Chapter 4

On Structured Overlapping Grids

A major task for calculating the approximate numerical solution of a set of partial differential
equations (PDEs) on complex domains, is the problem of mesh or grid generation. Different
methods of spatial discretization exist, including Cartesian meshes, unstructured meshes and
block structured body-fitted conforming grids. In this chapter, the structured overlapping grids
method (which falls within the block structured body-fitted conforming grids classification) is
briefly reviewed and discussed in the context of a methodology for the solution and analysis of
flows around complex geometries and moving/deforming bodies.

4.1 Approaches to Grid Generation

Grid generation can be defined as the process of breaking up a continuous physical domain into
smaller discrete sub-domains, in order to compute the numerical approximate solution of a PDE.
The grid generation methods can be classified as structured (body-fitted grids), unstructured
(body-fitted grids) or Cartesian (non-body-fitted grids). Hereafter, the different grid generation
methods will be briefly surveyed and presented. Since the purpose of this section is to present
various techniques to generate grids, the detailed and theoretical derivations for those techniques
will be avoided as much as possible.

There is a large body of literature [50, 185, 186] and software packages [137, 162] dealing with
structured grid generation. Structured grid methods take their name from the fact that the grid
is laid out in a regular repeating pattern called a block. Strictly speaking, in a structured grid
the computational domain is selected to be rectangular in shape where the interior grid points are
distributed along grid lines, therefore, the grid points can be identified easily with reference to
the appropriate grid lines. These types of grids use quadrilateral elements in 2D and hexahedral
elements in 3D. Algebraic methods, elliptic methods and hyperbolic methods are often employed
to generate these grids [84, 85, 185, 186], complex iterative smoothing techniques are also used to
align elements with boundaries or physical domains in order to improve the orthogonality and uni-
formity. Where non-trivial boundaries are required, block structured techniques can be employed
which allow the user to break the domain up into several aligned topological blocks, obtaining in
this way a multiblock grid. While multiblock grids give the user more freedom in constructing
the mesh, the block connection requirements can be restrictive and are often difficult to construct.

There is another block structured grid method which seeks to avoid the problems associated with

4.1. APPROACHES TO GRID GENERATION

11T

T

T

—
1
1
1
1
|

Figure 4.1: Single-block C-type structured grid around a NACA 4412 airfoil.

block connections in multiblock grids. Structured overlapping grid methods allow the individual
blocks to conform to the physical boundaries, but, different from the multiblock grids, the blocks
boundaries not necessary have to be aligned, they are allow to overlap. Sophisticated grid as-
sembly tools are used to compute domain connectivity information and to remove unnecessary
grid points. What these methods gain in user convenience, they usually give up in solution ac-
curacy. However, these methods are very efficient when dealing with geometries which would be
too daunting a task with conventional block structured methods or when dealing with moving
bodies (e.g., helicopters with moving rotor blades and aircraft store separation).

Structured grids enjoy a considerable advantage over other grid methods in that they allow the
user a high degree of control. Because the user places control points and edges interactively,
she/he has total freedom when positioning the mesh. In addition, hexahedral and quadrilateral
elements, which are very efficient at filling space, support a high amount of skewness and stretch-
ing before the solution is significantly affected. This allows the user to naturally concentrate
points in regions of high gradients in the flowfield and to coarsen the grid away from these areas.
Also, because the user interactively lays out the elements, the grid is most often flow aligned,
thereby yielding greater accuracy within the solver. Structured flow solvers typically require the
lowest amount of memory for a given grid size and execute faster because they are optimized for
the structured layout of the grid.

The major drawback of structured grids is the time and expertise required to lay out an optimal
grid for a complex geometry. Often this comes down to past user experience and brute force

placement of control points and edges is required. Grid generation times are usually measured in
days if not weeks.

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

T
T
T
T

T
T
T
T

T
T

T
i

I —

T
-
I N S —

|

Figure 4.2: Multi-block structured grid around a NLR 7301 airfoil with flap.

