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That we have written an equation does not 

remove from the flow of fluids its charm or 

mystery or its surprise. 

- Richard Feynman

”
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Additional equations to close the system

• In the absent of models (turbulence, multiphase, mass transfer, combustion, particles interaction, chemical 

reactions, acoustics, and so on), this set of equations will resolve all scales in space and time.

Source terms

Relationships between two or more thermodynamics variables

Additionally, relationships to relate the transport properties



Governing equations – Reynolds averaging

Governing equations of fluid dynamics
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• I like to write the governing equations in matrix-vector form,

• Where q is the vector of the conserved flow variables,

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation

CE

ME

EE
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Governing equations of fluid dynamics
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• I like to write the governing equations in matrix-vector form.

• The vectors ei, fi, and gi contain the inviscid fluxes (or convective fluxes) in the x, y, 

and z directions,

CE

ME

EE

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation
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Governing equations of fluid dynamics
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• I like to write the governing equations in matrix-vector form.

• The vectors ev, fv, and gv contain the viscous fluxes (or diffusive fluxes) in the x, y, 

and z directions,

CE = Continuity equation ME = Momentum equation (x,y,z) EE = Energy equation

CE

ME

EE
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Governing equations of fluid dynamics
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• The heat fluxes in the vectors ev, fv, and gv can be computed using Fourier’s law of 

heat conduction as follows,

• If we assume that the fluid behaves as a Newtonian fluid (a fluid where the shear 

stresses are proportional to the velocity gradients), the viscous stresses can be 

computed as follows,
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Governing equations of fluid dynamics
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• In virtually all practical aerodynamic problems, the working fluid can be assumed to 

be  Newtonian

• In the normal viscous stresses                     , the variable      is known as the second 

viscosity coefficient (or bulk viscosity).

• If we use Stokes hypothesis,  the second viscosity coefficient can be approximated 

as follows,

• Except for extremely high temperature or pressure, there is so far no experimental 

evidence that Stokes hypothesis does not hold.

• For gases and incompressible flows, Stokes hypothesis is a good approximation.
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Governing equations of fluid dynamics
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• By using Stokes hypothesis and assuming a Newtonian flow, the viscous stresses 

can be expressed as follows,

• So far we have five equations and seven variables. 

• To close the system we need to find two more equations by determining the 

relationship that exist between the thermodynamics variables                     .   



Governing equations – Reynolds averaging

Governing equations of fluid dynamics
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• Choosing the internal energy       and the density     as the two independent 

thermodynamic variables, we can find equations of state of the form,

• Assuming that the working fluid is a gas, that behaves as a perfect gas and is also a 

calorically perfect gas, the following relations for pressure p and temperature T can 

be used,

• Now our system of equations is closed.  That is, seven equations and seven 

variables.
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Governing equations of fluid dynamics
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• To derive the thermodynamics relations for pressure p and temperature T, the 

following equations where used,

Equation of state

Ratio of specific 

heats

Specific heat at 

constant volume

Specific heat at 

constant pressure
Internal energy Enthalpy

Total energy

Recall that Rg is the 

specific gas constant
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Governing equations of fluid dynamics
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• In our discussion, it is also necessary to relate the transported fluid properties               

to the thermodynamic variables.

• The molecular viscosity (or laminar viscosity) can be computed using Sutherland’s 

formula,

• The thermal conductivity can be computed as follows,

Prandtl number of the working fluid
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Governing equations of fluid dynamics
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• If you are working with high speed compressible flows, it is useful to introduce the 

Mach number.

• The Mach number is a non-dimensional parameter that measures the speed of the 

gas motion in relation to the speed of sound a,

• Then, the Mach number can be computed as follows,

• And never forget the definition of the Reynolds number,
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Governing equations of fluid dynamics

• The previous equations, together with appropriate equations of state, boundary 

conditions, and initial conditions, govern the unsteady three-dimensional motion of a 

viscous Newtonian compressible fluid.

