Chapter 6

Validation and Verification of the
Navier-Stokes Flow Solver

Before proceeding to extensively use the Navier-Stokes flow solver for our calculations, it must be
first validated. In this chapter, a qualitative and quantitative validation and verification of the
proposed flow solver against experimental and numerical results is carried out in order to assess
its numerical accuracy.

6.1 Flow Solver Validation and Verification. General Issues

Software Verification and Validation (V&V) is the process of ensuring that the code being de-
veloped or changed (in our case a flow solver) is: a) able to model with accuracy a real world
problem, that is, “it solves the right equations” (validation) and b) it yields the right results or
in other words, “it solves the equation right” (verification). For our purposes, the differences
between validation and verification are unimportant and are just of interest to the theorist. Here-
after, the term V&V or just validation will be used to refer to all the qualitative and quantitative
comparisons done to assess the accuracy of the proposed tools.

The proposed flow solver is Overture! together with PETSc?. Overture, is an object-oriented code
framework for solving partial differential equations (PDEs) in serial and parallel environments.
It is implemented as a collection of C++ libraries that enable the use of finite difference approx-
imations to solve the governing PDEs in structured and overlapping structured grids. PETSc
[11] is a suite of data structures and routines that includes a large series of linear and nonlinear
equation solvers, preconditioners and Krylov subspace methods for the scalable (parallel) solu-
tion of large-scale scientific applications modeled by PDEs. Both tools used together provide a
portable, scalable and flexible software development environment for applications that involve
the simulation of physical processes in complex fixed or moving 2D and 3D geometries.

"https://computation.llnl.gov/casc/Overture/
2http://www-unix.mcs.anl.gov/petsc/petsc-as/
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6.2 Numerical Results and V&V

6.2.1 The Method of Manufactured Solutions or Forced Solutions

As a first test to check the numerical accuracy of the flow solver, we use the method of man-
ufactured solutions (MMS) or forced solutions [154]. The basic idea behind this method is to
simply manufacture an exact solution to the governing equations without being concerned about
its physical realism. This solution also defines the boundary conditions to be applied in any
forms, i.e., Dirichlet, Neumann, Robin, etc., and the initial conditions. In the MMS, the gov-
erning equations are modified through the addition of a source term so that the manufactured
solution is an exact solution to the governing equations with this additional source term. The
particular form of the source term depends on the manufactured solution selected. This form is
found by applying the governing equations operators to the manufactured solution to obtain an
analytic formula for the source terms. The source terms are then added to the original equation
set to balance it. Then the discrete solutions produced by the code can be compared to the
manufactured solution to determine the discretization error. A comparison of the discretization
error on a series of uniformly refined meshes will either verify that the observed order of accuracy
matches the theoretical order of accuracy, or it will not. In the latter case, it may indicate a
coding mistake or improper formulation. A useful set of guidelines for the effective design and
application of the MMS are given by Roache [154] and Knupp and Salari [102].

In general, when constructing manufactured solutions, the following guidelines should be ob-
served [102]. First, manufactured solutions should be composed of smooth analytic functions
like polynomials, trigonometric or exponential functions. Second, the solution should be general
enough that it exercises every term in the governing equations. Third, the solution should have
a sufficient number of non-trivial derivatives. Finally, solution derivatives should be bounded by
a small constant, this ensures that the solution is not a strongly varying function of space and/or
time.

The MMS is much easier and more general than looking for analytical solutions to real problems.
When this systematic procedure is used, we are testing for

e All the transformations used (i.e., transformation of the governing equations to generalized
curvilinear coordinates).

The order of the discretization (spatial and temporal).
e The matrix solution procedure.

o Correctness of the numerical discretization.

Interpolation between the overlapping grids.

Hereafter, we use the MMS to check the numerical accuracy of the flow solver. Here, the incom-
pressible Navier-Stokes equations around a circle in a square with slip walls boundary conditions
are solved. In two space dimension we use the following trigonometric functions as the manufac-
tured solutions
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1
u = 5cos (rwox) cos (rwiy) cos (Twst) +
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v = isin (rwox) sin (Twyy) cos (Twst) +

1
p = cos (mwoz) cos (rw1y) cos (mwst) + B

when wp = w; it follows that V - u = 0 (the solution is divergence free).

In table 6.1, the results of this convergence test are presented. In this table, the maximum error
in u, p and V - u are shown. The estimated convergence rate p is also presented. In figure 6.1,
the overlapping grids and the solutions for three refinement levels are illustrated.

Grid hl/hg v — vezact || so ”U - Q}eacact“oo ||P — Pezactlloo | |V - 1]loc
G1:32x32U34 %8 1 0.0205 0.0235 0.0473 0.0958
G : 64 x 64U 68 x 16 2 0.00487 0.0037 0.0128 0.0200
Gg: 128 x 128 U136 x 32 4 0.00120 0.000698 0.00453 0.00635
| Order of convergence p | | 2.24 | 2.72 | 2.06 | 2.47 |

Table 6.1: Mazximum error at t=1.0 and v = 0.1 for a trigonometric analytic solution (wp = w1 = w3 = 1).
The estimated convergence rate p is also shown. The column entitled as hy/hy denotes the ratio of the grid
spacing on grid 1 to the spacing on grid g.

A Navier-Stokes flow solver uses a numerical algorithm that will provide a theoretical order of
convergence; however, the boundary conditions, numerical models, non-linearities in the solution,
presence of shocks, grid refinement (or coarsening) and perhaps other factors, will reduce this
order so that the observed order of convergence p will likely be different than the theoretical
one [154, 170]. As outlined by Roache [154], if a grid refinement r is performed with constant
refinement ratio r (not necessarily r=2) between all the grids, the observed order of convergence
p can be obtained directly from three grid solutions as follows

where f is the approximate solution or the value of an observed quantity, with the sub-index ;
being the solution on the finest grid, o in the intermediate grid and 3 in the coarser grid. If one
generates a finer or coarser grid and is unsure of the value of grid refinement ratio r used, one
can compute the equivalent effective grid refinement ratio 7¢f fective as

N\ B
Tef fective = (./\7;) (63)

where N is the total number of grid points used for the grid and D is the dimension of the flow
domain; here again, the sub-index ; corresponds to the solution on the finest grid, the sub-index
2 the solution in the intermediate grid and the sub-index 3 the solution in the coarser grid.
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Figure 6.1: Forced solutions of the incompressible Navier-Stokes equations around a circle in a square
with slip wall boundaries and wy = w1 = ws = 1. Top-to-bottom left column, grid system from coarser grid
to finer grid. Top-to-bottom right column, corresponding grid level velocity u contours. Notice how the
quality of the solution improves as the grid is refined.

