Chapter 5

Numerical Method

In this chapter, an accurate and stable method is described for the solution of the time-dependent
incompressible Navier-Stokes equations with finite differences on structured body-fitted overlap-
ping grids in one, two or three space dimensions. For the incompressible Navier-Stokes equations,
there is no direct link for the pressure between the continuity and momentum equations; the gov-
erning equations are said to be decoupled. To establish a connection between the two equations,
mathematical manipulations are introduced. The numerical method presented is a split-step
scheme, second-order accurate in space and time and solves the momentum equations for the ve-
locity together with a Poisson equation for the pressure (the so called pressure-Poisson equation
or PPE), this system of equations is known as the velocity-pressure formulation of the incom-
pressible Navier-Stokes equations.

5.1 Primitive Variable Formulation of the Incompressible Navier-
Stokes Equations

In primitive variables (u, v, w, p), the initial-boundary-value problem (IBVP) for the incompress-
ible Navier-Stokes equations is

aa_?+u.vu = _—W+yv2u for xeD, t>0, (5'1)
p

V.u = 0 for xe€D, t>0, (5.2)
with the following boundary conditions and initial conditions

B(u,p)=g for xedD, t>0,

. (5.3)

DQ (x,0) = qp (x) for xe€D, t=0.
in this IBVP, x = (x,y,2) (for N = 3 where N is the number of space dimensions) is the vector
containing the Cartesian coordinates in physical space P, D is a bounded domain in P € RN
(N =1,2,3), 9D is the boundary of the domain D, ¢ is the physical time, u = (u,v,w) is the
vector containing the velocity field in P, p is the pressure, v is the kinematic viscosity which
is equal to v = u/p, B is a boundary operator, g is the boundary data and q is the initial
data. The system of equations eq. 5.1, eq. 5.2 and eq. 5.3 will be called the velocity-divergence
formulation of the governing equations in primitive variables 78, 84, 118].
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5.1. PRIMITIVE VARIABLE FORMULATION OF THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

Typical boundary conditions for the system of equations eq. 5.1 and eq. 5.2 might be those for a
non-penetrating no-slip wall

=
I

0 for 0Dy “no-through-flow (Dirichlet boundary condition)” (5.4)
0 .

u
u for 0Dy “no-slip (Dirichlet boundary condition)”

>
I

or those for an inflow such as

u=g for 0Dy, “inflow (Dirichlet boundary condition)” (5.5)

Specifying the pressure, its normal derivative, or a combination of the two at the outflow is also
often used

n-Vp=g for 0Dyt “outflow (Neumann boundary condition)” (5.6)
ap+ pn-Vp=g for 0Dyt “outflow (Mixed boundary condition)” '

with o and 3 suitable coeflicients.

Also, the specification of zero velocity gradient at the outflow may be appropriate for most
applications

Vu=0 for 0Dy “outflow (Neumann boundary condition)” (5.7)

Before continuing with our discussion of the numerical method, it is important to make a few
comments with regard to the velocity-divergence formulation of the incompressible Navier-Stokes
equations.

e The governing equations are a mixed elliptic-parabolic system of equations which are solved
simultancously. The unknowns in the equations are velocity field u = (u, v, w) and pressure

p.

e There is no direct link for the pressure between the continuity and momentum equations.
To establish a connection between the two equations, mathematical manipulations are in-
troduced. Generally speaking there are three procedures for this purpose. The first is that
of generating a Poisson equation for the pressure (the so-called PPE equation), which is
developed in this chapter; the second is the introduction of artificial compressibility into
the continuity equation, and the third is the use of projection methods, which encompasses
similarities with the PPE approach. Projection methods also produce a Poisson equation
that is solved for the pressure in the incompressible flow, this new equation is obtained by
using Hodge decomposition theorem, which basically decompose the velocity field into a
sum of a divergence-free part (solenoidal) and curl-free part (irrotational) [45]. Note that
this difficulty does not exist for the compressible Navier-Stokes equations. That is because
in the compressible case there is a link between the continuity and momentum equations
through the density which appears in both equations.