• These equations solve all the scales in space and time.  Therefore, we need to use 

very fine meshes and very small time-steps.

• Notice that besides the thermodynamics models (or constitutive equations) and a few 

assumptions (Newtonian fluid and Stokes hypothesis), we did not used any other 

model.

• Our goal now is to add turbulence models to these equations in order to avoid 

solving all scales. 

• This will allow us use coarse meshes and larger time-steps.

• We can also use steady solvers.

• Before deriving the RANS equations, let us add a few simplifications to this beautiful 

set of equations.
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Simplifications of the governing equations of fluid dynamics
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• In many applications the fluid density can be assumed to be constant.

• If the flow is also isothermal, the viscosity is also constant.

• This is true not only for liquids, but also for gases if the Mach number is below 0.3.

• Such flows are known as incompressible flows.

• If the fluid is also Newtonian, the governing equations written in compact 

conservation differential form and in primitive variable formulation (u, v, w, p) reduce 

to the following set of equations,
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Simplifications of the governing equations of fluid dynamics
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• In expanded three-dimensional Cartesian coordinates, the simplified governing 

equations can be written as follows,

• It is worth noting that the simplifications added do not make the equations easier to 

solve. 

• The mathematical complexity is the same.  We just eliminated a few variables, so 

from the computational point of few, it means less storage.

• Also, the convergence rate is not necessarily faster.
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Simplifications of the governing equations of fluid dynamics
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• We can also write the simplified governing equations in matrix-vector form.
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Simplifications of the governing equations of fluid dynamics
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• Recall that the viscous stresses tensor       can be written as follows,

• By using Stokes hypothesis and assuming a Newtonian flow, the viscous stresses 

can be expressed as follows,
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Simplifications of the governing equations of fluid dynamics
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• The viscous stress tensor can be written in compact vector form as follows,

• Where D represents the strain-rate tensor and is given by the following relationship,

• Additionally, the gradient tensor can be decomposed in symmetric and skew parts as 

follows,

• Where S represents the spin tensor (vorticity), and is given by,

• In our notation, D represent the symmetric part of the tensor and S represents the 

skew (or anti-symmetric) part of the tensor. 
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Simplifications of the governing equations of fluid dynamics
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• From now on, and only to reduce the amount of algebra, we will use the 

incompressible, isothermal, Newtonian, governing equations.
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Conservative vs. non-conservative form of the governing equations

23

• We presented the governing equations in their conservative form, that is, the vector of 

conservative variables is inside the derivatives.

• From a mathematical point of view, the conservative and non-conservative form of the 

governing equations are the same.

• But from a numerical point of view, the conservative form is preferred in CFD. Specially if we 

are using the finite volume method (FVM).

• The conservative form enforces local conservation as we are computing fluxes across the faces 

of a control volume.

• The conservative form use flux variables as dependent variables, and the non-conservative 

form uses the primitive variables as dependent variables.

Conservative form Non-conservative form

• If you integrate this equation in a control volume, 

fluxes across the faces will arise.

• The FVM method is based on integrating the 

governing equations in every control volume.
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Conservative vs. non-conservative form of the governing equations
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• Let us recall the following identity,

• From the divergence-free constraint                    it follows that                   is equal to zero.  Therefore,

• Henceforth, the non-conservative form of the momentum equation (also known as the advective or convective 

form) is equal to

• And is equivalent to the conservative form of the momentum equation (also known as the divergence form),
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Incompressible Navier-Stokes using index notation
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• The incompressible Navier-Stokes equations can also be written using index notation 

as follows,

• Dust your notes on index notation as from time to time I will change from vector 

notation to index notation.

↔
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Governing equations – Reynolds averaging

Instantaneous fluctuations – Removing small scales

• We have seen that turbulent flows are characterize by instantaneous fluctuations of velocity, pressure, and all 

transported quantities.

• In most engineering applications is not of interest resolving the instantaneous fluctuations.

• To avoid the need to resolve the instantaneous fluctuations (or small scales), two methods can be used:

• Reynolds averaging.

• Filtering.

