quantify ”how big” the device is: till now,
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two parameters have governed the geometry: the ”offset” and the diameter of the device;
from these parameters, other parameters can be generated and maybe one of these could
describe the geometry better than the others, making the 3D curve of drag or some drag
component collapse on a single 2D curve. This would drop one useless parameter. In the
same way, we might say that there could be a relation between some characteristic lengths
of the flux (end of the recirculating zone, distance between end of the device and end of
the recirculating zone...) and drag. For this reason, a cumulative plot where quantities
of interest are plotted versus possible parameters is presented in fig. 46 and 47, below.
In those figures it is easy to see that there seems to be a linear trend in the first two charts,
but with a certain amount of dispersion, while the drag (or pressure drag) vs Reh−block
shows a very clear trend, that is close to a parabola. Other parameters are not as able as
the blockage height to pack the data in this way, so the blockage height seems to be the
governing parameter of this problem.

Figure 46: cumulative plot for the single pimple case
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Figure 47: cumulative plot for the single dimple case

where

Reh−block =
ρvhblock

µ
hblock = diameter/2− offset (9)

AR = area− ratio =
Aprojected,device
Aflat−plate

CD,i =
Di

0.5ρv2S
(10)

(11)

To see what component of drag is varying more changing device configurations, a drag
decomposition was made on the best and worst cases of the two problems, dividing the
plate in zones as follows

Figure 48
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The drag was then computed on each zone: in the plane zones the only non-zero drag
component was the viscous one, as there’s no projected area in the direction of the flux,
while on the devices the drag was decomposed in viscous and pressure-drag.

Figure 49: single pimple: drag decomposition, the drag forces were made non-dimensional as
in eq. 11. The flat-plate bar was made using the same geometry and mesh parameters as in the
cases with pimple/dimple. Of course in that case there’s no pressure drag

Figure 50: single dimple: drag decomposition, the drag forces were made non-dimensional as
in eq. 11. The flat-plate bar was made using the same geometry and mesh parameters as in the
cases with pimple/dimple. Of course in that case there’s no pressure drag

From these plots we can say that significant geometrical variations result mainly in a
variation of the pressure drag, as the other drag components show very slight variations.
Regarding the previous set of parameters, now it makes sense to monitor the behaviour
of the pressure drag as function of the non-dimensional blockage height and try to get a
response curve of this dependence. To be precise, another parameter could have had a
similar importance: the AR, but, using some refinement points with extreme AR (black
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dots in figure), it was demonstrated that their dominance is only very local, while those
points are packed with the previous curves if the blockage height is used as a geometrical
parameter. As there might be noise due to the unsteadiness and to the mesh, a good
approximation could be obtained using a least-square fitting, that minimizes the Euclidean
Norm of the error and does not necessarily pass through each point. Using the Van
der Monde matrix and the Moon-Penrose pseudo-inverse, nearly any function could be
suitable for the fitting: in this case the simplest approximation was a 2nd order polynomial
curve:

V = MA→


CDp,1
CDp,2
CDp,3
...

 =


1 Rehblock,1 Re2

hblock,1

1 Rehblock,2 Re2
hblock,2

1 Rehblock,3 Re2
hblock,3

...


a0

a1

a2

 (12)

The Euclidean Norm of the error between Vmodelled,i and real Vi is minimized if

A = (MTM)−1MTV (13)

That gives the fitting coefficients a0, a1, a2. The only caution that has to be taken into
account is that the inverted matrices should not be close to singularity (i.e. determinant
close to zero), otherwise the LU decomposition implemented in MatLab command ”inv”
will not work properly.