e Straight-forward discretizations of eq. 5.1 and eq. 5.2 can lead to checker-board instabilities
[81, 118]. Centred finite-difference approximations on unstaggered grids permit discrete
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CHAPTER 5. NUMERICAL METHOD

satisfaction of the divergence-free constraint by non-physical velocity fields. Similarly, cen-
tred finite-differences approximations to the pressure gradient terms (on unstaggered grids)
in the momentum equations allow non-physical pressure fields to go undetected and thus,
uncorrected (spurious oscillations).

e Many approaches require extra boundary conditions, either for the pressure or for an inter-
mediate velocity field, which can be non-trivial to choose and difficult to implement.

e For efficiency, it is useful to decouple the solution of the velocity from the solution of the
pressure (split-step scheme).

5.2 Pressure-Poisson Equation (PPE) or Velocity-Pressure For-
mulation in Primitive Variables

In this formulation, the PPE equation for the pressure is used in place of the continuity equation
eq. 5.2. The new IBVP is expressed as follows

%—I—U-VU = _Tvp+yv2u for xeD, t>0 (5.8)
V2p
T—FVu-uz—l—Vzwuy—FVw-uz =0 for x €D, t>0 (5.9)

with the following boundary and initial conditions

B(u,p)=g for x€9D, t>0
V-u=0 for x€dD, >0 (5.10)
DQ (x,0) = qq (x) for x €D, t=0

The system of equations eq. 5.8, eq. 5.9 and eq. 5.10 will be called the velocity-pressure formula-
tion of the governing equations in primitive variables. Equation eq. 5.9 implies that the pressure
can be calculated provided the velocity field is known. This is the form of the equations that
will be discretized in the method described in this chapter (where the equations are solved on
unstaggered grids), and which is based in the method developed by Brown et al. [25], Chesshire
and Henshaw [37], Henshaw [78], Hewshaw, Kreiss and Reyna [80] and Henshaw and Petterson
[81], for solving the velocity-pressure formulation of the incompressible Navier-Stokes equations
on overlapping grids. The pressure equation (eq. 5.9) is derived by taking the divergence of the
momentum equation eq. 5.1 and using the divergence-free constraint V - u = 0, then, eq. 5.2
is replaced by the elliptic equation for the pressure. For the system of equations eq. 5.8 and
eq. 5.9 an extra boundary condition is required in order to make the problem well-posed. The
condition V -u = 0 for x € 9D is added as the extra boundary condition. This latter condition
is an essential boundary condition for this formulation and ensures that the system of equations
(egs. 5.8 - 5.10) is equivalent to the original formulation (egs. 5.1 - 5.3).

5.3 Remarks on the Pressure Boundary Condition

Perhaps, it is appropriate to make some remarks regarding the choice of V - u = 0 as the extra
boundary condition for the velocity-pressure formulation. The extra boundary condition required
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5.4. SPATIAL DISCRETIZATION OF THE VELOCITY-PRESSURE
FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

by the velocity-pressure formulation should satisfy three general conditions. First, it should be
chosen so that eq. 5.8 and eq. 5.9 are well posed. Second, it should be consistent with the original
formulation eq. 5.1 and eq. 5.2. And lastly, it should be chosen so that the velocity-pressure
formulation is equivalent to the velocity-divergence formulation. These three conditions are sat-
isfied by the boundary condition V - u = 0, which, despite not looking like a pressure boundary
condition, is in some sense the natural extra condition to be added in order to fulfill the three
requirement previously mentioned.

There has been a great deal of confusion as to the proper boundary condition for the PPE equa-
tion (i.e. eq. 5.9). Several articles (e.g., [61, 78, 80, 92, 126, 142, 159]), discuss the issue whether
it is appropriate to use the tangential or normal component of the momentum equation on the
boundary as a boundary condition for the pressure equation or another type of boundary condi-
tion. However, it appears that these methods also impose (implicitly or explicitly) the boundary
condition V - u = 0 on dD. Often the fact that this condition is applied is not emphasized [81].

