Chapter 8

Wake Topology and Aerodynamic
Performance of Finite-Span Flapping
Wings

In this chapter, we extend the two-dimensional results presented in the previous chapter to three-
dimensional rigid finite-span flapping wings. We investigate the wake topology behind low aspect
ratio flapping wings and their dependence on the Strouhal number and flapping parameters. We
also present some results on the aerodynamic performance of flapping wings and establish the
best criteria for vortical structures identification.

8.1 Overview

The three-dimensional flow features generated by finite-span wings present a great challenge due
to the computational effort required to compute the complex flows generated as a function of the
flapping kinematics, flapping frequency, flapping amplitude, wing geometry and Reynolds num-
ber; all these factors influence the wake topology and aerodynamic performance of finite-span
flapping wings. Hereafter, we study the validity of the Strouhal number St as the fundamental
aerodynamic parameter for finite-span flapping wings at low Reynolds number. We also conduct
several numerical experiments in order to investigate the wake topology and aerodynamic perfor-
mance of rigid finite-span wings undergoing pure heaving motion, coupled heaving-and-pitching
motion and rolling motion (root-flapping).

8.2 Computational Domain and Grid Setup

The overlapping grid system used for the three-dimensional flapping wings studies, is based in
the two-dimensional overlapping grid system used previously, and provides good resolution in the
area around the moving wing as well as in the wake region. In figures 8.1 and 8.2 we show the
overlapping grid system layout, where the background grid extends 2.5 x ¢ away from the wing
leading edge, 6.5 X ¢ away from the wing trailing edge, 1.5 x ¢ away from the wing-tips and 3.0 X ¢
away from the wing upper and lower surface (where ¢ is the mean wing chord). The previous
dimensions, are the dimensions for the overlapping grid system layout when the wing is in the
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8.2. COMPUTATIONAL DOMAIN AND GRID SETUP

mean position of the flapping motion and where h, is assumed to be equal to 0.25.
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Figure 8.1: Three-dimensional computational domain layout in the zy plane.
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Figure 8.2: Three-dimensional computational domain layout in the zy plane.

The nominal grid size employed for the background grid is 160 x 100 x 60 (in the z, y and z direc-
tions respectively). For the wing grid, the grid size is about 160 x 80 x 60; this grid size is based
on a rectangular wing of aspect ratio equal AR = 1 and wing chord equal to ¢ = 1. In the case of
a bigger or smaller domain, the grid dimensions are scaled in order to keep the same grid spacing
as for this domain. The first node normal to the wing surface is placed at a distance equal to
0.0001 x ¢ (which still is in the asymptotic range of convergence as seen in Chapter 6, Section 3),
and we clustered up to 14 points in the direction normal to the airfoil surface. In order to better
resolve the wing wake, we use grid stretching in the x, y and z directions of the background grid
(see figure 8.3). All the flapping wings calculations were started from a fully converged stationary
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OF FINITE-SPAN FLAPPING WINGS

wing solution. In figure 8.1 the top, bottom and right boundaries are outflow boundaries and
the left boundary is inflow with (u,v,w) = (1.0,0.0,0.0), whereas in figure 8.2 all the boundaries
correspond to outflow. On the wing surface we impose a no-slip boundary condition.

(A) ()

Figure 8.3: Typical grid system employed in the current three-dimensional study. A) Side view. B) Front
view. C) Top view. D) Perspective view.

8.3 Vortex Identification
A key aspect in the study of the wake topology of finite-span wings is the proper identification

of vortical structures. Hereafter, we test four well known criteria which are based on the velocity
gradient tensor Vu [40, 63, 91, 178].

1. | w |-criterion, where | w | is the norm of the vorticity vector | w |= V x u. This criterion
identifies a flow region as a vortex when | w | reaches a specified threshold.

2. Q-criterion, where Q is the second invariant of Vu. It defines a region as a vortex if every
point in this region has Q > 0. The second invariant Q is defined as
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8.3. VORTEX IDENTIFICATION

Q=05(IQ*~1Is|? (8.1)

where Q = 0.5(Vu — VuT) is the rate-of-strain tensor and S = 0.5(Vu + Vu?) is the
vorticity tensor, which are the asymmetric and symmetric components of Vu, respectively;

and || A ||= y/tr(AAT) is the Euclidean norm of a given tensor A (in our case 2 and S).
Q indicates the local competition between the rotation rate and the deformation (or strain)
rate, thus Q > 0 means that the local rotational effect dominates [91].