The results presented in table 6.1, show that although the method is converging at the expected
convergence rate p (second order accuracy), the errors are significantly reduced when the grid is
refined. Note that as the overlapping grids are refined, the positions of the interpolation points
will change since the effective overlap decrease. As a result, the reduction in the error is not
always as uniform as that from a single grid [76].
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6.2.2 Flow Past a Stationary Cylinder at Various Reynolds Number Values

Hereafter, the results from the computation of a flow past a stationary cylinder in an overlapping
grid system are shown. Simulations were performed at Reynolds numbers equal to 20, 40, 100,
200 and 400. For the cases of Re equal to 20, 40, 100 and 200, the obtained results were compared
with other numerical and experimental data published in the literature. The case of Re equal to
400 is used as a benchmarking case in order to compare the performance of different direct and
iterative solution methods.

In figure 6.2, the domain used for the cases where Re is equal to 20, 40 , 100 and 200 is illus-
trated. Here, the cylinder is located at the origin and has a radius of 0.5. The outer rectangular
computational domain extends from [z4, %] X [Ya,ys] = [—5.0,20.0] x [=5.0,5.0] and the in-
ner cylindrical computational domain extends from [Zorigin, Yorigin] X [raditsipner, radiusoyter] =
[0.0,0.0] x [0.5,1.0] (see figure 6.2). The initial conditions for all cases are those of a uniform flow
with (u,v,p) = (1.0,0.0,1.0) all over the domain. The top and bottom boundaries of the rectan-
gular domain are slip walls. The left boundary of the rectangular domain is inflow and the right
boundary is outflow. The cylinder’s wall has a no-slip boundary condition. The Reynolds number
based on the cylinder diameter, the kinematic viscosity and the inflow velocity (u,v) = (1.0,0.0)
is controlled by changing the kinematic viscosity.
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Figure 6.2: Domain and overlapping grid system of the unsteady flow past a cylinder case. Top view:
overall domain. Bottom view: close-up of the grid around the cylinder.
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For the cases where Re is equal to 20 and 40, the wake behind the cylinder shows a steady symmet-
ric behavior as shown in figure 6.3, these solutions are consistent with the well established result
that the wake behind the cylinder consist of a steady recirculation region of two symmetrically
placed vortices on each side of the wake and is stable to perturbations below a Reynolds number
value approximately equals to 46 &+ 1 [90, 150, 180, 211]. In table 6.2, a comparison between the
values obtained and other numerical and experimental results is presented. Here, despite the fact
that the results found in the literature vary by as much as 10% from one another, it is found that
the current results compare well with the other numerical simulations and experiments, falling
within the range of the reported values.
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Figure 6.3: Streamlines for Re = 20 (top figure) and Re = 40 (bottom figure) for a nondimensional time
t = 400.

It is generally accepted that the wake behind a cylinder first becomes unstable at a critical
Reynolds number value of about Re = 46 + 1 [90, 150, 180, 211], as predicted by the linear
theory of stability. Above this critical Re value, a small asymmetric perturbation in the near
wake starts to grow in time and leads to an unsteady wake, known as von Karman vortex street,
which is indeed what we found for the simulations where Re is equal to 100 and 200 (see fig-
ure 6.4). Figure 6.5, shows the variation of lift and drag coefficient with nondimensional time
for the case where Re = 100. In this unsteady flow regime, the present results are compared
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in table 6.3 against other numerical data. For Re = 100, the computed drag coefficient and lift
coefficient were very close to those reported by Russel and Wang [157]; for the case of Re = 200,
the present results compare favorably with those obtained by Braza et al. [24]. In general, it
was found that our results compare well with the other numerical simulations and experiments.
In table 6.4, a summary of the overlapping grid system used for all the previous cases is presented.
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Figure 6.4: Vorticity contours for Re = 100 and Re = 200 for a nondimensional time t = 500.

The discretization of the Navier-Stokes equations leads to a large sparse non-symmetric non-linear
system of equations that must be solved in order to obtain the approximate numerical solution
to the initial-boundary-value-problem (IBVP). The numerical solution of the resulting system of
non-linear equations is a major computational task in CFD and its accurate, robust and efficient
solution is essential, especially if we want to solve larger systems (i.e., finer grids).

There are several methods for solving the system of equations arising from the discretization of
the governing equations, each raising the issue of the efficiency of the solution and its complexity.
The increase in computing power and the introduction of parallel computing has driven the latest
advances in algorithm development for the solution of large sparse systems of equations. Most of
the research these days is focused on the efficient solution of these systems of equations on complex
and large domains in parallel environments. For small-sized problems and even moderate-sized
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Figure 6.5: Time dependent lift and drag coefficient for Re = 100.
Number of grids 2
G1 dimensions (background grid) 500 x 200
G2 dimensions (annular grid) 140 x 80
Total number of grids points (G U G2) 111200
G1 U G2, including ghost points 114752
Total number of unused points 1842
Total number of interpolation points 329
Position of the first node normal to the cylinder wall | 0.0001 x diameter.,;

Table 6.4: Summary of the overlapping grid system used for the cases where Re = 20, Re = 40, Re = 100
and Re = 200.

problems, direct solvers are very efficient in solving the system of equations arising from the
discretization, but they are not efficient for solving large problems [12, 158]. For large sparse
systems of equations, Krylov iterative methods, in combination with a suitable preconditioner
are the alternatives to direct solvers.

Newton-Krylov iterative methods for solving large non-linear systems have been used in CFD since
the late 1980s [129, 199] and are considered an attractive and powerful approach to solve large
problems due to their property of semi-quadratic convergence when starting from a good initial
guess [45, 59, 158]. In Newton-Krylov methods, one applies a linearization method combined
with a preconditioned Krylov subspace algorithm for solving the linear problem resulting from
the linearization iteration. To enhance the efficiency and robustness of Newton-Krylov methods,
it is necessary to apply preconditioning. Preconditioning is simply a means of transforming
the original linear system into one which has the same solution, but which is relatively better
conditioned and therefore is likely to be easier to solve with an iterative solver. The choice
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of a preconditioner involves the selection of a matrix @), called the preconditioning matrix or
preconditioner, such that the preconditioned system

Q 'Au=0Q '

is better conditioned than the original system, Au = b. Clearly, one requirement for @ is that
it be easily invertible (i.e. the linear system having @ as the coefficient matrix can be solved
with much less effort than solving the original system Au = b). In general, the reliability of iter-
ative techniques, depends much more on the quality of the preconditioner than on the particular
Krylov subspace solver or accelerator used. In practice, finding the best preconditioner for a given
problem or class of matrices associated with a problem involves extensive testing.