In [61], Gresho and Sani proposed an important hypothesis regarding the pressure Poisson equa-
tion (PPE) for the incompressible Navier-Stokes equations. They stated there (but did not prove
it) a so-called equivalence theorem that claimed that if the Navier-Stokes momentum equation is
solved simultaneously with the PPE equation whose boundary condition is the Neumann bound-
ary condition obtained by applying the normal component of the momentum equation on the
boundary on which the normal component of velocity is specified as a Dirichlet boundary condi-
tion, the solution (u, p) would be exactly the same as if the primitive equations (in which the PPE
equation plus Neumann boundary condition is replaced by the usual divergence-free constraint
(V-u=0)) were solved instead. This issue is explored in sufficient detail by Sani et al. in [159],
so as to actually prove the theorem for at least some situations. Additionally, like the primitive
equations that require no boundary condition for the pressure, the new results establish the same
requirement when the PPE equation approach is employed.

5.4 Spatial Discretization of the Velocity-Pressure Formulation
of the Incompressible Navier-Stokes Equations

We now describe in more detail how we discretize equations (5.8 - 5.10). But before continuing,
let us recall some basic features of overlapping grids (as illustrated in figure 4.7). An overlapping
grid G of the domain D in N space dimensions, consists of a set of A structured component grids

Ggs

G =1{G,}, g=1,2 ... .N
that entirely cover the domain D and overlap where the component grids G, meet. Each com-
ponent grid is a logically rectangular structured grid in N space dimensions and is defined by
a smooth mapping M, from the computational space C = C(§,n,(,7) to the physical space
P =P(x,y, z,t), such that
P=M,(C), celo,1], PeN

Here P is equal to x = (z,9, z) (for N = 3) and contains all the coordinates in physical space and
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CHAPTER 5. NUMERICAL METHOD

C is equal to r = (§,71,¢) (for N = 3) and contains the logically uniform array in computational
space. Variables defined on a component grid, are stored in rectangular arrays. The grid vertices
are represented as the array

g . . . .\ s . . . _
x; : grid vertices, i=(i1,...,iN), ia =0,...,NJ,

a=1,...,N

where NJ is the number of grid points or nodes in the i,-coordinate direction. Each component
grid is usually created with one or more lines of ghost points, which are useful for applying bound-
ary conditions. Domain connectivity is obtained through proper interpolation of the overlapping
areas of the component grids G,.

For ease of presentation we describe here the solution of the velocity-pressure formulation of the
incompressible Navier-Stokes equations in two space dimensions on a square grid G, = G in
physical space P with grid spacing h;, > 0(h;, = 1/N;,) and with h;, = h;,, such that

G = {x; = (v11, z21) = (w1, 41) = (ih, jh) for i,j=-1,0,1,....N+1}

here i = (i1,42) = (4,J) is a multi-index. We include one row of ghost points at the boundaries
to aid in the discretization. The discretization on the unit square in the transformed compu-
tational space C is straightforward and is done by replacing the Cartesian derivatives in the
velocity-pressure formulation by their equivalent in the transformed computational space C (i.e.,
eq. 3.28), as explained in Chapter 3, Section 3.

The equations defining the velocity-pressure formulation are discretized using second-order cen-
tred finite-difference approximations on overlapping grids. Let Uj(t) and P;(t) denote the numer-
ical approximations to u and p so that

U; () ~ u(x4,1) and P; (t) ~ p(xj,t)
Here U;(¢) = (u1i(t), u2i(t)) = (ui(¢t),vi(¢)) is the vector containing the Cartesian components of

the numerical approximation of the velocity. The spatial approximations of equations (5.8 - 5.10)
are

% = —(Ui-Vy)U; - Valt +vV3iU;, i,j=0,1,2,..., N, (5.11)
N
Tl —thum,i'%7 i,j=0,1,2....,N,  (5.12)
p = 0z,
B, (U, Pi) = g(xi,t) = (gu (xi,1), 90 (xi,1)) i=0,j=0,1,2,...,N, (513)
Vi Ui =0, i=0,j=01,2.. N, (514)
DQ(x:,0) = aqy(xi.0), i,j=0,1,2.....N,  (5.15)