3. \o-criterion, where )y is the intermediate eigenvalue of the symmetric tensor Q2+ S2, which
relates the pressure P with the following relation

vV (VP)
)

02482 =— (8.2)

This criterion defines a region as a vortex if every point in this region has Ao < 0, since
A2 < 0 implies that the plane perpendicular to the local vortex axis has the local pressure
minimum [40, 91].

4. Nj-criterion or kinematic vorticity number, which measure “the quality of the rotation”,
instead of the local rotation rate given by || 2 ||. Ny is defined as

o]
N, = —— 8.3
E=TS] (®3)

Thus, Nj is a pointwise measure of | w | non-dimensionalized by the norm of the rate-of-
strain tensor S, which gives the quality of the rotation regardless of the vorticity magnitude.
For example, N = co and N = 0 correspond to solid-body rotation and irrotational mo-
tion respectively, regardless of the | w | value [91].

In figures 8.4, 8.5, 8.6, and 8.7 the vortical structures obtained using these four criteria are
presented. For this case, a rectangular wing with aspect ratio equal to AR = 1 and elliptical
cross-section (with a corresponding major axis ¢ = 0.5 and minor axis b = 0.0625) is used. The
wing is undergoing pure heaving motion as per equation eq. 2.21, at a Strouhal number equal to
St = 0.5 and heaving amplitude equal to h, = 0.25. The Reynolds number based on the wing
chord is Re = 500. The results are shown for a non-dimensional time ¢t = 7.0. The thresholds of
each criteria were selected carefully so that the isosurfaces show approximately the same topo-
logical vortical structures.

It can be seen from figure 8.4, that the | w |-criterion, although capable of capturing the general
vortical structures, has the disadvantage of also showing the shear layers near the wing surface
and between the vortices. The Q, Ao and Ny, criteria, show the vortical structure details more
clearly and provide nearly identical structures; this is due to their mathematical and physical
similarities [40, 63, 91, 178].

Additionally, we also use the pressure as a criteria for vortex identification. Local pressure min-
ima are related to the presence of vortex structures, however, there is an inherent scale difference
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CHAPTER 8. WAKE TOPOLOGY AND AERODYNAMIC PERFORMANCE

Figure 8.4: Isosurfaces of | w |-criterion at the beginning of the upstroke (t=7.0). Flapping parameters: St = 0.5, h, = 0.25, Re = 500.
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Figure 8.6: Isosurfaces of \o-criterion at the beginning of the upstroke (t=7.0). Flapping parameters: St = 0.5, h, = 0.25, Re = 500.
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OF FINITE-SPAN FLAPPING WINGS

CHAPTER 8. WAKE TOPOLOGY AND AERODYNAMIC PERFORMANCE

Figure 8.8: Isosurfaces of pressure field at the beginning of the upstroke (t=7.0). Flapping parameters: St = 0.5, h, = 0.25, Re = 500.
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8.4. HEAVING WING

between a vortex core and the associate low-pressure region and this makes the definition of
vortices using isosurface of pressure a difficult task [91]. In figure 8.8, the isopressure surfaces
are illustrated; in this figure, in order to capture the same vortical structures as in the velocity
gradient tensor criteria, we choose low pressure values for the isosurfaces to be plotted. As it can
be seen, in the far wake of the wing it is possible to capture vortex rings, while in the region close
to the wing and in the upstream direction, the isopressure values extends farther away, making
it difficult to identify the vortical structures.

Comparing all the previous criteria and since the Q-criterion offers more information about the
local flow field, i.e., Q < 0 means the local deformation (strain) rate dominates over the rotation
rate, we choose this as the main criterion for the wake topology characterization. Also, from a
computational point of view it is found that the Q-criterion is less computational expensive than
the A9 and Ny, criteria.