Several authors [28, 29, 36, 153, 169] have studied the effect of various preconditioning meth-
ods on the convergence of Newton-Krylov iterative solvers. Their studies suggest that incom-
plete lower-upper ILU(k) factorization is a very efficient preconditioning strategy for a variety
of Newton-Krylov solvers. The parameter k in ILU(k) denotes the level of fill-in that is allowed
in the factorization, k equal to zero means no fill-in is permitted during ILU decomposition. In
ILU(0) the factorized matrix and the original preconditioning matrix built from direct neighbors
have the same graph (i.e., same location for non zero-elements). Choosing k larger than zero
would allow some additional fill-in in the factorized matrix which normally increases the accu-
racy of factorization and quality of the preconditioner. However, increasing the fill-in level would
be at the expense of memory usage and increasing computing cost.

In the following simulation, we proceed to set the Reynolds number to 400 and we use the overlap-
ping grid system described in table 6.5. In this case, the outer rectangular computational domain
extends from [zq, Zp] X [Ya. yp] = [—2.5,15.0] x [-3.5,3.5] and the inner cylindrical computational
domain extends from [Zorigin, Yorigin] X [raditusinner, radiusyter] = [0.0,0.0] % [0.5,1.0]. The initial
conditions and boundary conditions are the same as for the previous cases.

As mentioned before, this simulation will be used as a benchmarking computation in order to
compare the performance of different direct and iterative solution methods. Here, we also com-
pare the convergence behavior of various fill-in level k£ in ILU(k) preconditioning and others well
known preconditioners such as additive Schwarz (AS), block Jacobi (BJ) and successive over
relaxation (SOR) for different Krylov iterative solvers (see [11, 12, 45, 59, 158] for a detailed
discussion on Krylov subspace methods and preconditioners).

Number of grids 2

G1 dimensions (background grid) 350 x 140

G2 dimensions (annular grid) 140 x 80
Total number of grids points (G U G2) 60200

G1 U G2, including ghost points 114752

Total number of unused points 1120

Total number of interpolation points 295
Position of the first node normal to the cylinder wall | 0.0001 x diameter y

Table 6.5: Summary of the overlapping grid system used for the benchmarking computations.
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In table 6.6, the performance of various direct and iterative solvers used during theses benchmark-
ing computations is compared. The implementation of the different direct and iterative solvers is
based on the PETSc library, which was interfaced with Overture.

The computations carried out and presented in table 6.6, show that the GMRES + ILU(0) solver
converges faster than the other methods in terms of CPU time for this specific problem. The
timing for each case was carried out by measuring the CPU time from the beginning of the
simulation until the moment when the wake instability behind the cylinder has its onset (see
figure 6.6). We can also see that among the different preconditioner used (ILU, AS, BJ and
SOR), the ILU(0) preconditioner lead to the fastest convergence closely followed by the AS pre-
conditioner. The BICGSTAB solver with the additive Schwarz (AS) preconditioner, also shows a
good convergence performance in terms of CPU time, although it is not as fast as the GMRES +
ILU(0). From these results, it is also evident that the use of direct solvers for large sparse matrices
becomes time and cost prohibitive; here, the direct solver is almost 15 slower than the fastest
GMRES or BICGSTAB method (in terms of total CPU time) and about 5 times slower than the
worst of the iterative solvers used for this benchmarking computation. All the computations were
executed using a reverse-Cuthill-McKee (RCM) matrix reordering algorithm, which clusters the
non-zero terms along the diagonal reducing in this way the bandwidth of the sparse matrix [16].

BICGSTAB+ADDITIVE SCHWARZ+RCM ——GMRES+ILU(0)*RCM

220 :
von Karman Street onset

Drag coefficient
~

140 Mgt . o e Qe

120 f T e rrrrrrrrrrr

1.00

Non-dimensional time

Figure 6.6: Von Karman street onset (stopping criteria for solver benchmarking).

These benchmarking computations clearly illustrate a case where the preconditioned GMRES
solver performs very well, followed closely in performance by the preconditioned BICGSTAB
solver. These two preconditioned iterative solvers will be used as the basic solvers to carry out
further benchmarking computations with overlapping moving grids.

6.2.3 Comparison of Fixed Body Solution vs. Moving Body Solution

In this case, the numerical solution of a cylinder moving in quiescent air is compared against
the numerical solution of the equivalent case of a flow past a fixed cylinder. Both cases were
simulated using a similar computational domain (see figure 6.7), with same grid dimensions and
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grid spacing. The outer rectangular computational domain extends from [x4,xp] X [Ya, yp] =
[-3.0,10.0] x [-3.0,3.0]. For the fixed body simulation, the inner cylindrical computational
domain is centred in [Torigin, Yorigin] = [1.0,0.0], with respective inner and outer radius of
[radiusinner, radiusoyter] = [0.5,1.0]. In the case of the moving body, the inner cylindrical com-
putational domain is initially located in [Zopigin, Yorigin] = [8.0,0.0] and then it start to move from
right to left with an instantaneous horizontal velocity of (u,v) = (1.0,0.0). The Reynolds number
for both cases, based on the cylinder diameter, the kinematic viscosity and the inflow velocity
(u,v) = (1.0,0.0) or the cylinder translational velocity (u,v) = (1.0,0.0) is Re = 500.
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Figure 6.7: Left: computational domain for the fized cylinder case. Right: computational domain for the
mowing cylinder case (the cylinder is in the initial position and it moves from right to left).

The pressure coefficient cp, lift coefficient ¢; and drag coefficient c¢q are computed and compared
for a nondimensional time of ¢ = 7.0. In table 6.7, the computed ¢; and ¢4 for both cases are
shown. In figure 6.8, the ¢, profiles for both cases are illustrated. In general, the match between
the moving case and the stationary case is very good, which validates the moving overlapping
grids framework.

Case Cd a
Fixed body 1.199795 | 0.000039
Moving body | 1.191358 | 0.000038

Table 6.7: Comparison of cq and ¢; coefficients for both cases at t = 7.0.

6.2.4 Comparison to other Numerical and Experimental Results

One useful method of code validation is comparing the results of two or more flow solvers. A
reasonably close agreement is encouraging, but is not sufficient to ensure the degree of accuracy,
hence deeper validation must be done. Highest encouragement comes when the results from two
or more codes closely agree, but they differ significantly in their approaches and algorithms (i.e.,
finite-volume density-based method versus a finite-difference pressure-based method). Hereafter,
we compare the numerical and experimental results obtained by other authors with the results
obtained with the proposed flow solver.