• If you want to resolve all scales, you conduct DNS simulations, which are very computationally intensive.

Steady mean value Unsteady mean value

27
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Instantaneous fluctuations – Removing small scales

• Two methods can be used to eliminate the need to resolve the small scales:

• Reynolds averaging (RANS/URANS):

• All turbulence scales are modeled.

• Can be 2D and 3D.

• Can be steady or unsteady.

• Filtering (LES/DES):

• Resolves large eddies.

• Models small eddies.  

• Intrinsically 3D and unsteady.

• Both methods introduce additional terms in the governing equations that must be 

modeled (these terms are related to the instantaneous fluctuations).

• The final goal of turbulence modeling is to find the closure equations to model these 

additional terms (usually a stress tensor).

28



Governing equations – Reynolds averaging

MODEL

RANS
Reynolds-Averaged Navier-Stokes equations

URANS
Unsteady Reynolds-Averaged Navier-Stokes equations
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SAS
Scale Adaptive Simulations

DES
Detached Eddy Simulations

LES
Large Eddy Simulations

DNS
Direct Numerical Simulations

Overview of turbulence modeling approaches

In
c
re

a
s
in

g
 c

o
m

p
u

ta
tio

n
a
l c

o
s
t

In
c
re

a
s
in

g
 m

o
d

e
llin

g
 a

n
d

 m
a
th

e
m

a
tic

a
l 

c
o

m
p

le
x
ity

29



Governing equations – Reynolds averaging

Turbulence modeling – Starting equations
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NSE

Additional equations to close the system (thermodynamic variables)

Additionally, relationships to relate the transport properties

Additional closure equations for the turbulence models

• Turbulence models equations cannot be derived from fundamental principles.

• All turbulence models contain some sort of empiricism.   

• Some calibration to observed physical solutions is contained in the turbulence models.

• Also, some intelligent guessing is used.

• A lot of uncertainty is involved!



Incompressible RANS equations

Governing equations – Reynolds averaging
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• Let us write down the governing equations for an incompressible flow.

• When conducting DNS simulations (no turbulence models involved), this is our 

starting point,

• When using RANS turbulence models, these are the governing equations,

If we retain this term, we talk about URANS equations 

and if we drop it, we talk about RANS equations

Reynolds stress tensor

This term requires modeling



Incompressible RANS equations

Governing equations – Reynolds averaging
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• The previous set of equations ca be rewritten as,

• Where          is the Reynolds stress tensor, and it can be written as,

• Notice that the Reynolds stress tensor is not actually a stress, it must be multiplied by 

density in order to have dimensions corresponding to stresses,



Incompressible RANS equations

• To derive the incompressible RANS equations we need to apply Reynolds averaging 

to the governing equations.

• Reynolds averaging simple consists in:

• Splitting the instantaneous value of the primitive variables into a mean 

component and a fluctuating component (Reynolds decomposition). 

• Averaging the quantities (time average, spatial average or ensemble 

average).

• Applying a few averaging rules to simplify the equations.

• When we use Reynolds averaging, we are taking a statistical approach to turbulence 

modeling.

• When we do DNS, we take a deterministic approach to turbulence modeling.

• Usually, we are interested in the mean behavior of the flow. 

• Therefore, by applying Reynolds averaging, we are only solving for the averaged 

variables and the fluctuations are modeled.

Governing equations – Reynolds averaging

33



Incompressible RANS equations

• The Reynolds decomposition consists in splitting the instantaneous value of a 

variable into a mean component and a fluctuating component, as follows,

Governing equations – Reynolds averaging

34

• In our notation, the overbar represents the average (or mean) value, and the prime 

(or apostrophe) represents the fluctuating part.

• We will use this notation consistently during the lectures.

Mean component

Fluctuating component

Instantaneous value



Incompressible RANS equations

• To compute the average (or mean) quantities, we can use time averaging,

Governing equations – Reynolds averaging
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• Here, T represents the averaging interval. This interval must 

be large compared to the typical time scales of the fluctuations 

so it will yield to a stationary state.

