Quick review of index and vector notation

These two sets of equations are the same, we simply wrote them using different
notations.
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« Let us illustrate index notation using operators that commonly appears in the
governing equations of fluid dynamics.

 In our notation, the indices i, 7, k can take the following values,

1,2,3

.

- For example, the vectors z; and u;, and the second rank tensor u;u; are defined
as follows,
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One free index results in a vector.

It represents a gradient.
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In vector notation, is equivalent to,
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The gradient will increase the rank of a tensor.

That is, a zero-rank tensor (scalar), will become a first-rank tensor (vector), and a
first-rank tensor will become a second-rank tensor (tensor).



One repeated index results in a scalar.

It is the sum over the index.
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In vector notation, is equivalent to,
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The divergence will decrease the rank of a tensor.

That is, a second-rank tensor (tensor), will become a first-rank tensor (vector), and a
first-rank tensor will become a zero-rank (tensor).



 Two free indices results in a tensor.
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 Two free indices results in a tensor.
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» |In vector notation, is equivalent to,
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Strain rate tensor
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« Two repeated indices (7 ) and one free indices (7 ) results in a tensor.
« Summation in j and it will form a vector in z.
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» Permutation or Levi-Civita operator.

(=0 if any two of 7, 7, k are the same
Eijk § =1 for even permutation
=1 for odd permutation

for even permutation = 123, 312, 231
for odd permutation = 321,132,213
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Using the Levi-Civita operator in the following way,

Results in the following vector,
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« Using the Levi-Civita operator in the following way,
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* And after some algebra, we obtain the following vector,
Oup, Ous  Ous \ - N Ou; Ousz )\ - N Ous  Ouq 7
Eiik—— = _— |1 —_— —_—
" 8:1:3- 8332 (9583 0333 033'1 J 8331 835'2

* |n vector notation, is equivalent to,

curlu=V x u



« Afew additional operators in index notation that you will find in the governing
equations of fluid dynamics.

« Strain rate tensor,
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* |n vector notation, is equivalent to,
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« Afew additional operators in index notation that you will find in the governing
equations of fluid dynamics.

- Laplacian,
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* |In vector notation, is equivalent to,

V- -Vu=V%u=Au

« The Laplacian operator will not change the rank of a tensor.



« Afew additional operators in index notation that you will find in the governing
equations of fluid dynamics.

» Every second-rank tensor, e.g., the gradient of a vector, can be decomposed
into a symmetric part and an anti-symmetric part.
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Symmetric part Anti-symmetric part

* |In vector notation, is equivalent to,

Vu = % (Vu -+ VuT) + % (Vu — VuT)
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* The symmetric part is equivalent to the strain rate tensor and the anti-
symmetric part is equivalent to the spin tensor (vorticity).