Pedro et al. [140], numerically studied the propulsive efficiency of a flapping hydrofoil at a
Reynolds number of 1100. They used a cell-centred pressure-based finite-volume flow solver with
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Figure 6.8: Moving cylinder vs. fized cylinder, pressure coefficient ¢, comparison at a nondimensional
time t = 7.0.

Case number | fo(Hz) | k | au(°)
P1 0.0 0.0 0.0
P2 0.6366 | 2.0 5.0
P3 1.2732 | 4.0 5.0
P4 1.9098 | 6.0 5.0
P5 2.5464 | 8.0 5.0
P6 3.1830 | 10.0 | 5.0
P7 3.8196 | 12.0 | 5.0
P8 4.4562 | 14.0 | 5.0
P9 5.0928 | 16.0 | 5.0
P10 5.7294 | 180 | 5.0

Table 6.8: Kinematics parameters for the pitching airfoil case.

an explicit time-stepping on structured grids. The flow field was discretized by using central
differences and to account for the mesh movement, an arbitrary Lagrangian-Eulerian (ALE) for-
mulation was used [83]. In their work, Pedro et al. [140] studied airfoils undergoing pure pitching
motion and combined heaving-and-pitching motions.

The first scenario considered by Pedro et al. [140], was the case of pure pitching. In table 6.8,
the parameters governing the pitching motion are shown, where f, is the pitching frequency, k
the reduced frequency and « is the maximum pitch angle in degrees. In this case, it is expected
that thrust will increase with an increase in either the maximum pitching angle or the frequency
of oscillation. The summary of results is presented in tabular format in table 6.9. As it can be

103



CHAPTER 6. VALIDATION AND VERIFICATION OF THE NAVIER-STOKES
FLOW SOLVER

seen in table 6.9, the average thrust coefficient (¢;) and maximum lift coefficient (¢;) for cases P1
to P6, all compare favorably with the results obtained by Pedro et al. [140] and less favorably for
cases P8, P9 and P10; this difference between both studies may be attributed to dynamic stall
phenomena, grid quality issues and the highly irregular nature of the flow at such high oscillating
frequencies.

Pedro et al. [140] | Present results
Case number o a t a
P1 -0.0581 | 0.0000 | -0.1036 | 0.0000
P2 -0.1132 | 0.7107 | -0.1280 | 0.6689
P3 -0.0904 | 2.3600 | -0.1021 | 2.3389
P4 -0.0168 | 5.4341 | -0.0204 | 5.2650
P5 0.0964 | 9.8144 | 0.0386 | 9.3430
P6 0.2174 | 15.5948 | 0.1779 | 14.9362
P7 0.4543 | 23.4162 | 0.4163 | 20.9512
P8 0.8624 | 34.1262 | 0.7356 | 29.3190
P9 1.2855 | 45.5064 | 1.0937 | 39.2653
P10 1.7467 | 57.5248 | 1.4418 | 49.3107

Table 6.9: Average thrust coefficient ¢; and mazximum lift coefficient ¢; comparison for the pitching airfoil
case.
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Figure 6.9: Comparison of average thrust coefficient ¢ results for the pitching airfoil case (negative values
indicate drag production).

The second scenario considered by Pedro et al. [140], is that of a combined heaving-and-pitching
motion. The goal is to study the effect that the motion variables have on the values of thrust
and lift coefficients. In table 6.10, the parameters governing the airfoil heaving-and-pitching kine-
matics are presented, where f is the frequency (for both, heaving-and-pitching motion), h, is the
maximum heaving amplitude, «, is the maximum pitching angle in degrees, ¢ is the phase angle

104



6.2. NUMERICAL RESULTS AND V&V

between the pitching motion and the heaving motion in degrees, k is the reduced frequency and
St is the Strouhal number.

Case number | f(Hz) | hy | aa(®) | ©(°) k St
F1 0.225 | 1.0 | 5.0 | 90.0 | 0.7096 | 0.45
F2 0.225 | 1.0 | 10.0 | 90.0 | 0.7096 | 0.45
F3 0.225 | 1.0 | 15.0 | 90.0 | 0.7096 | 0.45
F4 0.225 | 1.0 | 20.0 | 90.0 | 0.7096 | 0.45
Fb5 0.225 | 1.0 | 25.0 | 90.0 | 0.7096 | 0.45
F6 0.225 | 1.0 | 30.0 | 90.0 | 0.7096 | 0.45
F7 0.225 | 1.0 | 40.0 | 90.0 | 0.7096 | 0.45
F8 0.255 | 1.0 | 50.0 | 90.0 | 0.7096 | 0.45

Table 6.10: Kinematics parameters for the heaving-and-pitching airfoil case.

Once again the results are presented in tabular form in table 6.11. In this table, it can be ob-
served that the results obtained compare favorably with those obtained by Pedro et. al. [140],
except for cases F6, F7 and F8 where the computed values are underpredicted with respect to the
values obtained by Pedro et al. [140], nevertheless the trend is similar to that of the study carried
on by Pedro et al. [140] (see figure 6.10). Once again, this differences can be attributed to the
dynamic stall phenomena and grid quality issues. In flapping airfoils studies, the understanding
of the vortical pattern created by the oscillating airfoil, responsible for the drag production in
certain cases, but also for the thrust production in other cases, is a crucial issue. In figure 6.11
and figure 6.12, the comparison between the vorticity contours obtained by Pedro et al. [140] and
the vorticity contours obtained in the current study for the heaving-and-pitching cases F1 and
F6 (see table 6.10) are presented; as it can be seen the qualitative agreement is very satisfactory.

Pedro et al. [140] | Present results
Case number o a o a

F1 0.4324 | 8.3333 | 0.4245 | 8.0828
F2 0.6511 | 7.4834 | 0.6576 | 7.1699
F3 0.8226 | 6.6307 | 0.8360 | 6.5435
F4 0.9337 | 5.8176 | 0.9389 | 6.1133
F5 1.0046 | 5.0558 | 0.9601 | 5.6080
F6 1.0166 | 4.3721 | 0.9771 | 4.5964
F7 0.7404 | 3.2278 | 0.6964 | 3.6271
F8 0.2953 | 2.7345 | 0.2211 | 3.1785

Table 6.11: Average thrust coefficient ¢ and maximum lift coefficient ¢; comparison for the heaving-and-
pitching airfoil case.