• Time averaging is appropriate for stationary turbulence or 

slowly varying turbulent flows, i.e., a turbulent flow that, on 

average, does not vary much with time.

• Notice that we are not making the distinction between steady 

or unsteady flow. The time average can be in time or iterative.

• We are only saying that if we take the average between 

different ranges or values of t, we will get approximately the 

same mean value.



Incompressible RANS equations

• We can also use spatial averaging and ensemble averaging.

• Spatial averaging is appropriate for homogenous turbulence and is defined as follows,

Governing equations – Reynolds averaging
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• Ensemble averaging is appropriate for unsteady turbulence.

Volume of the domain

Number of realizations

• In ensemble averaging, the number or realizations (or experiments) must be large 

enough to eliminate the effects of fluctuations. This type of averaging can be used  

with steady or unsteady flows.



Incompressible RANS equations

• If the mean quantities varies in time, such as,

Governing equations – Reynolds averaging
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• We simple modify time averaging, as follows,

• Where T2 is the time scale characteristic of the slow variations in the flow 

that we do not wish to regard as belonging to the turbulence.

• In this kind of situations, it might be better to use ensemble averaging.

• However, ensemble averaging requires running many experiments. This 

approach is better fit for experiments as CFD is more deterministic.

• Ensemble average can also be used when having periodic signal behavior. 

However, you will need to run for long times in order to take good averages.

• Another approach is the use of phase averaging.



Incompressible RANS equations

• Any of the previous time averaging rules can be used without loss of generality.  

• But from this point on, we will consider only time averaging.

• Before continuing, let us recall a few averaging rules that we will use when deriving 

the RANS equations.

Governing equations – Reynolds averaging

38



Incompressible RANS equations

• Let us recall the Reynolds decomposition for the primitive variables of the 

incompressible Navier-Stokes equations (NSE),

Governing equations – Reynolds averaging

• By substituting the previous equations into the incompressible (NSE), using the 

previous averaging rules, and doing some algebra, we arrive to the incompressible 

RANS/URANS equations,

39

Reynolds stress tensor

This term requires modelingIf we retain this term, we talk about URANS equations 

and if we drop it, we talk about RANS equations



• The RANS equations are very similar to the starting equations. 

Incompressible RANS equations

Governing equations – Reynolds averaging
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RANS/URANS equations NSE with no turbulence models (DNS)

• The differences are that all quantities has been averaged (the overbar over the 

primitive variables).

• And the appearance of the Reynolds stress tensor         .

• Notice that the Reynolds stress tensor is not actually a stress, it must be multiplied by 

density in order to have dimensions corresponding to stresses,



• The Reynolds stress tensor         arises from the Reynolds averaging and it can be 

written as follows,

Incompressible RANS equations

Governing equations – Reynolds averaging

• It basically correlates the velocity fluctuations. 

• In CFD we do not want to resolve the velocity fluctuations as it requires very fine 

meshes and small time-steps.

• The RANS/URANS approach to turbulence modeling requires the Reynolds stresses 

to be appropriately modeled. 

• The rest of the terms appearing in the governing equations, can be computed from 

the mean flow.

• Notice that the Reynolds stress tensor is symmetric. 41



• The Reynolds stress tensor        , is the responsible for the increased mixing and 

larger wall shear stresses. Remember, increased mixing and larger wall shear 

stresses are properties of turbulent flows.

• The RANS/URANS approach to turbulence modeling requires the Reynolds stresses 

to be appropriately modeled. 

• The question now is, how do we model the Reynolds stress tensor         ?

• It is possible to derive its own governing equations (six new equations as the tensor is 

symmetric). 

• This approach is known as Reynolds stress models (RSM), which we will briefly 

address in Lecture 6.

• Probably, this is the most physically sounded RANS model (RSM or Reynolds stress 

model) as it avoids the use of hypothesis/assumptions to model this term.

• However, it is much simpler to model the Reynolds stress tensor. 