For the purposes of this discussion, the boundary conditions have only been specified at i = 0,0 <
j < N; at this boundary, we have considered a Dirichlet boundary condition for the velocity such
as

u(x,t) =g(x,t) for xe€ 0D (5.16)
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5.4. SPATIAL DISCRETIZATION OF THE VELOCITY-PRESSURE
FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

similar or more general expressions for the boundary conditions will hold at other boundaries (if
there are other boundaries), although some of the details of implementation may vary [61, 92, 159].
In equations (5.11 - 5.15), subscript h denotes the order of accuracy of the numerical approxima-
tion, which for our case is equal to h = 2 (second-order centred finite-difference approximations).
For the sake of simplicity, the subscript kA will be dropped for the remainder of this dissertation.

Higher-order accurate methods based on the velocity-pressure formulation have been successfully
used for solving the incompressible Navier-Stokes equations. Henshaw, Kreiss and Reyna [80]
developed a fourth-order finite difference scheme based on this approach and also gave a stability
analysis. They also presented a general principle for deriving numerical boundary conditions
for higher-order accurate difference schemes. In addition, Henshaw [78], adapted the scheme to
compute three-dimensional flows on complex domains using overlapping grids, where he intro-
duced extra boundary conditions to make the scheme accurate and stable. Moreover, Browning
[27], used sixth-order finite-difference methods on overlapping grids to solve the shallow water
equations on a sphere. In [214], Wright and Shyy present a fourth-order accurate pressure-based
composite grid method for solving the incompressible Navier-Stokes equations on domains com-
posed by an arbitrary number of overlain grid blocks, where a conservative internal boundary
scheme is devised to ensure that global conservation is maintained.

The discrete operators appearing in equations (5.11 - 5.15), are defined as follows,

V- Uj = Dogui + Doyvi ,

V2U; = (D42D—y + DyyD—y) U;
VP = (DooP;, Doy 3)"
VU; = (Doyui, Doyvi)"

where
D,U; = Do, U; = % N a%’
DyU; = Do, Ui = W ~ % ?
D,,U; = U’Hvﬂh Ui, (% ’
D_,U; = w - a% |
Dyy Ui = @ ~ 8% 7
D_,U; = w - 0% ’
D;U;i = D, Ui = D42 D, Ui = D+, Ui = D, Ui = Yirg = 21;;,j t Uiy g_i ,
D;Ui = Dgin =D.,D_,U; =D, U;—D_,U; = Ui 41 — Qllj'zw + Uiy N g_z,

where D, is the forward divided difference operator, D_, is the backward divided difference
operator and D, = Dy, is the centred divided difference operator, with analogous definitions for
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CHAPTER 5. NUMERICAL METHOD

the y direction.

Notice that by using compact difference approximations discretization, the checker-board insta-
bility is avoided [81]. The lack of a proper explicit boundary condition for the PPE equation has
traditionally been a troubling point when designing or implementing numerical schemes based
on the velocity-pressure formulation of the incompressible Navier-Stokes equations. Here, as a
boundary condition for the PPE equation (eq. 5.9), we use the normal component i of the mo-
mentum equation eq. 5.8 at the boundary i = 0,0 < j < N, as discussed by Gresho and Sani
[61], Henshaw [78], Johnston and Liu [92], Petersson [142] and Sani et al. [159], where

dp

on

=1
D

(~g& — (& V)u+vV?u)p, (5.17)
oD

and we extrapolate the tangential component t of the velocity, such as

(D)0 =0, for 1i=-1,7=0,1,2,...,N (5.18)
where pe is the order of the polynomial extrapolation.