Wang [207], motivated by the interest in the unsteady aerodynamics of insects flight, devised a
computational tool to solve the Navier-Stokes equations around two dimensional moving airfoils.
Wang, used a fourth order essentially compact finite difference scheme (EC4) with explicit time-
stepping for solving the incompressible Navier-Stokes equations on structured grids; the method
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Figure 6.10: Comparison of average thrust coefficient ¢ results for the flapping airfoil case (negative
values indicate drag production).

was originally develop by Weinan and Liu [209]. The scheme uses the vorticity-stream function
formulation. The governing equations are solved in the inertial frame of reference (hence the
flapping motion is implemented by moving the airfoil and the computational domain at the same
rate). The focus of this work was to study the frequency selection in forward flapping flight.

k 4.0 2.0 1.0 0.5
¢ Wang [207] 0.18 -0.06 -0.24 -0.08
¢ Present results | 0.1094 | -0.0528 | -0.2164 | -0.0714

Table 6.12: Average thrust coefficient ¢ comparison between the present results and the results obtained
by Wang [207].

To validate the code we computed the flow past a heaving ellipse and compare the results to those
obtained by Wang [207]. In this numerical experiment the Reynolds number is set to Re = 1000,
the forward flight velocity to v = 1.0, the airfoil chord to ¢ = 2.0 and the Strouhal number to
St=0.16 (a number based on forward dragonfly flight with f = 40 Hz, amplitude A = 2.0 cm and
forward velocity u = 5.0 ms~! [134]), as outlined by Wang [207]. Then we proceed to compute
the average thrust coefficient ¢; for different values of reduced frequency k=0.5, k=1.0, k=2.0
and £k=4.0. In table 6.12, we compare the results obtained with those obtained by Wang [207].
As it can be seen, the agreement of the computed values with those obtained by Wang [207] for
the cases where k = 0.5, £ = 1.0 and k = 2.0 is acceptable, although the agreement is less accept-
able for the case where k = 4.0, where the computed value is underpredicted. Despite this, the
present computations show a similar trend in comparison with the results obtained by Wang [207].

Ramamurti and Sandberg [151], used a finite element incompressible flow solver based on unstruc-

tured grids for the study of the unsteady flow past oscillating airfoils. They simulated the viscous
flow past a NACA 0012 airfoil at various pitching frequencies and combination of heaving-and-
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Figure 6.11: Comparison of vorticity contours for the heaving-and-pitching airfoil case (case F1 in
table 6.10). Left column: vorticity contours obtained by Pedro et al. [140]. Right column: present results.
The first row is the beginning of one period, the second row is 1/8 of the period, the third row is 1/4 of the
period and the last row is 8/8 of the period.

pitching motion. To tackle the problem of moving bodies, they solved the governing equations
using an ALE formulation. To assess the accuracy of the flow solver, they compared their re-
sults to those from the experiments carried by Koochesfahani [103]. In figure 6.13, the average
thrust cocfficient ¢ values for the pitching airfoil case as described by Koochesfahani [103], are
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Figure 6.12: Comparison of vorticity contours for the heaving-and-pitching airfoil case (case F6 in
table 6.10). Left column: vorticity contours obtained by Pedro et al. [140]. Right column: present results.
The first row is the beginning of one period, the second row is 1/8 of the period, the third row is 1/4 of the
period and the last row is 3/8 of the period.

illustrated. In this figure, the results obtained by Ramurti and Sandberg [151], Koochesfahani
[103] and the current results are shown. As it can be seen in figure 6.13, the agreement between
the numerical results obtained by Ramamurti and Sandberg [151] and the current results is ac-
ceptable and any difference in the solution can be attributed to the discretization scheme and

108



6.2. NUMERICAL RESULTS AND V&V

the grid resolution. In figure 6.13, the agreement between the numerical results (Ramamurti and
Sandberg [151] and the current results) and the experimental results (Koochesfahani [103]) for
values of reduced frequency above k = 4 is discouraging. The difference in these prediction, may
be attributed to the method and experimental setup used by Koochesfahani [103] when measuring
the forces.
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Figure 6.13: Comparison of variation of thrust coefficient with reduced frequency (negative values indicate
drag production).

In his experimental investigation, Koochesfahani [103] computed the drag or thrust generated by
the oscillating airfoil by measuring the momentum deficit or surplus downstream of the body.
Usually the assumptions are made that at the cross-section where velocities are measured the
flow is parallel, the pressure is freestream and the time-fluctuating quantities are small. Hence,
the thrust can be computed from the following integral

T=poo/_+ooU(y) [u(y) — Uso] dy

If the velocity measurements are made sufficiently far downstream of the airfoil, such that the
wake eddies are essentially diffused, then this method yields reasonable results, but if the mea-
surements are made in a region where the eddies are still coherent, then the assumptions will not
hold. It is not clear from Koochesfahani’s article how far downstream the measurements were
made for the thrust calculation, but velocity profiles presented in his article were made at one
chord-length downstream of the trailing edge and at that distance the eddies are still present and
coherent. Similar discrepancies with this experiment have been also documented by Jones and
Platzer [97] and Liu and Kawachi [113].

Ramamurti and Sandberg [151], further validate their code by comparing their numerical results

with the experimental results obtained by Anderson et al. [7]. The first case that was selected by
them was that of a heaving-and-pitching airfoil at Reynolds number Re = 1100, Strouhal number
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St = 0.3, maximum heaving amplitude h,/c = 1.0, maximum pitching angle o, = 15° and phase
angle ¢ = 90°. In table 6.13, a comparison between the present results, the numerical results
presented by Ramamurti and Sandberg [151] and the experimental results obtained by Anderson
et al. [7] is shown. As it can be seen the agreement between both numerical results results is
very satisfactory, even despite the fact that in both computations the results are overpredicted
in comparison to the experimental results.

al a @’
1.3045 1.35 1.20
! Present results

2 Ramamurti and Sandberg [151]
3 Anderson et al. [7]

Table 6.13: Comparison of average thrust coefficient ¢;.

Guglielmini and Blondeaux [62], computed the dynamics of the vortex structures generated by a
foil in steady forward motion, plus a combination of harmonic heaving and pitching oscillations,
by means of the numerical solution of the vorticity stream function equations. In their work,
they compare their numerical solution with the experimental results obtained by Anderson et al.
[7]. Qualitatively, Guglielmini and Blondeaux [62] found that the numerical vorticity field was in
good agreement with the experimental vorticity visualizations obtained by Anderson et al. [7].
From the quantitative point of view, Guglielmini and Blondeaux [62] found that the forces mea-
sured experimentally were not in good agreement with the forces computed numerically and they
attributed the discrepancy between the numerical and experimental values of ¢; to the inaccurate
procedure used by Anderson et al. [7] to evaluate ¢; and to the two-dimensional approximation
used by the numerical simulations.