Figure 51: comparison of numerical data and least square fitting for pressure drag coefficient.
The data were made non-dimensional as in the previous cases; Reδ99 is the Reynolds number
based on the the boundary layer thickness: δ99 = y | u(y) = 0.99u∞

where the fitting curves are:

CD,p−pimple = −1.0097 · 10−5 + 2.7481 · 10−10Reh−block + 6.8733 · 10−14Re2
h−block (14)

CD,p−dimple = 4.5005 · 10−6 − 1.0591 · 10−10Reh−block + 6.5812 · 10−14Re2
h−block (15)

It is evident that, to get the minimum pressure drag (and so the minimum total drag with
a single device, as previously demonstrated) a device with very small blockage height is
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needed. It is interesting to point out that the fitting curve flattens under the boundary
layer height, whose corresponding Re is plotted in the previous figures. Further plots
in normalized coordinates will be present afterwards on this topic. The best examined
case, that is a device with offset 7mm and diameter 15mm, will be taken as a basis for
the 2-devices computations: this operation let us save a big number of computations
and reduces the parameters of the future computations to only 2: the movement of the
downstream device on the x-axis and that on the z-axis. This case is presented in the
following section.

6 Part 3: 3D flat plate: pattern of 2 devices with 2D

movement

6.1 Introduction

In this section the movement along two axes of a second device in the downstream zone
of a first device is presented. Since we have first demonstrated that the key to reduce
drag is to keep pressure-drag low, we will keep the ”blockage-height” of the devices to the
optimal solution found in the previous section. This corresponds, in our case, to a device
of diameter 15mm with an offset of 7mm; in non dimensional units, Reh−block = 7143. One
could disagree with this statement, but it is necessary to consider that the optimal solu-
tion provided by the least-square method would correspond to a plate with no device in
the case of pimple and with a device whose dimensions are very close to the ones reported
in the case of dimple, as the least-square curve is nearly flat in the optimal region. For
these reasons it is acceptable to consider the Reh−block = 7143 as the best case possible
with a single device and start the following computations using this assumption.
Another important topic to consider in these computations is that, to get a proper resolu-
tion of the viscous effects downstream the devices, a much finer mesh will be required and
a body of influence including the devices will necessarily have to go downstream until the
pressure outlet, otherwise the numerical diffusion will disrupt the vortices and the viscous
effects (that are dominant in this case) will not be predicted in a correct way. A problem
regarding this topic is that a complete refinement of the whole downstream plate with a
RL ≈ 5 would cost at least 12 million cells, which is unaffordable for our computers. Then
the boundary conditions do have an impact on the number of cells: a ”slip-wall” BC as in
the previous case would require or a very big domain or a moving-walls domain. In both
cases, this would be, again, unaffordable. A solution to our computational limitations can
be this one:

• use periodic BCs on left and right sides combined with a slip-wall on the top

• use 2 bodies of influence: one fixed on the upstream device and one movable, that
follows the downstream device. This, combined with a proper reduction of the
growth rates of the mesh, can reduce significantly the mesh size, leading to a mesh
of 1.5÷ 3 million cells.

This mesh is at the limits of affordability for our computations.
Another problem is that we would need to calculate a response surface for each config-
uration: Pimple-Pimple (PP), Pimple-Dimple (PD), Dimple-Pimple (DP) and Dimple-
Dimple (DD). The number of computations required for the purpose is too big for the
given timetable, so some preliminary computations are set to capture if there is a con-
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figuration that is more promising than others. To save on the number of cells, these
computations are made with pimples/dimples ”in-line” (so they are included in the same
body of influence). The geometry and the mesh settings are presented below, while the
setup is the same as in the previous section.

Figure 52: geometry sketch and zone names for the double-device preliminary computation

Mesh settings:

• mesh max size: 25mm

• body of influence: 0.8mm, growth rate 1.1 (the body of influence corresponds to the
IndZone and is extruded for 15mm)

• face sizing plate: 3.5mm, behaviour: soft, growth rate 1.1

• face sizing IndZone and devices: 0.8mm, growth rate 1.1

• Inflation layers on the zones dev1, dev2, plate, IndZone, entrance: first layer height:
0.0025mm, 35 layers, growth rate 1.14.