We call eq. 5.17 the div-grad pressure boundary condition and is obtained by taking the dot
product between the momentum equation (eq. 5.8) and the unit normal f to the boundary 9D.
Note that by itself it adds no new information to the continuous PDE (since the momentum
equation already is satisfied on the boundary) and cannot replace V-u = 0 as the extra essential
boundary condition required by the velocity-pressure formulation [81, 142]. Let us now obtain
the discrete form of eq. 5.17,

DOQPOJ' = VD+wD_$’UQj 5 1= O,J = 0, 1, 2, ce ,N, (519)

where for simplicity we assume g|sp to be equal to glsp = 0 (no-slip wall), which can be done
without loss of generality [159]. Note that eq. 5.19 requires the value of a flow variable outside the
physical domain P (ghost points), namely u_; ;. If we discretize the divergence-free boundary
condition V -u =0 (eq. 5.14) of the velocity-pressure formulation, we obtain

0=V - -U; = Dgu; + DOin = Dg,u; + 0 = Dgguy, 1=0,7=0,1,2,.... N, (5.20)

from eq. 5.20 it is obvious that w;; = w_;1 ;. This implies that in eq. 5.19 one should take
u1,j = u_1,, resulting in the following approximation for the Neumann boundary condition
eq. 5.19 for the PPE equation

2
DOzPOj = VZDJ,_ZUOJ' s 1= O,j = 0, 1, 2, ce ,N, (5.21)

We can now see how V - u = 0 provides a boundary condition for the pressure; the discrete
divergence-free boundary condition eq. 5.14 determines the ghost line value of the normal com-
ponent of the velocity u_1 j, which is used in the right hand side of eq. 5.19. It is important to
emphasizes that in order to achieve a stable scheme using eq. 5.17, it is extremely important to
also enforce the essential boundary condition V - u = 0 [81, 142].
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5.5. TIME-STEPPING ALGORITHM FOR THE VELOCITY-PRESSURE
FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

5.5 Time-Stepping Algorithm for the Velocity-Pressure Formu-
lation of the Incompressible Navier-Stokes Equations

The method of lines approach is used to solve the discretized equations in time. The method of
lines (MOL) [65, 160, 210], is a technique for solving partial differential equations (PDEs) where
all but one dimension is discretized. The resulting semi-discrete problem is a set of ordinary dif-
ferential equations (ODEs) or differential algebraic equations (DAEs) that is then integrated in
the undiscretized dimension. The basic idea of the MOL is to replace the spatial (boundary value)
derivatives in the PDE with algebraic approximations. Once this is done, the spatial derivatives
are no longer stated explicitly in terms of the spatial independent variables. Thus, in effect only
the initial value variable (typically time t¢) remains. In other words, with only one remaining
independent variable, we have a system of ODEs that approximate the original PDE. Once this is
done, we can apply any integration algorithm for initial value ODEs to compute the approximate
numerical solution of the PDE. One significant advantage of the MOL is that it allows the use
of existing and generally well established numerical methods for ODEs. For PDEs where it is
suitable, MOL is an efficient solution method [65].

After discretizing the equations in space on an overlapping grid system G, one can regard the
resulting system as a system of ordinary differential equations ODEs of the form

dU
_— = P
o F(t,U,P)

where the pressure P is considered to be a function of the velocity, P = p(U). Now we can use
any time integrator on a MOL fashion to solve equations eq. 5.11, eq. 5.12, eq. 5.13, eq. 5.14,
eq. 5.18 and eq. 5.19.

In order to keep the solution of the pressure equation decoupled from the solution of the velocity
components, we choose a time stepping scheme for the velocity components that only involves
the pressure from the previous time steps (split-step scheme). Let us introduce the operators
L = Lg + Lg representing the various terms in the momentum equations, as follows

VD

L=LU;=—(U;-V)Uj — + V32U,

P,
]LEzLEUiE—(Ui-V)Ui—V -,
p

L; = LiU; = vV2U;,

where Lg and LUy are the operators that we treat explicitly and implicitly respectively. Then, the
equations (5.11 - 5.14) and (5.18 - 5.19) are integrated using a semi-implicit multistep method,
that uses a Crank-Nicolson scheme for the viscous terms and a second-order Adams-Bashforth
predictor-corrector approach for the advection terms and pressure. We choose to implicitly treat
the viscous terms because if they were treated explicitly we could have a severe time step restric-
tion, proportional to the spatial discretization squared.