Unstructured mesh methods [19, 137, 162, 164, 186], on the other hand, use an arbitrary collec-
tion of elements to fill the domain. Because the arrangement of elements have no recognizable
pattern, the mesh is called unstructured. These types of meshes typically use triangles in 2ID
and tetrahedrals in 3D, although quadrilateral and hexahedral meshes can also be used. As with
structured grids, the elements can be stretched and twisted to fit the domain. These methods
have the ability to be automated to a very large degree. Given a good CAD model, a good mesher
can automatically place triangles on the surfaces and tetrahedrals in the volume with very little
input from the user. The automatic meshing algorithm typically involves meshing the boundaries
and then either adding elements touching the boundary (advancing front methods) or adding
points in the interior and reconnecting the elements (Delaunay methods).

The advantage of unstructured mesh methods is that they are very automated and therefore,
require little user time or effort. The user need not worry about laying out block structures
or connections. Additionally, unstructured mesh methods are well suited to inexperienced users
because they require little user input and will generate a valid mesh under most circumstances.
Mesh generation times are usually measured in minutes or hours.

The major drawback of unstructured meshes is the lack of user control when laying out the mesh.
Typically any user involvement is limited to the boundaries of the mesh with the mesher auto-
matically filling the interior. Triangle and tetrahedral elements have the problem that they do not
stretch or twist well, therefore, the grid is limited to being largely isotropic, i.e. all the elements
have roughly the same size and shape. This is a major problem when trying to locally refine the
mesh, often the entire mesh must be made much finer in order to get the locally desired point

4.1. APPROACHES TO GRID GENERATION

\\\\\\\\\\\\\Q\\\\\\\\\\

L
N

AAVARIAARY
N

%g‘%ﬁ I
T
gt (R

i | e

i [T
Al
;/////77//7//////////////////”:""#55

densities. Unstructured flow solvers typically require more memory and have longer execution
times than structured grid solvers on a similar mesh.

While both structured and unstructured approaches have enjoyed reasonable success in their ap-
plication to real world problems, neither method has offered a truly fully automatic method for
discretizing the domain around arbitrarily complex geometries. One reason for this stems from
the fact that both techniques are body-fitted, i.e. cells neighboring the body must conform to
the surface. This implies that the connectivity of the computational mesh is intimately linked
to the body’s geometry and topology. As a result, the surface mesh is subject to conflicting
requirements of resolving both the local geometry and the expected flow variation.

Cartesian methods, as the name suggests, use a regular underlying Cartesian non-body-fitted grid.
Solid objects are carved out from the interior of the mesh, leaving a set of irregularly shaped cells
along the surface boundary. Early work with Cartesian grids used a stair-cased representation
of the boundary. In contrast, modern Cartesian grids allow planar surface approximations at
walls, and some even retain sub-cell descriptions of the boundary within the body-intersected
cells. Obviously, this additional complexity places a greater burden on the flow solver, and recent
research has focused on developing numerical methods to accurately integrate along the surface
boundaries of a Cartesian grid. Since most of the volume mesh is completely regular, highly
efficient and accurate flow solvers can be used. All the overhead for the geometric complexity is
at the boundary, where the Cartesian cells are cut by the body.

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

RO

'A "‘ N f
ﬂﬂi;ﬂu'ﬂﬂ?%'ﬁﬂggﬁﬁ

\/
AN DK e/
VAV AVAVA “K‘X‘E{%&r‘&ﬂ:
N NAN

N

E
VAVAVAVAVAVA
AR

N
K

AVANAY
N
N/

N

[N
VAVAVAVAN

A,
Va¥a¥,
v

PL

20
-
VAN

Figure 4.4: Unstructured mesh around a NHLP-2D three element airfoil.

Although Cartesian grid methods date back to the 1970s, it was only with the advent of adaptive
mesh refinement (AMR) that their use became practical [1, 18]. Without some provision for grid
refinement, Cartesian grids would lack the ability to efficiently resolve fluid and geometry features
of various sizes and scales. This resolution is readily incorporated into structured meshes via grid
point clustering. Many algorithms for automatic Cartesian grid refinement have, however, been
developed in the last decade, largely alleviating this shortcoming. A fairly extensive literature on
the flow solvers developed for Cartesian grids with embedded adaptation is available, for a more
thorough discussion of Cartesian mesh topics refer to [1, 123, 137, 162].