8.4 Heaving Wing

In this section, we carry out a parametric study to asses the effect of Strouhal number St and
reduced frequency k on the aerodynamic performance of a rigid finite-span heaving wing. A rect-
angular wing with aspect ratio equal to AR = 1 and elliptical cross-section (with a corresponding
major axis ¢ = 0.5 and minor axis b = 0.0625) is used. The wing aspect ratio is defined as follows

S2

AR 1

(8.4)

where S is the wing span (wingtip-to-wingtip distance) and A is the wing area. For a rectangular
wing, eq. 8.4 is simplified to

AR = (8.5)

S
c
where c¢ is the wing chord. High aspect ratios indicates long narrow wings, whereas a low aspect
ratio indicates short, stubby wings.

The wing is undergoing pure heaving motion, wherein the wing cross-section center heaves in the
vertical direction as per equation eq. 2.21. In table 8.1, we present the kinematics parameters
governing this numerical experiment, where h, is the heaving amplitude, fj is the heaving fre-
quency, St is the Strouhal number and k the reduced frequency. The numerical experiment is
conducted at a Reynolds number equal to Re = 500.

The summary of results is presented in tabular form in table 8.2, where ¢ is the average thrust
coefficient and ¢; is the maximum lift coefficient. Inspecting table 8.2, we can observe that as
we increase St and k, the average thrust coefficient ¢ and maximum lift coefficient ¢ also in-
crease (similar behavior as for the two-dimensional case). From the results obtained, for values
of Strouhal number less than St < 0.25 we are in the drag production regime, for values of St
between 0.25 < St < 0.35 we produce little or no drag (or thrust), whereas for values of St higher
than St > 0.35 we are in the thrust production regime. As in the two-dimensional cases, we
observe two different behaviors of the aerodynamic forces for high and low reduced frequencies
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Case number | Re ha fn | St k
3DHI1-1 500 | 0.15 | 0.5 | 0.15 | 1.57079
3DH1-2 500 | 0.075 | 1.0 | 0.15 | 3.14159
3DH1-3 500 | 0.25 | 0.5 | 0.25 | 1.57079
3DH1-4 500 | 0.125 | 1.0 | 0.25 | 3.14159
3DH1-5 500 | 0.35 | 0.5 ] 0.35 | 1.57079
3DH1-6 500 | 0.175 | 1.0 | 0.35 | 3.14159
3DH1-7 500 | 0.5 | 05| 0.5 | 1.57079
3DH1-8 500 | 0.25 | 1.0 | 0.5 | 3.14159

Table 8.1: Kinematics parameters for the pure heaving wing case.

k. Hence, it seems that for flapping wings, the flapping frequency also plays an important role in
the vortex generation and shedding and, henceforth, on the aerodynamic forces.

Case number | St k Ct @)
3DH1-1 0.15 | 1.57079 | -0.1832 | 1.5863
3DH1-2 0.15 | 3.14159 | -0.1369 | 3.0548

3DH1-3 0.25 | 1.57079 | -0.1407 | 2.9257
3DH1-4 0.25 | 3.14159 | -0.0951 | 5.1792

3DHI1-5 0.35 | 1.57079 | -0.0766 | 4.5644
3DH1-6 0.35 | 3.14159 | -0.0101 | 8.0671
3DH1-7 0.5 | 1.57079 | 0.0775 | 7.8142
3DH1-8 0.5 | 3.14159 | 0.1297 | 13.2126

Table 8.2: Simulation results for the pure heaving wing case (positive ¢ values indicate thrust production
whereas negative ¢ values indicate drag production).

In table 8.3, we compare the results obtained for an infinite-span wing AR = oo (simulated as a
two-dimensional case) against a finite-span wing. As it can be seen, the two-dimensional simu-
lations highly overestimate the thrust and lift coefficients; obviously, this is due to the fact that
three-dimensional effects (such as induced drag) are neglected. In figure 8.9, we show the spanwise
vorticity contours for the case 3SDH1-8 on the spanwise symmetry plane. For the infinite-span case
(figure 8.9.A), we can clearly identify a reverse von Karman street which is indicative of thrust
production, whereas for the finite-span wing (figure 8.9.C) the wake is a little bit different but we
still can observe some common features with the infinite-span wing, such as the presence of the
clockwise vortex V3 in the wake, the counter-clockwise vortex V2 shedding from the trailing edge
and the clockwise LEV V1 on the top surface of the wing. However, in spite of these similarities,
we also observe significant differences between the two wakes, the most important being the way
how the wake is diffused in the streamwise direction for the finite-span case. In figure 8.9.D,
we show the spanwise vorticity contours in the plane located at a distance equal to d = 0.4 x ¢
measured from the wing symmetry plane; in this figure we can observe how the intensity of the
vortices decrease as we move in the spanwise direction.