By using this time-stepping scheme, the velocity is advanced in time using a second-order Adams-
Bashforth predictor step as follows
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CHAPTER 5. NUMERICAL METHOD

UP - U 1
5 :gL%—ﬁL%_l—l—aL‘f—i—(l—a)L’f, for  i,j=1,2,...,N—1, (5.22)

followed by a second-order Adams-Moulton corrector step or the form

U; - Uy

1 1
N =L tolproli+(1-o)Lf, for  @j=12...N-1 (523

where only one corrector step has been used (one may optionally correct more than one time as
that should be inexpensive and allows a bigger time step for moving grids [71]). In equations
eq. 5.22 and eq. 5.23 the super-script p stands for predicted value, the super-script ¢ stands for
corrected value, o is the implicit parameter and Uj ~ u(x;,nAt). For a = 1/2 we obtain a
second-order Crank-Nicolson method, whereas for &« = 1 we obtain a first-order backward Euler
method.

Equations eq. 5.22 and eq. 5.23 are advanced to time n + 1 together with the following equations

UMt = g(x;, ") for i=0,j=0,1,2,...,N, (5.24)
Doguft' = —Doygy (xi1. "), for i=0,j=0,1,2,...,N, (5.25)
(D)™t = 0, for i=-1,7=0,1,2,...,N, (5.26)

Equations (5.22 - 5.26), determine Uf“ at all points including the ghost points. We then solve
for the pressure at time n + 1 using

\VA P_n-‘rl aUnJ,_l
p' = —vaz;;jl , i,j=0,1,2.....N, (5.27)
m=1 Tm
Do, P = vDyD_jutt + B, (UM gth) | i=0,j=01,2...,N, (528)

where the boundary forcing B),(U, g) satisfies

g
ot

Bp(Uv g) = - - guDUwu - gvDUygv + VD+yD—ygu (5'29)

5.6 Velocity-Pressure Formulation for Moving Overlapping Grids

On a non-moving overlapping grid system G, each component grid G, is defined by a smooth
mapping M, from the computational space C = C(&,7, ¢, 7) to the physical space P = P(x,y, z, t),
such that

P =M, () or equivalently x =M, (r)

where x denotes the coordinates in physical space P and r denotes the coordinates in computa-
tional space C. On a moving grid, the moving mapping depends on time, such as

x =M, (r,t)
On moving grids we solve the governing PDE in a frame that moves with the grid. Thus, if
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5.6. VELOCITY-PRESSURE FORMULATION FOR MOVING
OVERLAPPING GRIDS

we are solving the velocity-pressure formulation of the incompressible Navier-Stokes equations in
physical space P = x

a—u-l-u-Vuz_—v]D+VV2u
ot 0

v?,
Tp—i-Vu'um+Vv'uy+Vw-u2=O

then on each moving component grid G, of the overlapping grid system G, we make the change
of variables from P = x(x,y,2,t) to C =r(&,7n,(,7) defined by

x = My(r,7)
u(x,t) = uMy(r,7))=U(r,7)

~+
I

and as already outlined in Chapter 4, Section 3.1, the time derivative of u (x,t) at a fixed point
of the physical space x is related to its time-derivative of a fixed point of the computational space
r by the following equation

ou o0U . ou .
5= 5. G Vu="-—G(Var V) U (5.30)
where
., OM (r,1)
G = Mo (5.31)

is the grid velocity.

By replacing equations eq. 5.30 and eq. 5.31 into the incompressible Navier-Stokes equations
eq. 5.8 and eq. 5.9 we obtain,

%I + [(U - G) : vr} U = _Z‘“p +0vVIU (5.32)
N
VT?‘” +) ViUp -0y, U = 0 (5.33)

m=1

which is the velocity-pressure formulation of the incompressible Navier-Stokes equations expressed
in a moving frame in computational space r.