These mesh-settings produce a y+
average < 1 and a y+

max < 2. Skewness and Orthogo-
nal quality are always in the prescribed limits. Below, the results of these preliminary
computations are presented:
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Figure 53: Results of PP,PD,DP,DD and flat plate cases decomposed for zones and for com-
ponent of drag (when possible), the sum of the first two results in red is shown in the last chart
in red. Drag coefficients are obtained by dividing the drag force for 0.5ρv2S: this generates very
low values of these coefficients, but conserves the relation CD−tot =

∑
iCD,i. The cases with

devices are compared with a flat plate that has the same zones as the cases with device, but the
zone corresponding to the devices are the projection on the base plane of the devices (so they are
flat).

.

These results suggest

• that the mesh is too coarse or the meshing algorithm is not perfect (in fact the flat
plate total drag shows some oscillation, but it shouldn’t: it is always the same flat
plate with moving flat zones)

• the best cases is always the PP: it seems to be able to produce a drag inferior to
that of the flat plate, while the other configurations are always above that limit.

For these reasons and to achieve a major numerical stability, the conclusive computations
were concentrated on the PP case and the mesh was made using Fluent-Meshing, that
has a finer algorithm which is able to generate poli-hexa meshes, which will allow faster
and more accurate results. Unfortunately, Fluent meshing can’t work in the DOE/RSM
loop of Ansys Workbench because its scripts are generated and cancelled every time the
project is updated, so the computations are to be generated and launched by hand and
the response surface has to be generated using a proper hand-made script, too.
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6.2 Geometry and mesh

The geometry adopted is different from the previous case because we want to optimize
the number of cells and use periodic boundary conditions, as previously discussed

Figure 54: geometry sketch for the final double-pimple computation, dimensions are in [mm],
underlined names are parameters. Bodies of influence are drawn in dash-dot line
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Figure 55: boundary conditions and zone names for the final double-dimple computation

The mesh was obtained using Fluent-Meshing with the following parameters:

• workflow: watertight geometry

• bodies of influence: target size 0.2mm, growth rate 1.15

• curvature on dev1 and dev2: local min size 0.1mm, max 0.12mm; curvature normal
angle 3◦; growth rate 1.11

• face sizing on IndZone: target size 2.8mm, growth rate 1.12

• face sizing on plate: target size 3mm , growth rate 1.2

• face sizing on left, right, inlet, outlet, top: target size 20mm, growth rate 1.2

• prism layers on all bottom walls: ”last-ratio” option with last layer 2.3 · 10−3mm,
15 layers, ratio 0.272 (default).
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Figure 56: surface mesh near and on the pimples. Curvature is well resolved with the given
parameters.

Figure 57: interior of the mesh with a pimple in detail. The mesh is polyhedral near the walls
and becomes hexahedral far from the walls, allowing a very high quality of the mesh: in no cases
orthogonal quality is inferior to 0.2 and is generally higher
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6.3 Setup

The simulation is again steady, with the assumption of isothermal, Newtonian, fully tur-
bulent, incompressible flux. These assumptions are reasonable as the flow has Ma < 0.3
and Rex = 106 at the location of the first pimple, as in the previous computations. For
these reasons we can assume a molecular viscosity of µ = 3.43·10−6. The solver is pressure-
based and ”gravity” option is not enabled as its influence is negligible in aerodynamics.
The turbulence model is the SST k−ω with curvature correction and production limiter
option enabled. Curvature correction is necessary as we want to resolve well the vortices
in the wake of the devices and the horseshoe vortex starts with a zone where swirling is
dominant. A more ”physical” (because it doesn’t contain the Boussinnesq’ Hypothesys
like the SST k − ω [7]) turbulence model like the Reynolds Stress Transport would be
more appropriated, but that model is not easy to converge and is much heavier than the
SST k − ω, which is, however, capable of very good predictions even in swirling flows
when the curvature correction is enabled. For this reason the SST k−ω is the final choice.
To get an acceptable computational cost and as we want to examine what happens in a
fully-turbulent BL (that will be the case of the Ahmed body), the transition model was
not enabled.

