
• The integral form of the general transport equation is the cornerstone of the finite 

volume method.

• Using the general transport equation we can write down the Navier-Stokes equations 

(NSE). For example, by setting the variables to,

• We can obtain the continuity equation,
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• We want to solve the general transport equation for the transported quantity        in a 

given domain, with given boundary conditions BC and initial conditions IC.  

• The general transport equation is a second order equation.  

• For good accuracy, it is necessary that the order of the discretization is equal or 

higher than the order of the equation that is being discretized.  

• By the way, the Navier-Stokes equations (NSE) are also second order.

• After all, they can be derived from the general transport equation.
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Unsteady and steady simulations

How to run unsteady simulations using a general CFD solver?

• Select the temporal discretization scheme.

• Set the time step. 

• Remember, the time-step must be chosen in such a way that it resolves the time-

dependent features and maintains solver stability.

• Set the tolerance (absolute and/or relative) of the linear solvers. However, most of the 

times the default parameters are fine.

• Monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor integral quantities, e.g., lift, drag, velocity at a point, average temperature at 

the outlet, and so on.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  
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Unsteady and steady simulations

• When running unsteady simulations the time-step must be chosen in such a way that it resolves 

the time-dependent features and maintains solver stability.

When you use large time steps you do 

not resolve well the physics

By using a smaller time step you 

resolve better the physics and you gain 

stability

How to choose the time-step in unsteady simulations and monitor the solution
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Unsteady and steady simulations

• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Monitoring and sampling unsteady simulations
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Unsteady and steady simulations

Monitoring and sampling unsteady simulations

• Remember to choose wisely where to do the sampling.
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Unsteady and steady simulations

• When you run unsteady simulations, flow variables can stop changing with time.  When this 

happens, we say we have arrived at a steady state.

• Remember, this is the exception rather than the rule.

• If you use a steady solver, you will arrive to the same solution (maybe not), in much less 

iterations.

I am running an unsteady simulations and the QOI does not change
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Unsteady and steady simulations

What about steady simulations?

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations is a trick used by CFDers to get fast outcomes with 

results that might be very questionable. 

• Most of the flows you will encounter in industrial applications are unsteady.

• In steady simulations, we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the temporal 

derivative in the governing equations.

• We perform time or iterative averaging when dealing with stationary 

turbulence (RANS modeling)

• The advantage of steady simulations are:

• They require low computational resources. 

• They give fast outcomes. 

• They are easy to post-process and analyze. We usually take a look

at the last saved solution.
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Unsteady and steady simulations

What about steady simulations?

• To run steady simulations using a general CFD solver, you need to use the 

appropriate solver and set the discretization scheme to deal with a steady simulation.

• As you are not solving the temporal derivative, you do not need to set the time step. 

• However, you need to tell to the CFD solver how many iterations you would like to 

perform.

• You can also set the residual controls.  If you do not set the residual controls, the 

simulation will run until reaching the maximum number of iterations.

• Additionally, you will need to set the under-relaxation factors.  

• Under-relaxation works by limiting the amount which a variable changes from one 

iteration to the next, either by modifying the solution matrix and source (implicit 

under-relaxation) prior to solving for a field or by modifying the field directly (explicit 

under-relaxation).

• Under-relaxation will make the coefficient matrix more diagonally dominant.
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• If                we are using under-relaxation. 

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of 

methods.

• Many times, steady simulations diverge because of wrongly chosen URF.

• In CFD, under-relaxation can implicit or explicit.

Unsteady and steady simulations

• Under-relaxation factors (URF), work in the following way. 

• URFs control the change of the variable      ,

What about steady simulations?
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Unsteady and steady simulations

• In explicit under-relaxation we relax the field variable,

What about steady simulations?

• In implicit under-relaxation we relax the discretized algebraic equation variable,

• Choosing the right under-relaxation factors (URF) is equivalent to choosing the right 

time step.

• You can relate URF to the CFL number as follows, 

• A large CFL number is equivalent to small URF.
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Unsteady and steady simulations

What about steady simulations?

0 1

Under-Relaxation Factors

Velocity

• Selecting the under-relaxation factors it is kind of equivalent to selecting the 

right time step.

• The under-relaxation factors are bounded between 0 and 1.

Stability
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Unsteady and steady simulations

What about steady simulations?

• Finding the right under-relaxation factors involved experience and a lot of 

trial and error.

• Choosing the wrong under-relaxation factors can stall the convergence or 

give you oscillatory/noisy convergence rate (residuals and monitored 

quantities).

• Generally speaking, is not recommended to reduce implicit under-relaxation 

factors to values below 0.5 as it can stalled the convergence rate, add an 

oscillatory behavior or slow down the convergence rate.

• If you  reach the 0.5 mark when using implicit under-relaxation factors, it is 

better to stabilize the solution in a different way (increase viscosity, ramp 

boundary conditions, use upwind, increase corrections and so on).

• Instead, explicit under-relaxation factors can be reduced to as low as 0.1 

and still obtain convergence in a reasonable number of iterations.