• The most widely hypothesis/assumption used to model the Reynolds stress tensor is 

the Boussinesq hypothesis, that we will study in next section.

Incompressible RANS equations

Governing equations – Reynolds averaging

43



• We just outlined the incompressible RANS equations.

• The compressible RANS equations are similar. To derive them, we use Favre average 

(which can be seen as a mass-weighted averaging) and a few additional averaging 

rules.

• If we drop the time derivative in the governing equations, we are dealing with steady 

turbulence.

• On the other hand, if we keep the time derivative, we are dealing with unsteady 

turbulence. 

• If you can afford it, ensemble averaging is recommended. Have in mind that CFD is 

deterministic, so you should start each realization using different initial conditions and 

boundary conditions fluctuations to obtain different outcomes.

• The derivation of the LES equations is very similar, but instead of using averaging, we 

filter the equations in space, and we solve the temporal scales.

• LES/DES models are intrinsically unsteady and three-dimensional.

• We will address LES/DES methods in Lecture 10.

Governing equations – Reynolds averaging

44

Incompressible RANS equations
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The Boussinesq hypothesis

• The RANS/URANS approach to turbulence modeling requires the Reynolds stress 

tensor       to be appropriately modeled. 

45

• Remember, we do not want to resolve the instantaneous fluctuations.

• Even if it is possible to derive governing equations for the Reynolds stress tensor    

(six new equations as the tensor is symmetric), it is much simpler to model this term.

• The approach of deriving the governing equations for the Reynolds stress tensor       

is known as Reynolds stress model (RSM).

• Probably, this is the most physically sounded RANS model (RSM or Reynolds stress 

model) as it avoids the use of hypothesis/assumptions to model this term.



The Boussinesq hypothesis

• We will address the RSM model in Lecture 6.

• If you are curious, this is how the constitutive equations look like,

46

1. Transient stress rate of change term.

2. Convective term.

3. Production term.

4. Dissipation rate.

5. Turbulent stress transport related to the velocity and 

pressure fluctuations.

6. Rate of viscous stress diffusion (molecular).

7. Diffusive stress transport resulting from the triple 

correlation of velocity fluctuations.

We  get 6 new equations, but we also generate 22 new unknowns.



The Boussinesq hypothesis

• Modeling the Reynolds stress tensor is a much easier approach.

• A common approach used to model the Reynolds stress tensor     , is to use the 

Boussinesq hypothesis.

• This approach was proposed by Boussinesq in 1877. 

• He stated that the Reynolds stress tensor is proportional to the mean strain rate 

tensor, multiplied by a constant (which we will call turbulent eddy viscosity). 

• The Boussinesq hypothesis is somehow similar to the hypothesis taken when dealing 

with Newtonian flows, where the viscous stresses are assumed to be proportional to 

the shear stresses, therefore, to the velocity gradient.

• The Boussinesq approximation reduces the turbulence modeling process from finding 

the six turbulent stresses in the RSM model to determining an appropriate value for 

the turbulent eddy viscosity      .

• By the way, do not confuse the Boussinesq approximation used in turbulence 

modeling with the completely different concept found in natural convection (or 

buoyancy-driven flows).

47



→ turbulent kinetic energy.

→ turbulent eddy viscosity.

The Boussinesq hypothesis

• A common approach used to model the Reynolds stress tensor      , is to use the 

Boussinesq hypothesis.

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the 

mean strain rate tensor (therefore the mean velocity gradient), as follows,

→ Reynolds averaged strain-rate tensor.

→ identity matrix (or Kronecker delta).

48

• At the end of the day we want to determine the turbulent eddy viscosity. 

• Each turbulence model will compute this quantity in a different way.

• Remember, the turbulent eddy viscosity       is not a fluid property, it is a property 

needed by the turbulence model.



The Boussinesq hypothesis

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the 

mean strain rate tensor (therefore the mean velocity gradient), as follows,

49

Which is equivalent to the 

Kronecker delta



The Boussinesq hypothesis

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the 

mean strain rate tensor (therefore the mean velocity gradient), as follows,

50

• The term circled in the Boussinesq hypothesis, is added in order for the Boussinesq 

approximation to be valid when traced.