Let us now take a detailed look at the three-dimensional wake topologies shown in figures 8.10
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8.5. FLAPPING WING

Case number | St k ¢ (3D case) | ¢ (3D case) | & (2D case) | ¢ (2D case)
3DH1-1 0.15 | 1.57079 -0.1832 1.5863 -0.1555 2.3144
3DH1-2 0.15 | 3.14159 -0.1369 3.0548 -0.1767 4.7388
3DH1-3 0.25 | 1.57079 -0.1407 2.9257 -0.1109 4.4637
3DH1-4 0.25 | 3.14159 -0.0951 5.1792 -0.04667 8.3741
3DH1-5 0.35 | 1.57079 -0.0766 4.5644 0.1177 7.2945
3DH1-6 0.35 | 3.14159 0.0101 8.0671 0.1682 13.2557
3DH1-7 0.5 | 1.57079 0.0775 7.8142 0.2857 13.6409
3DH1-8 0.5 | 3.14159 0.1297 13.2126 0.4823 25.3062

Table 8.3: Simulation results for the pure heaving wing case. Comparison of the 3D results versus the 2D
results (positive ¢ values indicate thrust production whereas negative ¢ values indicate drag production,).

and 8.11. From the three-dimensional perspective view of the wake topology (figure 8.10.B), it
is clear that the wake of this finite-span wing has little resemblance with the two-dimensional
case. This plot, as well as the side view, shows that the downstream wake of this wing consist
of two sets of complex shaped vortex rings which convect at oblique angles about the centerline
of the motion. In the figure we identify two rings R1 and R3 in the upper part of the wake and
one ring R2 in the lower part of the wake. The process by which the vortex rings are formed
can be explained by examining the vortex formation and shedding close to the wing. Let us
consider the vortex V1 and V2, and their two associated wing-tip vortices TVL1 and TVRI1
which constitute the four sides of a vortex loop, as shown in figures 8.10 and 8.11. Vortices V1
and V2 are connected by the wing-tip vortices TVL1 and TVRI1 forming a vortex loop; as this
vortex loop is convected it fully disconnect from the wing, forming in this way a vortex ring.
It is also interesting to note that the vortex rings are themselves inclined with respect to the
free-stream. It is also of interest that each vortex loop has two sets of thin contrails (C1 in figure
8.10.A), these structures are segments of the wing-tip vortices and as the vortex loops are con-
vected downstream; these contrails become weaker and ultimately disappear as for vortex ring R1.

The wake topology plotted in figures 8.10 and 8.11 corresponds to a thrust production case (refer
to case 3DHI1-8 in table 8.2), in figures 8.12 and 8.13 we present the wake topology for a drag
production case (refer to case 3DH1-2 in table 8.2). It is clear from these figures that the wake
topology is very different from the one of the thrust generation case. In this case, as the vortex
loops are convected downstream, they do not convert into vortex rings, instead, they keep their
original shape and are diffused. In figures 8.12 and 8.13, it can be also observed that the wake
height is very compact, opposite to that of the thrust production case. It can be also observed
that the vortex loops are inclined in the direction opposite of their travel.

8.5 Flapping Wing

In this section, we present the results of a wing undergoing flapping motion (coupled heaving-
and-pitching motion), where the wing cross-section heaves in the vertical direction as per eq. 2.21
and pitches about the spanwise axis at the wing cross-section center according to eq. 2.22. In
table 8.4, we present the kinematic parameters governing this numerical experiment, where h, is
the heaving amplitude, a4 is the pitching amplitude, f is the flapping frequency (for both pitching
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Figure 8.9: Spanwise vorticity contours at the beginning of the upstroke (t=7.0). Flapping parameters:
St = 0.5,h, = 0.25, Re = 500. A) Spanwise vorticity contours for the infinite-span wing (2D case). B)
Rear view of the wing-tip vortices for the finite-span wing, where TVL is the left wing-tip vortex and TVR
is the right wing tip vortex. C) Spanwise vorticity contours for the finite-span wing at the symmetry plane
(3D case). D) Spanwise vorticity contours for the finite-span wing in the plane located at a distance equal
to d = 0.4 x ¢ measured from the wing symmetry plane (3D case).

and heaving motion), St is the Strouhal number and & the reduced frequency. The numerical
experiment was conducted at a Reynolds number equal to Re = 500 and the finite-span wing
used is exactly the same as that used in the previous section.