In table 6.14., the average thrust coefficient ¢; values for a heaving-and-pitching airfoil obtained
by Guglielmini and Blondeaux [62] (numerical results), Anderson et al. [7] (experimental results)
and in the present dissertation are shown. The experiments were conducted at Reynolds number
Re = 1100 and Strouhal number St = 0.32. The maximum heaving amplitude h,/c, maximum
pitching angle o, (in degrees) and phase angle ¢ (in degrees), are shown in table 6.14. As it can
be seen, the agreement between the present results and the experimental results is acceptable.
The difference between the present results and the results obtained by Guglielmini and Blondeaux
[62], can be attributed to grid quality issues and some approximations of the flapping parameters
done by them.

As a concluding remark, it can be said that from the qualitative and quantitative point of view,
the agreement between all the numerical studies is quite satisfactory and any difference between
these studies and the present results can be attributed to the discretization method, solution
method, problem setup (initial conditions, boundary conditions, motion kinematics parameters
and so on) and grid quality issues.
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Case number | St | hy/c| as | ¢ o @ | &
G1 0.32 1 0.75 | 30 | 90 | 0.6770 | 0.48 | 0.70
G2 032 0.75 | 30 | 75 | 0.4528 | 0.54 | 0.34
G3 0.32 ] 0.75 | 30 | 105 | 0.7213 | 0.49 | 0.77

I Present results
2 Guglielmini and Blondeaux [62]
3 Anderson et al. [7]

Table 6.14: Comparison of average thrust coefficient ;.

6.2.5 Comparison of Sequential Vs. Parallel Computations

Several simulations were performed in order to determine the correctness of the MPI3 paral-
lelization of the code on distributed memory parallel computers, by comparing the simulations
performed in the parallel environment with the one performed in the serial environment. These
simulations were also used to determine the relative speedup gained by the code parallelization.
It is important to mention that the distributed memory parallel simulations were only performed
for fixed bodies as currently the capability to simulate moving bodies in parallel is not fully im-
plemented and still needs to be debugged and validated. Here, the unsteady flow past a cylinder
at Re = 400 (as in section 2.2) is simulated in a distributed memory parallel computer (see ta-
ble 6.21). The only difference with the serial environment case is that in this case, the grid (see
table 6.5) is refined by a factor of 2.

Case | Number of processors | ¢; (100 < ¢t < 120) | CPU Time (seconds) | Speedup
P1 1! 1.7033 57560 -
P2 12 1.7033 68670 0.83
P3 2 1.7033 25900 2.21
P4 4 1.7033 14480 3.97
P5 8 1.7033 7572 7.60
P6 16 1.7033 4255 13.52
P 32 1.7033 3120 18.44

! Serial environment

2 Parallel environment

Table 6.15: Parallel computations benchmarking results.

In table 6.15, average drag coefficient ¢4 values for various parallel simulations with different
number of processors are presented, it can be seen that there is no difference between any of the
benchmarking cases, indicating that the parallel implementation generates identical results for
each one of the parallelization levels and the serial implementation. In figure 6.14 the vortic-
ity magnitude contours around the cylinder are displayed, again it can be seen that there is no
discernible difference between the solutions, giving confidence in the parallel code implementation.

Figure 6.15 shows the speedup factor gained by using the parallel code. For the parallel envi-

3http://www-unix.mcs.anl.gov/mpi/
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Figure 6.14: Comparison of vorticity contours between the serial case and the parallel case for a nondi-
mensional time t = 100. In the figure, NP stands for number of processors.

ronment case using a single processor, the speedup factor (or in this case the speedown factor)
is about 0.83, indicating that the parallelization added approximately 17% overhead to the serial
code. A flattening of the curve in figure 6.15 with increasing processors would indicate that the
maximum theoretical speedup has been reached, according with Amdahl’s law [35]. At this point,
inter-processor communication time will dominate over computation time.
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Figure 6.15: Parallel speed up.

Despite the fact that the distributed memory parallel implementation of the code still can not be
used for moving body simulations, it was effectively used to obtain solutions in fine grids, which
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were used later as initial conditions for the moving problem in coarser grids. Nevertheless, certain
level of parallelization was reached when running moving body simulations by using OpenMP*
on shared memory parallel computers, but we were limited by the number of threads (processors)
and physical memory available.

6.3 Grid Refinement Study

A consistent numerical analysis will provide a solution which approaches the actual results as the
grid resolution gets closer to zero. Thus, the discretized equations will approach the solution of
the continuum equations. One significant issue in numerical computations is what level of grid
resolution is appropriate. This is a function of the flow conditions, type of analysis, geometry,
numerical methods, computational resources and other variables. One is often left to start with a
grid resolution and then conduct a series of grid refinements to assess the effect of grid resolution,
this is known as a grid refinement study or grid dependency study. In general, a grid refinement
study, is a method used for determining the ordered discretization error in numerical simulations
and involves performing the simulations on two or more successively finer grids. The method
results in an error band on the computational solution which indicates the possible difference
between the discrete and continuum value.

Roache [154] suggests a grid convergence index (GCI) to provide a consistent manner in reporting
the results of grid refinement studies and perhaps provide an error band on the grid convergence
of the solution. The GCI can be computed using two levels of grid; however, three levels are rec-
ommended in order to better estimate the order of convergence and to check that the solutions are
within the asymptotic range of convergence. The basic idea behind the GCI is to approximately
relate the results from any grid refinement study to the expected results from a grid doubling
using a second-order method. The GCI is based upon a grid refinement error estimator derived
from the theory of the generalized Richardson extrapolation. The object is to provide a measure
of uncertainty of the grid convergence. The GCI is a measure of the percentage the computed
value is away from the value of the asymptotic solution. It indicates an error band on how far
the solution is from the asymptotic range. It also shows how much the solution would change
with a further refinement of the grid. A small value of GCI indicates that the computation is
well within the asymptotic range.

In practice, wherein the exact solution is not known, we perform at least three grid solutions and
calculate two GCI, from the fine grid to the intermediate grid (GCI;2) and from the intermediate
grid to the coarse grid (GCly3 ). Then, the GCI on the fine grid is expressed as

le]
P —1

GClyie = F, (6.4)

where ¢ is defined as

_fo—f1
L

In eq. 6.5, f is the approximate solution or the value of an observed quantity and the sub-index ;

(6.5)

“http://openmp.org/wp/
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represents the solution on the finest grid. In eq. 6.4, Fy is a factor of safety. The factor of safety
is recommended to be Fy = 3.0 for comparisons of two grids and Fy; = 1.25 for comparisons over
three or more grids [154, 170].