The last decade has witnessed a resurgence of interest in Cartesian mesh methods. In contrast to
body-fitted structured or unstructured methods, Cartesian grids are inherently non-body-fitted.
This characteristic promotes extensive automation, dramatically eases the burden of surface
preparation, and greatly simplifies the re-analysis processes when the topology of a configura-
tion changes. By taking advantage of these important characteristics, well-designed Cartesian
approaches virtually eliminate the difficulty of grid generation for complex configurations. Typi-
cally, meshes with millions of cells can be generated in minutes on a modest workstations [1, 2].

The most serious current drawback of Cartesian grids is that their use is restricted to inviscid
or low Reynolds number flows. An area of active research is their coupling to prismatic grids or
other methods for incorporating boundary layer zoning into the Cartesian grid framework [2].

The approach discussed in this chapter, using overlapping grids, may be viewed as a combina-
tion of Cartesian grids and structured grids methods. Body-fitted conforming structured grids
are used in order to achieve high-quality representations of near-body boundaries. At the same

=

56

4.2. OVERVIEW AND HISTORICAL BACKGROUND OF THE STRUCTURED
OVERLAPPING GRIDS METHOD

NOSE DETAIL

Figure 4.5: Cartesian grid around a Drela DAE11 low Reynolds number airfoil.

time, the majority of grid points in an overlapping grid system tend to belong to Cartesian grids
(off-body) so that the numerical and computational efficiencies inherent with such grids can be
exploited. In table 4.1, some of the advantages and disadvantages of some of the currently used
grid generation methods are listed.

4.2 Overview and Historical Background of the Structured Over-
lapping Grids Method

The overlapping grids method, also known as overset composite grids or Chimera grids (named
like this after the composite monster of Greek mythology), provides a flexible and efficient spatial
discretization method for numerically solving a PDE on a general 1D, 2D or 3D domain.

The structured overlapping grids method consists in generating a set of body-fitted conforming
structured components grids that completely cover the physical domain that is being modeled
and overlap where they meet [141] (see figure 4.6). Reducing in this way a single, complex domain
into a series of smaller, potentially simpler ones. The governing PDEs are solved separately on
each component grid and domain connectivity is obtained through proper interpolation in the
overlapping areas. The geometry of the components of the domain can be defined individually
and hence the grids around them can be generated separately. Body-fitted conforming grids are

ON STRUCTURED OVERLAPPING GRIDS

CHAPTER 4.

Gridding method _

Advantages

_ Disadvantages

Cartesian

Small memory and CPU requirements which results in
very fast flow solvers; easiness in the grid generation
process; does not requires much user experience; easy
to parallelize; user grid generation process is almost
automatic, it requires little user time and effort

Difficulties in resolving boundary layers; difficulties in
resolving complex boundaries

Single Structured

Small memory and CPU requirements which results
in fast flow solvers; very well fitted for viscous flow
computations; can handle very efficiently trivial ge-
ometries, accurate representation of boundaries

Restricted to simple geometries; requires user experi-
ence; not amenable to local refinement schemes, user
grid generation process can be time consuming

Block Structured

Small memory and CPU requirements which results in
fast flow solvers; very well fitted for viscous flow com-
putations; can efficiently handle complex geometries;
provides natural domain decomposition, accurate rep-
resentation of boundaries

Requires a lot of user experience; user grid genera-
tion process is very time consuming, not amenable to
local refinement schemes; requires block connectivity
information

Unstructured

Easiness in grid generation process; they do not re-
quire a lot of user input or experience; user grid gen-
eration process is almost automatic, it requires little
user time and effort; can efficiently handle very com-
plex geometries; allows arbitrary use of element types;
allows adaptivity and local refinement, accurate rep-
resentation of boundaries

Large memory and CPU requirements which results
in slower flow solver; not suited for viscous flow com-
putations

Overlapping

Small memory and CPU requirements which results in
fast flow solvers; very well fitted for viscous flow com-
putations; can efficiently handle complex and moving
geometries; eases grid generation burden for very com-
plex geometries or when working in collaborative en-
vironments; provides natural domain decomposition,
accurate representation of boundaries

Requires a lot of user experience; user grid generation
process can be very time consuming; non-conservative
interpolation issues in overlapping area; often needs
separate tools to handle domain connectivity informa-
tion

Table 4.1: Some of the currently used grid generation methods.