The boundary conditions are described in figure 55 and are essentially the same as in
the previous computations; the only exception is the periodic boundary condition on the
lateral walls: to impose this kind of BCs there are two ways in Fluent:

1. having a mesh with perfectly equal correspondent faces on the periodic interfaces
and use the TUI commands to make them periodic. This will automatically associate
the corresponding faces to get the periodicity BC.

2. having a mesh with similar (but not equal) faces on the periodic interfaces, set
the zones as ”interface” and use the following command in the TUI: define >
mesh − interfaces > make − periodic, then choose the right face as ”periodic”
and the left one as ”shadow”; the distance between the faces will be automatically
calculated. This method allows the imposition of a periodic BC on meshes that don’t
have equal faces, but this interpolation operation will -of course- generate a little
error. To quantify this error, the mass-imbalance was computed for each calculation,
confirming that in this case this error is very similar, as order of magnitude, to the
mass-imbalance between inlet and outlet. Both are negligible. However, as mass is
not the only transported quantity, the distance between the pimples and the periodic
interfaces was chosen in order to avoid high pressure gradients at the interfaces (in
fact the pressure gradients are nearly extinguished at ≈ 15mm from the center of
the pimple) and so, in some ways, limit eventual interpolation errors.

Some minor changes to the previous setup are:

• set stricter convergence conditions on continuity: 10−6: this is, in fact, a reasonable
limit generally reached in any of the present cases and may be helpful when going
to the adjoint solver, which requires very well converged solutions.

• use autosave option to retain data in case of problems. This option is needed in this
case as cases run for a much longer time than in the previous cases (1-2 hours).

• enable the data sampling for steady statistics, which will be useful for further post-

42



processing, that is part of the main project, but is not directly presented here.

Figure 58: RL criterion contours limited to a scale of 0 ÷ 3 to show the zones where RANS
models may fail to capture the correct behaviour of the integral scales: in our case the horseshoe
vortices are well resolved but the mesh would require refinement just after the pimple. However,
this was the best mesh we could afford with the given computational resources

Figure 59: y+ contours on IndZone and the devices: the boundary layer is everywhere cor-
rectly resolved at least for what regards the first cell height: the maximum y+ never enters the
buffer layer and the minimum y+ is never lower than 0.1 (issue that could generate numerical
oscillations)

6.4 Optimization

Forced by the fact that periodic BCs and the use of Fluent Meshing do not give us the
opportunity to implement the optimization loop directly on Ansys Workbench, the Design
of Experiment (DOE) will be made using a central composite technique with 16 points,
equally spaced longitudinally and laterally (the chosen step is 5mm, that is about the ”flux
diameter”, 5.3852mm), that is more expensive than a Latin Hypercube, for example, but
may be helpful to see the dependence from the single coordinates on the plane.
Using a least square fitting with a 4th order polynomial of the DOE points, it was possible
to find a trend of how the drag varies in function of pimples positioning: in fact, even if
the drag doesn’t change a lot (in the cases of interaction between the horseshoe vortex of

43



the leading pimple and the body of the second pimple the drag increases of around the
0.2%) it can be found that it has its lowest value when the vortices of the two pimples
don’t interact and when they are positioned nearly on the same line and not downstream-
staggered (figure 60).

Figure 60: Response surface for the case of double pimples: drag on the IndZone is normalized
with drag of the flat-plate (Dindzone,flat = 0.02038N , or CD−IndZone,flat = 0.002) on the same
zone and is plotted against the relative positioning of the two pimples, normalized with the ”flux
diameter” (the diameter of the projection of the pimple on the base plate, which is, in this
case, 5.3852mm). Red points are the numerical Fluent simulations. The response surface has a