Case number | Re | hy | ag(®) | f | St k
3DF1 500 | 0.25 5 1.0 | 0.5 | 3.14159
3DF2 500 [ 0.25 | 10 | 1.0 | 0.5 | 3.14159
3DF3 500 | 0.25 | 20 | 1.0 0.5 | 3.14159

Table 8.4: Kinematic parameters for the flapping wing case.
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TVR1

TVL1

Figure 8.11: Vortex topology at the beginning of the upstroke (t=7.0). Flapping parameters: St = 0.5, h, = 0.25, Re = 500. A) Side view. B) Top
view.
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Figure 8.13: Vortex topology at the beginning of the upstroke (t=7.0). Flapping parameters: St = 0.15, h, = 0.075, Re = 500. A) Side view. B) Top
view.
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8.6. ASPECT RATIO INFLUENCE ON THE AERODYNAMICS
PERFORMANCE

In table 8.5, we present the computed average thrust coefficient ¢; and maximum lift coefficient ¢
for the cases shown in table 8.4, additionally, for purposes of comparison we also show the results
for the case 3DH1-8 (see table 8.4), which corresponds to pure heaving motion.

Case number | St | hy | ao(°) | f [ G
3DH1-8 0.5 | 0.25 0 1.0 | 0.1297 | 13.2126
3DF1 0.5 | 0.25 5 1.0 | 0.1307 | 14.7020
3DF2 0.5 1] 0.25 10 1.0 | 0.1402 | 10.2724
3DF3 0.5 ] 0.25 20 1.0 | 0.1591 | 6.8924

Table 8.5: Simulation results for the flapping wing case.

The typical wake topologies for the cases 3DF2 and 3DF3 are shown in figures 8.14 and 8.15,
respectively. The figures show the three-dimensional perspective view, side view and top view.
As for the heaving case, the key feature observed here is the presence of two interconnected vortex
loops that slowly convert into vortex rings as they are convected downstream. Additionally, in
figures 8.16 and 8.17 we plot the streamlines for a given instant during the downstroke, notice in
these figures the wake evolution and the wing-tip vortices.

8.6 Aspect Ratio Influence on the Aerodynamics Performance

In this section, we consider the effect of aspect-ratio AR on the aerodynamic performance. In
this case, the wing is undergoing pure heaving motion as per equation 2.21. The kinematics and
geometry parameters are shown in table 8.6, where h, is the heaving amplitude, AR is the aspect
ratio, f5 is the heaving frequency, St is the Strouhal number and & the reduced frequency.

Case number | Re hq fn | AR | St k
3DARI1 500 | 0.175 | 1.0 | 1.0 | 0.35 | 3.14159
3DAR2 500 | 0.175 | 1.0 | 2.0 | 0.35 | 3.14159
3DARS3 500 | 0.175 | 1.0 | 3.0 | 0.35 | 3.14159
3DARA4 500 | 0.175 | 1.0 | 4.0 | 0.35 | 3.14159

Table 8.6: Kinematics and geometrical parameters for the heaving wing case with different aspect ratios.

The main purpose of this numerical experiment, is to assess the effect of AR on the aerodynamic
forces of finite-span wings and to study if the assumption of two-dimensionality have some valid-
ity for three-dimensional cases. Hereafter, the results are presented in tabular form in table 8.7,
where ¢; is the average thrust coefficient and ¢; is the maximum lift coefficient. Inspecting table
8.7, we can observe that as we increase the wing AR, the computed values of the acrodynamics
forces also increase and this is chiefly to the fact of the high area of high AR wings and to the
decrease of three-dimensional effects in long wings. This observation lead us to think that the
assumption of two-dimensionality has some validity for birds and insects, where the wings of
many species tend to have relatively large aspect ratio.
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Figure 8.14: Vortex topology during downstroke (t=6.75). Flapping parameters: St = 0.5,h, =
0.25,a, = 10°, Re = 500. A) Side view. B) Top view. C) Perspective view.