• That is, the trace of the right-hand side must be equal to the trace of the left-hand 

side,

• Hence, it is consistent with the definition of turbulent kinetic energy 

This term  represent normal stresses, therefore, is analogous to the pressure term that arises in the viscous stress tensor



The Boussinesq hypothesis

• By using the Boussinesq hypothesis, we can relate the Reynolds stress tensor to the 

mean strain rate tensor (therefore the mean velocity gradient), as follows,

51

• In order to evaluate the turbulent kinetic energy, usually a governing equation for       

is derived and solved.

• Typically two-equations models include such an option, as we will see in Lecture 6.

• The term circled in the Boussinesq hypothesis can be ignored if there is no governing 

equation for    .

• Closures based on the Boussinesq approximation are known as eddy viscosity 

models (EVM).

This term  represent normal stresses, therefore, is analogous to the pressure term that arises in the viscous stress tensor



The Boussinesq hypothesis
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• As previously mentioned, the Boussinesq approximation lies in the belief that the Reynolds 

Stress tensor behaves in a similar fashion as the Newtonian viscous stress tensor.

• In spite of the theoretical weakness of the Boussinesq approximation, it does produce 

reasonable results for a large number of flows.

• The main disadvantage of the Boussinesq hypothesis as presented (linear model), is that it 

assumes that the turbulent eddy viscosity is an isotropic scalar quantity, which is not strictly true.

• Summary of shortcomings of the Boussinesq approximation,

• Poor performance in flows with large extra strains, e.g., curved surfaces, strong 

vorticity, swirling flows.

• Rotating flows, e.g., turbomachinery, wind turbines.

• Highly anisotropic flows and flows with secondary motions, e.g., fully developed flows 

in non-circular ducts.

• Non-local equilibrium and flow separation, e.g., airfoil in stall, dynamic stall.

• Many EVM models has been developed and improved along the years so they address the 

shortcomings of the Boussinesq approximation.

• EVM models are the cornerstone of turbulence modeling.



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• Recall the incompressible RANS equations,

• By using the Boussinesq approximation, we can write the governing equations as 

follows,

Normal stresses arising from the 

Boussinesq approximation

Turbulent viscosity

Effective viscosity

where



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• Or using index notation, the RANS equations can be written as follows,

• By using the Boussinesq approximation, 

• We can write the governing equations as follows,

where



The Boussinesq hypothesis
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Final touches to the incompressible RANS equations

• The problem now reduces to computing the turbulent eddy viscosity       in the 

momentum equation.

• This can be done by using any of the models that we will study in Lecture 6.

• Zero equation models.

• One equation models.

• Two equation models.

• Three, four, five, … , equation models.

• Reynolds stress models.

• And so on.



The Boussinesq hypothesis
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Relationship for the turbulent eddy viscosity

• In most turbulence models, a relationship for the turbulent eddy viscosity is derived using 

dimensional arguments (as we have seen so far and will study later).

• This can be done by using any combination of dimensional groups, that is, velocity, 

length, time, etc. In the end, we should have viscosity units.

• This relationship can be corrected later or validated based on empirical and physical arguments, 

e.g., asymptotic analysis, canonical solutions, analytical solutions, consistency with experimental 

measurements, and so on.

• It is also possible the use numerical arguments to correct, calibrate, and validate the 

relationship. To achieve this end, we rely on scale resolving simulations (most of the time DNS 

simulations).

• Regardless of the approach used, we see a recurring behavior. Specifically, eddy viscosity and 

length scale are all related on the basis of dimensional arguments.

• Historically, dimensional analysis has been one of the most powerful tools available for deducing 

and correlating properties of turbulent flows.