It is important that each grid level yields solutions that are in or close to the asymptotic range
of convergence for the computed solution. Then the constancy of

GCIQ3 = TPGCIH (66)

indicates that the asymptotic range has been reached. If the desired accuracy level is known and
results from the grid resolution study are available, one can then estimate the grid resolution
required to obtain the desired level of accuracy,

GCT\ VP
e 6.7
' <G0123> (6.7)
where the superscript * denotes the desired level.

Finally, one must recognize the difference between a numerical result which approaches an asymp-
totic numerical value and one which approaches the true solution. It is expected that, as the grid
is refined and resolution improves, the computed solution will not change much and will approach
the asymptotic value (i.e., the true solution). There still may be error between this asymptotic
value and the true physical solution to the equations.

The method aforementioned will be used in the following sections in order to conduct the grid
refinement study and to determine the most suitable grid in terms of computing time and solution
accuracy.

6.3.1 Quantitative Study - Force Measurements

It is a very well known fact that the effect of mesh size is an important factor to consider when
assessing the quality of a numerical solution. Here, we conduct a grid refinement or mesh depen-
dency study in order to determine the most suitable grid in terms of computing time and solution
accuracy from a quantitative point of view.

To conduct this study, we used the GCI method previously outlined. Here, a heaving airfoil is
considered with different grid sizes, layouts and clustering. Several simulations were run at a
Reynolds number equal to Re = 1500, with a maximum heaving amplitude of h, = 0.25 and
Strouhal number equal to St = 0.5 (thrust production regime). In each grid, there are typically
up to 20 normal points in the direction normal to the airfoil surface (boundary layer area), mesh
clustering is also used towards the leading and trailing edge, since we expect the vortices to be
generated in these areas. All oscillating flow calculations were started from a fully converged
stationary airfoil solution. In our calculations, unsteadiness is observed to disappear typically
after 6 cycles of airfoil motion and further calculations show negligible non-periodicity. Thrust
coefficient ¢; and lift coefficient ¢; are computed for each grid and their instantaneous and time
average values are compared.

In table 6.16, the parameters for the three grids used for the GCI study are presented. Table 6.16

114



GRID REFINEMENT STUDY

6.3.

‘(spuowainsvow 9040f Lof) fipnis quawaulfos prib oy 4of pasn spuib fo uondiosaq 919 SIqRL

2 X 1000°0 v 09 x 0¢T 021 X 09¢ 00T X 00Z )
2 X 600000 ¢ 021 % 00€ 04T X 00¥ 00T X 00¢ )
2 X ¢g0000°0 i 0¥ x 009 0ST X 00% 021 X 0% B
9ORJINS [IOLITR 973 O} [l bpy SUoIS SuoIs suoIsuot
JI0S IOJITE A1) 0} | ovy (HV) (Om) (og) 5zy pus

-IOU 9pOU 18I JO UOIISOJ

-DWIp pus [IOjry

-OWIP  PLIS  ORA\

-Ip pPUS punoisyoryg

115



CHAPTER 6. VALIDATION AND VERIFICATION OF THE NAVIER-STOKES
FLOW SOLVER

~— Drag coefficient for grid 1

-~~~ Drag coefficient for grid 2

Thrust coefficient (equals to negative drag coefficient)
®
8

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
Non-dimensional time

30 Tromememmemmen (mrmimimin e pmm s g e (mimim e g i sy

— Lift coefficient for grid 1

-~~~ Lift coefficient for grid 2

Lift coefficient

-30
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
Non-dimensional time

Figure 6.16: Top: instantaneous drag coefficient cq (negative values indicate thrust generation). Bottom:
instantaneous lift coefficient ¢;. Both quantities are shown for an interval equal to 6 <t < 7.

shows the grid dimensions, grid spacing refinement ratio (from the finest grid to the coarser grid),
position of the first node normal to the airfoil surface and total number of nodes. The airfoil grid
(AG) was used as a reference grid to conduct the GCI study and a grid spacing refinement ratio
of r = 2 was used. Each simulation was checked for acceptable iterative convergence.

In table 6.17, the observed values of the average thrust coefficient ¢ for each grid are presented;
these values are used to calculate the observed order of convergence according to eq. 6.2 and
the observed quantity value at zero grid spacing f,—o according to eq. 6.8. In figure 6.16, the
instantaneous values of thrust coefficient ¢; for 6 < ¢t < 7 for grids G; and Gs are plotted. Also,
the instantaneous values of lift coefficient ¢; are shown in figure 6.16; here we can see how ¢; varies
symmetrically about the zero mean, so that the average vertical force is zero as expected from
the symmetric heaving motion. The little bumps in the ¢; curve result from the dynamics of the
leading-edge vortices.
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Grid G4 | hac, /hAGg Ct
Gy 1 1.5267
Go 2 1.5195
Gs 4 1.4905
Order of convergence p | 2.009986
Jr=0 1 .529078

Table 6.17: Observed values of the average thrust coefficient ¢; for each grid. The observed order of
convergence and the equivalent zero grid spacing values are also shown.

Thrust coefficient

1.48

Grid spacing refinement ratio

Figure 6.17: Plot of observed quantity values (average thrust coefficient ;) for each grid. The equivalent
zero grid spacing value is also plotted.

We now apply Richardson’s extrapolation

f1— fo

rP—1

Jh=0 = f1+ (6.8)
using the two finest grids in order to obtain an estimate of the value of the observed quantities at
an equivalent zero grid spacing (fr—o) [154, 170]. Richardson extrapolation, eq. 6.8, will provide
a fourth-order estimate of fr—q if f1 and fy are computed using second order methods, otherwise
it gives a third-order estimate [154, 170]. In figure 6.17, the observed values and fj,— are plotted.

The GCI for the fine grid solution was computed by means of eq. 6.4, here we set F's = 1.25 as
suggested by Roache [154] and Slater and Dudck [170]. Herecafter we proceed to calculate the
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Figure 6.18: Instantaneous drag coefficient cq iterative convergence comparison for the heaving airfoil
benchmarking case (negative values indicate thrust production).

GClyjpe for grids 1 and 2 and grids 2 and 3 as follows

B (1.5195 — 1.5267) 1 B

GClp = 1.25 x T X Saosmsey —7 X 100% = 0.194699%
N (1.4905 — 1.5195) 1 3

GClys = 1.25 x o X Saosmsey 7 % 100% = 0.787922%

By using eq. 6.6, we now proceed to check that the solutions are in the asymptotic range of
convergence. For the three grids we have

0.787922
0.194699 x 22009986

= 1.004739

which is approximately one and indicates that the solution for the three grids are well within the
asymptotic range of convergence.