190
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A

Figure 8.15: Vortex topology during downstroke (t=6.75). Flapping parameters: St = 0.5,h, =
0.25,a, = 20°, Re = 500. A) Side view. B) Top View. C) Perspective view.

191



CHAPTER 8. WAKE TOPOLOGY AND AERODYNAMIC PERFORMANCE
OF FINITE-SPAN FLAPPING WINGS

(A) (B

|

L

y @ ;//
/////?///?//% ///
R

i
/

)
/ //
/ /
/ ¥
1 ""/0'

/ i /%/////////ﬂ/ X)_’z

s

-

Y

X )

Figure 8.16: Streamlines visualization during downstroke (t=6.75). Flapping parameters: St = 0.5, h, =
0.25, aq = 10°, Re = 500. A) Front view. B) Top View. C) Perspective view. D) Perspective view.

Case number | AR G G
3DAR1 1 |-0.0101 | 8.0671
3DAR2 2 0.0356 | 16.5643
3DAR3 3 0.0784 | 33.8802
3DARA4 4 | 0.0864 | 49.5601
3DH1-6 oo | 0.1682 | 13.2557

Table 8.7: Simulation results for the heaving wing case with different aspect ratios (positive ¢ wvalues
indicate thrust production whereas negative ¢; values indicate drag production).

8.7 Rolling Wing

In this section, we simulate a rectangular wing rolling about its traveling axis (root-flapping
motion). The wing aspect ratio for this case is equal to AR = 2 and its cross-section is elliptical
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8.7. ROLLING WING
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Figure 8.17: Streamlines visualization during downstroke (t=6.75). Flapping parameters: St = 0.5, h, =
0.25, aq = 20°, Re = 500. A) Front view. B) Top View. C) Perspective view. D) Perspective view.

(with corresponding major and minor axis equal to a = 0.25 and b = 0.025). In this case, the
wing is hinged at one wing-tip and is rolling about the traveling axis as per eq. 2.22 (where the
traveling axis and the hinged point are collinear). The Strouhal number for this case is based in
the dorsoventral stroke angle as proposed by Taylor et al. [182] and is computed as follows

_ S sen(9/2) fran

St U

(3.6)

where S is the wing span, ¢ is the dorsoventral stroke angle or positional angle (see figure 2.21),
frour 1s the wing rolling frequency and U the forward velocity. The kinematic parameters for this
case are shown in table 8.8. The numerical experiment is conducted at a Reynolds number equal
to Re = 500.
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Figure 8.18: Different wing platforms used for the study of aspect ratio influence on the aerodynamic
performance.

Case number | Re | ¢(°) | fron | St
3DRL1 500 | 12.5 | 1.0 | 0.10
3DRL2 500 | 30.0 | 1.0 | 0.25
3DRL3 500 | 45.0 | 1.0 | 0.38

Table 8.8: Kinematics parameters for the rolling wing case.

Usually, flapping wing studies only consider heaving or coupled heaving-and-pitching motions.
Hereafter, we carry out this numerical study in order to check whether this mode of motion
shows similar features to those of the heaving or coupled heaving-and-pitching motions, we also
study the validity of the use of the Strouhal number for wake characterization.

In table 8.9 we show the simulation results for this case, as it can be seen, for values less than
St < 0.25 we are in the drag production regime, for values approximately equal to St = 0.25
we produce little or no drag (or thrust), whereas for values higher that St > 0.25 we are in the
thrust production regime. From these results, it is clear that this behavior is similar to that of
heaving or coupled heaving-and-pitching motions. Comparing these results with the results for
pure heaving or coupled heaving-and-flapping motions, we found that the latter motions gener-
ate larger vortices and forces than root-flapping motion, presumably because the average velocity
is higher across the span, but otherwise the same wake regimes occurs at similar Strouhal numbers.