R =

√
1−

∑N
i=1(yi−ŷi)2∑N
i=1(yi−ȳi)2

= 0.9972 and Radjusted =

√
1−

∑N
i=1(yi−ŷi)2∑N
i=1(yi−ȳi)2

N−1
N−m = 0.9965. Where ȳ is

the mean, ŷi is a predicted point value and yi the correspondent measured value, N=number of
experiments. The provided values of R show that there is a really good agreement between DOE
points and least square surface

Figure 61: contour plot of the response surface for the case of double pimples. Parameters are
the same as in the previous figure. Red points are the numerical Fluent simulations
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The response surface shows that the best case occurs when the pimples do not have a
significant interference with their wakes: the response surface in this case may be helpful
to understand which parameter is more important, but fails to predict a global minimum,
as we have found that the minimum is one of the DOE points and stands near the DOE
limits. However, this surface suggests that when two pimples as very near and in-line,
their horseshoe vortices have a positive interference (they try to enforce one another) and
this generates a flatter velocity profile downstream, increasing the drag. On the other
hand, when interaction is limited by staggering the two pimples, the drag shows a rapid
and monotonic decrease if the pimples are longitudinally ”near”, while this behaviour is
not monotonic if they are longitudinally more distant and there may be local minima,
where a direct optimization would fail to capture the overall behaviour (the global mini-
mum). It is important to notice that lateral spacing governs how the coherent structures
interact (because those structures are elongated in the x-direction), while longitudinal
spacing governs diffusion and makes the second pimple find zones of increased or de-
creased x-wall shear stress. In fact we have shown that the τwall,x shows non asymptotic
behaviours downstream the pimple, so if a second pimple is positioned very near to the
first, higher wall-shear will be produced, while if it is positioned more downstream, it
will find smaller τwall,x values. Diffusion is present as the vortices become larger but less
intense going downstream and this causes a variation in the zones of τwall,x. We have, in
fact, shown that those zones are very strictly related to the position with respect to the
vortices centerlines.
In any case, the new analysis, which is much stronger than the previous ”preliminary”
computations, show that the drag produced by the pimpled surface is always higher than
that produced by the flat plate, that is partially in contrast with the preliminary compu-
tations. For this reason, deeper studies will be made using also the other configurations
(DP,PD,DD). However, these computations are not presented in this paper.
One major reason to focus on the PP case, however, lies in the fact that pimples are
-on the contrary of dimples- devices that help the boundary layer to stay attached to
diffusers. Some of our preliminary computations have demonstrated this fact, which is
also very intuitive (horseshoe vortices are very strong compared to dimple’s cyclones, pim-
ples change the diffuser angle ”smoothing” the passage between channel and diffuser), so
it does make sense to study first the PP case and then, eventually, check all the other
combinations.

The contributions of the different ”components” of the geometry to drag were computed
to find out what component varies mostly from the two cases: the results of the compar-
ison can be found in tab. 4.

CDv,dev1 CDv,dev2 CDp,dev1 CDp,dev2 CD,dev1 CD,dev2 CD,IZ−tot
best 7,78E-06 7,73E-06 6,28E-06 6,09E-06 1,41E-05 1,38E-05 2,03E-03
worst 7,68E-06 7,43E-06 5,31E-06 6,99E-06 1,30E-05 1,44E-05 2,04E-03
var % +1,40% +4,08% +18,17% -12,89% +8,26% -4,15% -0,38%

Table 4: Drag decomposition for the best and worst case: percentage variations are computed
as var% = xbest−xworse

xworse
, the nomenclature used is the following: IZ= IndZone, dev1,2= device

1,2 (1st, 2nd pimple), v=viscous, p=pressure. Best and worst cases have respectively 15mm and
0 mm lateral spacing and 0mm and 10mm longitudinal spacing. Drag coefficients are obtained
as described previously.
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From this decomposition it is evident that the combined effect of the horseshoe vortices
and their interaction are responsible for the variations of drag on the plate: the drag
coefficient variations on the two devices are in fact opposed to the variations of the drag
on the IndZone: viscous drag on the devices show an increase from the worst to the
best case, while pressure drag shows an increase on the first pimple and a decrease on
the second (and this is reasonable: in incompressible regime upstream flow is conditioned
also by devices placed downstream; then the second pimple, in the in-line configuration, is
”hidden” by the first pimple, while it is not when they are staggered). The two variations
generate an improvement on the second pimple and a deterioration on the first one, but
despite these local variations, there is a global improvement in the downstream zone that
make the global drag decrease.