Hereafter, we continue the solver benchmarking study. From the benchmarking case of an un-
steady flow past a cylinder (see section 2.2), we found that the preconditioned GMRES solver,
followed by the preconditioned BICGSTAB solver showed the best performance (see table 6.6).
Here, we proceed to test both solvers, but for the case of a moving body. The case is exactly
the same as the one used for the grid refinement study previously carried and the grid used for
this benchmarking study is Gg (see table 6.16). In table 6.18, the results for the benchmarking
computations are shown. As it can be seen, cases B3 and B7 show a small difference in terms of
CPU time, however, the GMRES method with AS preconditioner seem to be the most promising
solution method; hence, it will be used as the basic solution method for all the computations
that will be carried on in the following chapters. In figure 6.18, the iterative convergence of the
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instantancous drag coefficient ¢4 for 8 < ¢t < 10 is shown. In this figure, each case shown in
table 6.18 is plotted. As it can be seen, the curves almost exactly collapse into one another,
indicating this that each method is converging to the same solution.

6.3.2 Qualitative Validation - Wake Structures Resolution

In the previous section, we performed a quantitative study to determine the best suited grid for
force measurement on the airfoil surface in terms of computing time and solution accuracy. In
this section, we perform a grid refinement study but from the qualitative point of view (wake
structures resolution). The grids used are summarized in table 6.19 and as for the quantitative
study, there are up to 20 points in the direction normal to the airfoil surface and mesh clustering is
used towards the leading and trailing edge. In figures 6.19 to 6.23, the wake structures resolution
for each grid shown in table 6.19 is illustrated. From these results, it can be stated that the wake
structures becomes approximately grid independent starting at the grid level case G3 towards G
(see table 6.19).

Figure 6.19: Grid refinement study of the wake structures resolution for the heaving airfoil benchmarking
case. Vorticity contours corresponding to Gy (see table 6.19) are shown.

6.3.3 Summary of the Quantitative and Qualitative Grid Refinement Study

A quantitative and qualitative grid refinement study has been conducted and hereafter we shortly
summarize the results obtained. From the grid convergence index study, it is found that grids Gy
and Gz (see figure 6.17) are well in the asymptotic range of convergence. Based on the GCI index
values found, we could say that the average thrust coefficient ¢ is estimated to be 1.529078 with
an error band of 0.194699% for grid G; (see table 6.16) and within an error band of 0.787922%
for grid Gz (see table 6.16), both well within the asymptotic range of convergence. From the
qualitative study, it is found that for Gs, G2 and G (see table 6.19), the wake structure be-
comes grid independent. In table 6.20, some of the grids used for the qualitative and quantitative
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Figure 6.20: Grid refinement study of the wake structures resolution for the heaving airfoil benchmarking
case. Vorticity contours corresponding to Gy (see table 6.19) are shown.

Figure 6.21: Grid refinement study of the wake structures resolution for the heaving airfoil benchmarking
case. Vorticity contours corresponding to Gs (see table 6.19) are shown.

grid refinement study are summarized. Grids Gy, G2, G3 and G4 from the quantitative (force
measurements) and qualitative (wake structure resolution) standpoint provide grid independent
results, but taking into account the computational resources available, CPU time restrictions and
solution accuracy, grid Gs will be used as the base grid to perform all the 2D computations.
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Figure 6.22: Grid refinement study of the wake structures resolution for the heaving airfoil benchmarking
case. Vorticity contours corresponding to G (see table 6.19) are shown.

Figure 6.23: Grid refinement study of the wake structures resolution for the heaving airfoil benchmarking
case. Vorticity contours corresponding to Gy (see table 6.19) are shown.

The overlapping grid system layout used for the qualitative and the quantitative grid refine-
ment study is shown in figure 6.24. In both studies, the background grid (BG) extends from
[, Tb] X [Ya, yp] = [—3.0,9.0] x [-2.75, 3.25]. The wake grid (WQG) extends from [z4, Zp| X [Ya, Yp] =
[-1.0,7.0] x [-1.25,1.75]. The airfoil grid (AG) which is an hyperbolic grid [75], is marched
a distance equal to 0.5 x ¢ from the airfoil surface, with the airfoil leading edge centred at
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Benchmarking case description | Computational resources

Unsteady flow past a cylinder (serial | AMD64 x2 @ 1.6 GHz., 4.0 GB RAM., OS LINUX
environment) OPENSUSE 64 BITS.

Heaving airfoil INTEL EM64T x2 @ 2.4 GHz., 4.0 GB RAM., OS
LINUX OPENSUSE 64 BITS.

Unsteady flow past a cylinder (par- | NEC Xeon EM64T Cluster with 200 nodes @ 3.2
allel environment) GHz. 160 nodes @ 1 GB RAM + 40 nodes Q 2 GB
RAM. Infiniband node-node interconnection. OS
LINUX TAO 64 BITS.
http://www.hlrs.de/hw-access/platforms/cacau/

Table 6.21: Computational resources used in each benchmarking case.

[Zorigins Yorigin) = [0.0,0.0] in the initial position and where the airfoil chord c is equal to 1.0.
The overlapping grid system layout dimensions are chosen in such a way that the vertical dis-
tance to the top and bottom boundaries of the BG and WG, when the airfoil is in the mean
position of the flapping period, is equal to 3.0 x ¢ and 1.5 X ¢ respectively. In the case of a
bigger or smaller domain, the grid dimensions are scaled in order to keep the same grid spacing
as for this domain. The initial conditions used in each heaving airfoil simulation are those of the
fully converged solution of the corresponding fixed airfoil case, obtained with a finer grid (with
a corresponding overlapping grid system spacing refinement ratio of » = 2). The left boundary
in figure 6.24, corresponds to an inflow boundary condition with (u,v) = (1.0,0.0) and the top,
bottom and right boundaries are outflow boundaries. The airfoil has no-slip boundary condition.
Finally, we mention in table 6.21 the computational resources used to run each benchmarking case.

BACKGROUND GRID

WAKE GRID
AIRFOIL GRID

Figure 6.24: Ouverlapping grid system layout.
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6.4 Closing Remarks

From the results presented in this chapter, it can be said that from the qualitative and quan-
titative point of view, the agreement between all the numerical studies is very satisfactory, fact
that gives us confidence on the numerical accuracy of the computational tools implemented. Any
difference between all the numerical studies carried out in this chapter can be attributed to
the differences on the discretization method, solution method, problem setup (initial conditions,
boundary conditions, motion kinematics parameters and so on) and grid quality issues.

In this chapter, it was also conducted a qualitative (wake structure resolution) and quantitative
(force measurements) grid refinement study in order to determine the grid best suited for the
numerical computations to be carried out. The “optimal” grid was chosen based on the GCI
index, the wake structure resolution, CPU time restrictions and solution accuracy.
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