Case number | St c ¢
3DRL1 0.10 | -0.1485 | 0.5991
3DRL2 0.25 | -0.0843 | 2.3637
3DRL3 0.38 | 0.0748 | 4.8749

Table 8.9: Summary of results for the rolling case with different dorsoventral stroke angles (positive ¢
values indicate thrust production whereas negative ¢; values indicate drag production,).
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8.8. SUMMARY

In figures 8.19, 8.20 and 8.21, the three-dimensional wake structures for the cases shown in table
8.8 are illustrated. The salient feature that needs to be pointed out from these figures is the ab-
sence of any link or the presence of a very weak link between the root-tip vortex and the leading
and trailing edge vortices. We also observe that for the case of St = 0.10, there is no connection
at all between both wing-tip vortices and the trailing and leading edge vortices; this is clearly due
to the fact that the tip vortices generated at this low Strouhal number have very low strength.
Additionally, in figures 8.22 and 8.23 we plot the streamlines for four different instants during the
downstroke, notice in these figures the wake evolution and the wing-tip vortices at the moving tip.

8.8 Summary

In this chapter, we have presented several results for finite-span flapping wings. The simulations
show that the wake of thrust producing, rigid finite-span flapping wings is formed by two sets
of interconnected vortex ring loops that slowly convert into vortex rings as they are convected
downstream. It was also observed that the vortex rings are themselves inclined with respect
to the free-stream; the angle of inclination of the vortex rings is found to be in the direction
of their travel and in the streamwise direction for thrust producing configurations; whereas for
drag producing configurations the angle of inclination is opposite to the direction of travel of
the streamwise flow. It was also noted the presence of thin contrails that link the vortex loops,
these structures are segments of the wing-tip vortices and as the vortex loops are convected
downstream, these contrails become weaker and ultimately disappear. In general, the observed
structures are qualitatively similar to those observed in the experiments by Parker et al. [138].

In this chapter, the effect of aspect ratio AR on the aerodynamic forces of finite-span wings was
also assessed. It was observed that as we increase the wing AR, the aerodynamic forces also
increase and this is chiefly attributed to the large area of high aspect ratio wings and to the
decrease of three-dimensional effects in long wings. This observation lead us to think that the
assumption of two-dimensionality has some validity for birds and insects, where the wings of
many species tend to have relatively large aspect ratio, e.g., large seabirds such as Albatrosses
have aspect ratios about 13 to 15, land birds such as Eagles and Vultures have aspect ratios of
roughly 6 to 8 and insects such as the Bumblebee and the Crane fly have aspect ratios between
6 to 7 [3].

Finally, besides the heaving and coupled heaving-and-pitching motions, we have also studied the
root-flapping motion characteristic of flying animals, which as far as the author is aware, still
remains virtually unexplored. From the results obtained it is found that, indeed, root-flapping
motion produces wake structures similar to those of heaving or coupled heaving-and-pitching
motions, but with the difference that the latter motions generate larger vortices and forces than
root-flapping motion, presumably because the average velocity is higher across the span; aside
from this, similar wake regimes occurs at similar Strouhal numbers.
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CHAPTER 8. WAKE TOPOLOGY AND AERODYNAMIC PERFORMANCE
OF FINITE-SPAN FLAPPING WINGS

Figure 8.19: Vortex topology for the rolling wing case (t=5.0). Flapping parameters: St = 0.10, fron =
1.0, Re = 500. A) Perspective view. B) Top view. In this view the right wing-tip corresponds to the hinged
extreme. C) Side view.
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Figure 8.20: Vortex topology for the rolling wing case (t=5.0). Flapping parameters: St = 0.25, fron =
1.0, Re = 500. A) Perspective view. B) Top view. In this view the right wing-tip corresponds to the hinged
extreme. C) Side view.
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X
Figure 8.21: Vortex topology for the rolling wing case (t=5.0). Flapping parameters: St = 0.38, frou =

1.0, Re = 500. A) Perspective view. B) Top view. In this view the right wing-tip corresponds to the hinged
extreme. C) Side view.
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Figure 8.22: Streamlines visualization during downstroke (top view), the streamlines are colored according
to the velocity magnitude values. In this view the right wing-tip corresponds to the hinged extreme. Flapping
parameters: St = 0.38, fron = 1.0, Re = 500. A) t=5.0 B) t=5.05 C) t=5.10 D) t=5.15.
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Figure 8.23: Streamlines visualization during downstroke (perspective view), the streamlines are colored
according to the velocity magnitude values. In this view the left wing-tip corresponds to the hinged extreme.
Flapping parameters: St = 0.38, frou = 1.0, Re = 500. A) t=5.0 B) t=5.05 C) t=5.10 D) t=5.15.
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