6.5 Results

In this section the hypothesis made in the previous section are supported using some
post-processing: first of all it is interesting to see a combined map of velocity and x-wall
Shear stress. The velocity is plotted on a Q-criterion iso-surface to highlight the vortices:
as in the preliminary computations, pimples generate a flow pattern that divides the
plate into stripes of alternate improvement and deterioration of viscous drag. The lines
that divide these zones are the axes of the vortices: where air is pulled up, there drag
diminishes, where air is pushed down, there drag increases. It is interesting to notice that
the in-line pattern generates very strong vortices (it is quite impossible to say if the two
horseshoe vortices come together into a single filament or if the two remain separated
but one stands onto o near to the other) that certainly pushes down air downstream the
pimples -increasing wall shear stress- but does not, on the contrary, increase also the
”pull-up” effect, so producing a negative effect.

Figure 62: combined plot of X- wall shear stress on the IndZone and velocity vectors on a iso-
surface of Q-criterion: it is the best case found. The vortices of the two devices do not interact
or their interaction is negligible
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Figure 63: combined plot of X- wall shear stress on the IndZone and velocity vectors on a
iso-surface of Q-criterion: worst case found. Here the vortices of the two devices do interact,
forming a much stronger vortex

To advocate the in-line configuration, that is the worst in our case, we may imagine that
having stronger vortices may generate an improvement where BL detachment could be
repaired by a strong injection of momentum into the BL using vortices like those, so when
we will study the pimpled-diffuser, we will need to take this into account.
Then it may be interesting to plot the non-dimensional velocity u+ against the non-
dimensional distance from the wall, y+, to see how the pimple interacts with the boundary
layer. Taking the wall shear stress value at the location of the center of the 1st pimple, the
corresponding y+ is 297.07, so the pimple trepasses all 3 layers but it isn’t high enough
to enter the fully-developed flow zone, as it can be seen in fig 65.
Then, a comparison between the non-dimensional velocity plots at different locations near
the pimple may be interesting:

Figure 64: u+ = u/Uτ against y+ = yUτ/ν plot, where Uτ =
√

τw
ρ . The plots are referenced

to 3 lines: one that is 5.3852mm upstream the leading edge (LE) of the pimple center, one on
the leading edge and the pimple and the last on its trailing edge (TE)).
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It is quite clear that in the first plot, that is taken 1 Dflux upstream of the center of the
pimple, the flux is quite undisturbed and in fact there is very good agreement between
theoretical profiles and Fluent data. The log-law zone in the Fluent profile is quite strict,
but we managed to get at least 4 points in the log-law zone and we have resolved correctly
the viscous sublayer, so we can conclude that the chosen expansion ratio for the prism
layers is correct.
In the other two figures the same plot is proposed where there are two significant variations
in geometry: the leading (accelerating flux) and the trailing edge (detachment). In the
central figure the boundary layer is detached (negative u+) very locally but the flux seems
then to follow the law u+ = y+ and the log-law layer seems disappeared. In the third
figure the BL is completely detached. The following figures are made for comparison at
the same locations as in the previous figure, but on a flat plate: of course these figures do
show a complete agreement with theoretical profiles for each location.

Figure 65: Reference plots of the non-dimensional velocity evaluated at the same measurement
stations as in the previous case, but for the flat plate case

Figure 66: pressure contours for the best case: the interaction between the pimples are only
due to the pressure field
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7 Part 4: 3D shape sensitivity map using Fluent ad-

joint solver

In the previous section we have demonstrated that an optimal point in terms of drag is
reached when the pimples do not interact. This result is not new to literature, even if not
applied on a flat plate, and it can be found in the 2011 24h-Le Mans racing car of the
team Oak Racing [8].