• It is recommended to use the values mentioned in literature (referred to as 

industry standard).
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Unsteady and steady simulations

• An optimum choice of under-relaxation factors is one that is small enough to ensure 

stable computation but large enough to move the iterative process forward quickly.

• Different methods (SIMPLE, SIMPLEC, SIMPLER, PISO), have different URF 

requirements.

• These are the under-relaxation factors commonly used with SIMPLE and SIMPLEC

methods (industry standard),

What about steady simulations?

• According to the physics involved you will need to add more under-relaxation factors 

(density, energy, species, and so on)..

• Finding the right under-relaxation factors involved experience and a lot of trial and 

error.

SIMPLE

p           →  0.3

U           →  0.7

k           →  0.7

omega       →  0.7

epsilon       →  0.7
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SIMPLEC

p           →  1.0

U           →  0.9

k           →  0.9

omega       →  0.9

epsilon       →  0.9



Unsteady and steady simulations

• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to 

compute temporal statistics or compute the shedding frequency

Steady simulations vs. Unsteady simulations
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Unsteady and steady simulations

• It is also possible to use under-relaxation factors with unsteady solvers.

• You should be careful not to use too low URF with unsteady solvers because you might loose temporal 

accuracy.

• You can use large URF (close to one) or the industry standard URF with unsteady solvers.

• If you use low values (less than 0.5 for all variables), it is recommended to run a temporal convergence test to 

determine if you are loosing time accuracy.

• The unsteady solution without URF must match the unsteady solution with URF, otherwise your solution is not 

time-accurate.

• When you use URF with unsteady solvers you increase the diagonal dominance of the linear system. 

Therefore, they improve the stability of unsteady solvers.

Under-relaxation factors and unsteady solvers
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SIMPLE

p →  0.3

U    →  0.7

k →  0.7 

omega →  0.7

epsilon →  0.7

SIMPLEC

p →  1

U    →  0.9

k →  0.9

omega →  0.9

epsilon →  0.9

SIMPLE – SIMPLEC – PISO

p → 0.7 (0.3 IN SIMPLE)

U    →  0.7

k →  0.7

omega →  0.7

epsilon →  0.7

Industry standard URF Recommended URF

Note: use these guidelines with unsteady solvers



Linear system solution

• Reducing the time-step or changing the under-relaxation factors will make the coefficient matrix 

more diagonally dominant.

• In CFD, it is extremely important that the matrix A is diagonally dominant.

• A matrix is diagonally dominant if in each row the sum of the off-diagonal coefficient magnitude 

is equal or smaller than the diagonal coefficient,

• Diagonal dominance is a very desirable feature for satisfying the boundedness criterion.

• And at least one i,
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Linear system solution

• Diagonal dominance is a very desirable feature for satisfying the boundedness criterion.

• To achieve diagonal dominance we need large values of net coefficient (coefficients of the 

diagonal).

• This can be controlled by using under-relaxation, reducing the time-step, by assuring that any 

source term in the RHS is negative, and by having good quality meshes.

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion.
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Linear system solution

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion [1].

[1] James Blaine Scarborough (1958). Numerical Mathematical Analysis. Johns Hopkins Press.

• The satisfaction of this criterion ensures that the equations will converge by at least one iterative 

method.

• This is a sufficient condition, not a necessary one.  This means that we can get convergence, 

even if, at times, we violate this criterion.

• The finite volume method uses this criterion to set some basic discretization rules related to 

obtaining a convergent solution, implementing boundary conditions, and adding source terms. 

• When linearizing the source terms they must be negative, so when they are added to 

ap in the LHS, they help increasing the diagonal dominance.

• All coefficients in the LHS and RHS of the linear system should have the same sign 

(essential requirement for boundedness).

• If the boundedness requirement is not satisfied, it is possible that the solution does 

not converge at all, or if it does, the solution is oscillatory (contains wiggles).
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• is the initial guess used to start the iterative method. 

• Iteration 0 defines the initial residual, and greatly influence the convergence rate.  

• You can use any value at iteration 0, but usually is a good choice to take the previous solution 

vector. 

• Remember, the closest you are to the actual solution, the faster the convergence rate will be. 22
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• If the following condition is fulfilled, the linear solver will stop iterating and will advance to the 

next time-step. 

• This condition defines the final residual, where r is the tolerance or convergence criterion 

(defined by the user). 23
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• By working in an iterative way, every single iteration           is a better approximation of the 

previous iteration

• Sometimes the linear solver might stop iterating because it has reached the maximum number 

of iterations, you should be careful of this because we are talking of unconverged iterations.

• Also, it is recommended to do at least one iteration as it helps at linearizing the equations. 24
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• It is clear that if the initial residual                  is the same as the final residual                                  

(we are converging in one iteration), we can say that we have reached a steady solution (this 

does not happen very often).

• Every iterative linear solver has different properties.  Also, depending on the matrix type 

(symmetric or asymmetric), they might have different convergence rates.
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