• However, we should always be aware that while dimensional analysis is extremely useful, it 

unveils nothing about the physics underlying its implied relationships.
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Sample turbulence models
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RANS equations – EVM equations

• By using the Boussinesq approximation in the incompressible RANS equations, we 

obtain the following set of equations,

• The problem now reduces to computing the turbulent eddy viscosity in the momentum 

equation.

• Let us explore two closure models, the            model and             the model.



• It is called               because it solves two additional equations for modeling the 

turbulence, namely, the turbulent kinetic energy      and the turbulence dissipation  

rate    .

Sample turbulence models

59

Turbulence model governing equations

• With the following closure coefficients,

• And closure relationships,



• The closure equations correspond to the standard              model.

• They have been manipulated so there are no terms including velocity fluctuations, 

besides the Reynolds stress tensor and the turbulence dissipation rate.

• The Reynolds stress tensor is modeled using the Boussinesq approximation.

• The turbulence dissipation rate is modeled using a second transport equation.

Sample turbulence models

60

Turbulence model governing equations

Production

Dissipation

Diffusion

Diffusion
Production

Dissipation



• It is called               because it solves two additional equations for modeling the 

turbulence, namely, the turbulent kinetic energy      and the turbulence specific 

dissipation rate     .

Sample turbulence models
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Turbulence model governing equations

• With the following closure coefficients,

• And closure relationships,



Turbulence model governing equations

Sample turbulence models
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• The closure equations correspond to the Wilcox (1998)                model.

• They have been manipulated so there are no terms including velocity fluctuations, 

besides the Reynolds stress tensor.

• The Reynolds stress tensor is modeled using the Boussinesq approximation.

Production

Dissipation

Diffusion

Diffusion

Dissipation

Production



Final remarks

• The previous EVM models, are probably the most widely used ones.

• The standard            is a high Reynolds number model (wall modeling), and             

the              is wall resolving model (low Reynolds number).

• By inspecting the closure equations of the           model, we can evidence that the 

turbulent kinetic energy and dissipation rate must go to zero at the correct rate in 

order to avoid turbulent viscosity production close to walls.

• Instead, the              model does not suffer of this problem as the turbulence specific 

dissipation rate is proportional to                 . Therefore, the specific dissipation rate 

close to the walls is usually a large value.

• Remember, you need to define initial conditions and boundary conditions when using 

turbulence models.  

• By the way, some models can be very sensitive to initial conditions.

• We addressed turbulence estimates in Lecture 4. We will revisit this subject in the 

next lectures.

Sample turbulence models

63



Model Short description

Spalart-Allmaras

This is a one equation model. Suitable for external aerodynamics, tubomachinery and high 

speed flows. Good for mildly complex external/internal flows and boundary layer flows under 

pressure gradient (e.g. airfoils, wings, airplane fuselages, ship hulls). Performs poorly with flows 

with strong separation. 

Standard k–epsilon

This is a two equation model. Very robust and widely used despite the known limitations of the 

model. Performs poorly for complex flows involving severe pressure gradient, separation, strong 

streamline curvature. Suitable for initial iterations, initial screening of alternative designs, and 

parametric studies. Can be only used with wall functions.

Realizable k–epsilon

This is a two equation model. Suitable for complex shear flows involving rapid strain, moderate 

swirl, vortices, and locally transitional flows (e.g. boundary layer separation, massive separation, 

and vortex shedding behind bluff bodies, stall in wide-angle diffusers, room ventilation).  It 

overcome the limitations of the standard k-epsilon model.

Standard k–omega

This is a two equation model. Superior performance for wall-bounded boundary layer, free 

shear, and low Reynolds number flows compared to models from the k-epsilon family. Suitable 

for complex boundary layer flows under adverse pressure gradient and separation (external 

aerodynamics and turbomachinery). 

SST k–omega

This is a two equation model. Offers similar benefits as the standard k–omega. Not overly 

sensitive to inlet boundary conditions like the standard k–omega. Provides more accurate 

prediction of flow separation than other RANS models. Can be used with and without wall 

functions. Probably the most widely used RANS model.

Short description of some RANS turbulence models

Sample turbulence models
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