Figure 67: Oak Tree team 2011 racing car, rear wing: notice the single row of pimples

For this reason, it makes no sense to examine two pimples at one time using the adjoint
solver to get the shape-sensitivity maps: the same result can be obtained using a single-
pimple case, that is much more affordable.

7.1 Geometry, mesh and setup

Figure 68: geometry used for the adjoint computation

The geometry and boundary conditions do not differ substantially from the previous
case: the only difference is that the lateral periodic interfaces are distant 15mm from
the centerline and the body of influence is a little bit larger but has cells sized 0.4mm
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instead of 0.2mm, to save on cells. The mesh has ≈ 750000 poli-hexa cells and minimum
orthogonal quality 0.34 .

7.2 Adjoint Setup

To start the adjoint calculation, a converged direct solution is needed first: this was
provided using the same setup as in the previous case. This case has the same very
smooth convergence of the previous case and is initialised with a converged solution to
speed up the whole process.
After this point, in the ”design” tab, an observable for the drag computed on the IndZone
is created and set to ”minimize”. The adjoint solution methods are the default ones:

• method: Green-Gauss node based

• pressure: standard

• momentum: first order upwind

These parameters may be certainly improved, but it is essential to get a very well con-
verged adjoint solution, so we will use these parameters, that are easier to converge. Note
that it is not required to have a second order accuracy as in the case of the direct solu-
tion. The monitors are set as default except for the continuity, whose value is changed
to 10−6, that is more appropriate, as we want very well converged solutions. The solver
parameters and stabilization techniques are described in [4] and the workflow described
there is followed strictly to get the solution converged as fast as possible. In fact this is
not automatically reached bu the Fluent Auto-Adjust, but requires some manual changes.
The objective is reached in about 200 iterations, so the cost of the adjoint solution is of
the same order of the direct one.

7.3 Results

To examine the results of the adjoint solution, a shape sensitivity vector plot is generated
on the device: this map shows where one should ”pull in” or ”push out” the geometry to
get a minimization of the drag on the IndZone (that corresponds to the pimple and its
wake, or the projection of the body of influence).
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Figure 69: shape sensitivity magnitude vector plot, colors have a log scale

Figure 70: normal shape sensitivity contour plot

As expected (also from 2D computations) the pimple should be flattened and made ”like
a water drop” to minimize drag.

The great advantage of using the adjoint to compute the shape sensitivity is that is has a
computational cost of one calculation, while if one had to compute the same map/gradient
using a direct approach, the cost would increase as the number of points on the geometry
increase.

8 Conclusions

Here a summary of the main results that we have found so far is presented:

• pressure drag must be taken into account making flatter devices that do not alter
the flat plate conditions excessively. The blockage height is the dominant parameter
when dealing with pressure drag and 2D and 3D agree on this;
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• single pimple generate a horseshoe vortex that is steady, very stable and divides
the downstream zone into stripes where viscous drag is alternatively improved or
worsened; single dimple devices generate cyclone-like vortices or more complicated
patterns that show more unsteadiness;

• the double-device case, under the (reasonable) assumption that the case PP is the
best among the other configurations, turns out to be optimal when there is a single
row of pimples. This -of course- stands for a flat-plate base geometry, but should
be validated in case of a diffuser. 2D and 3D computations confirm this point;

• the optimal shape of a single pimple is confirmed both in 2D and 3D adjoint calcula-
tions: to reduce the drag the pimple should be ”flattened and rear-slanted”. If more
adjoint iterations were run, the result would be probably brought to the extreme of
recreating a flat plate;

• interactions between wakes or pressure gradients should be avoided as much as pos-
sible because, at least on a flat plate, they don’t guarantee any advantage, causing
a higher viscous drag behind the pimples.
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