5.6.1 Boundary Conditions for Moving Walls
The new governing equations expressed in the moving reference frame, must be accompanied by

the proper boundary conditions. For a moving body with a corresponding moving wall, only one
constraint may be applied and this corresponds to the velocity on the wall
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U(r,t) = G(rt) for a no-slip wall (5.34)
n-U(r,t) = n- G(rt) for a slip wall (5.35)

On a moving no-slip wall the boundary condition for the pressure equation is obtained by dotting
the normal f into the momentum equation

10p .
- =n
p an apwall

o (—G’: + uVEU) (5.36)

Note that the acceleration of the wall appears on the right hand side of eq. 5.36.

5.7 Boundary Conditions

Imposing appropriate boundary conditions to the incompressible Navier-Stokes equations is of
paramount importance for the success of every numerical algorithm. The type of boundary con-
ditions to be imposed are dependent on the physics of the flow once the geometry and topology
of the selected problem have been determined. In this dissertation, the applications and the flow
geometry solved in general belong to external flow problems, where the normal unit vector out of
the solid surface points away from the surface towards the computational domain (see figure 5.1).

S Outer boundary

P

\ Inner boundary

Figure 5.1: General boundary configuration for external flows.

The incompressible Navier-Stokes equations in their velocity-pressure formulation are numeri-
cally solved using the Overture! framework together with the PETSc? library. Using Overture,
elementary boundary conditions such as Dirichlet boundary conditions, Neumann boundary con-
ditions and mixed boundary conditions, extrapolation boundary conditions, symmetry boundary

"https://computation.llnl.gov/casc/Overture/
2http://www-unix.mcs.anl.gov/petsc/petsc-as/
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conditions and so on, can be easily implemented. Besides the boundary conditions enforced in
the velocity-pressure formulation, the following boundary conditions may be used,

No-slip wall — =g velocity specified

<1:

= zero divergence

normal velocity specified

QJ !3>
H*)
\/Q

Slip wall — normal derivative of

tangential velocity is zero

{V u= zero divergence
velocity specified
Inflow with velocity given = Y 5P
Oap = 0 normal derivative of the pressure zero
extrapolate u velocity specified
Outflow = ) o )
ap+ B0ap =g mixed derivative of p given
u= velocity specified
Dirichlet boundary condition = { v sp
p= pressure given
n-u:odd, t-u:even vector symmetry
Symmetry = o
Oap =0 normal derivative of the pressure zero

On moving walls, the boundary conditions are those specified in the previous section (equations
eq. 5.34, eq. 5.35 and eq. 5.36).

5.8 Discrete Divergence Damping

Due to truncation errors and because of the interpolation between the component grids G, of the
overlapping grid system G, the divergence (§ = du/0x + 0v/dy) will not be identically zero in
the numerical computation. Hence, an extra-term, namely discrete divergence damping «;V - Uj,
is often added in the pressure equation eq. 5.12 in order to suppress the spurious divergence.
Equation 5.12 becomes,

V%Pi an

Oxm

N
=iV Ui = Y Vil -

m=1

i,j=0,1,2....,N, (5.37)

This technique of adding a damping term is well known and has been used previously by a number
of researchers in the field of incompressible flows (e.g., the MAC method of Harlow and Welch
[66] or the fourth-order velocity-pressure method of Henshaw, Kreiss and Reyna [80]). This term
can be seen as a divergence sink, since it appears as a sink in the PPE equation, helping to keep
the discrete divergence small. A detailed description of the coefficient «; is given by Henshaw in
[72, 78] and Henshaw and Kreiss in [79)].

One might wonder whether this divergence damping term, which is a potentially order one ad-
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dition to the pressure equation, will destroy the accuracy of the method. In [79], Henshaw
and Kreiss presented an analysis of this damping term using normal-mode stability analysis and
showed why this term does not degrade the accuracy of the numerical method. They also found
that increasing o; will result in a decrease of the maximum divergence (up to a point), but it can
also increase the error in the pressure.
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