4.2. OVERVIEW AND HISTORICAL BACKGROUND OF THE STRUCTURED
OVERLAPPING GRIDS METHOD

used near the components boundaries while one or more background Cartesian grids are used
to handle the rest of the domain, all without any constraints on the grid boundaries as long as
overlap exists between adjacent grids. While originally developed as a means to address com-
plex geometries [128, 139], the overlapping grids method have also been employed to simulate
multiple bodies in relative motion [121, 149] and to resolve fine-scale flow features through the
use of adaptive mesh refinement (AMR) [73]. The use of structured grids, together with the
use of optimized discretizations for large regions typically covered by Cartesian grids and the
intrinsic domain decomposition nature of the overlapping grids methodology, leads to an efficient
method in both computer time and computer memory, highly scalable to parallel computing plat-
forms [149]. Finally, the overlapping grids method is advantageous for performing simulations
in a production environment, where component grids for a complex system may be developed
concurrently by different team members, libraries of grids of common grid components may be
developed for reusability, and small changes may be quickly incorporated into a grid system by
modifying only the impacted component grids and not the entire grid system [13].

Grid 1

Grid 2

© @ |Interpolation points
Physical boundary

Figure 4.6: Simple overlapping grid system in physical space P.

In many ways, the overlapping grids method is similar to the so-called patched or block struc-
tured approach. What differentiates overlapping grids from multiblock grids is that alignment
constraints set in multiblock grids are relaxed. Overlapping grids, are only required to overlap so
that no part of the computational domain is left uncovered. Clearly, the discretization becomes
more complicated at overlap boundaries, but the flexibility of having smooth overlapping grids
seems to be worthwhile.

The overlapping grids method has been in use for some time. Apparently, the first use of overlap-
ping grids was described by Volvov in 1966 [203, 204], who considered approximations to Poisson’s
equation on regions with corners. The method was further developed and promoted by Starius
and Kreiss. Starius, in 1977, looked at the convergence of elliptic problems on two overlapping
meshes using the Schwarz alternating procedure [174]. In a later paper ([175]), he considered

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

the numerical solution of hyperbolic problems on overlapping grids. In [175], the stability of the
Lax-Wendroff method was shown for a model problem on a one-dimensional overlapping grid.
Moreover, he solved the shallow water equations in a two-dimensional basin, showing that de-
spite the overlap the mass was conserved to within a few percent. Later on, a method for the
construction of composite meshes and the solution of hyperbolic PDEs was described by Kreiss
[104]. Also of interest is the work of Berger [17], where she indicates how to obtain conservative
difference approximations at grid interfaces. However, despite the fact that the method had been
around for a while, it was first introduced into the CFD community about two decades ago by
Steger et al. [176] and Benek et al. [15]; and it has been further developed by Meakin and Suhs
[122], Chesshire and Henshaw [37] and Noack et al. [133, 130, 131, 132]. It is now recognized as
an attractive approach for treating problems with complex geometries and moving boundaries.
The solution process discussed in this dissertation uses a grid system that discretizes the problem
domain by using separately generated but overlapping body-fitted conforming structured grids;
however, the use of unstructured meshes have also been considered by Togashi et al. [190] and
Wang and Kannan [208]. In industry and academia, the overlapping grids method has been used
to solve a wide variety of problems in fields such as: acrodynamics [139, 149], rotor dynamics
[41, 172], combustion [26], fluid-structure interaction [56, 179], reactive flow with detonations
[73, 77], incompressible flows [78], biological flows [100], non-Newtonian flows [52] and flows with
deforming boundaries [51, 144}, to name a few. For example, a Reynolds-averaged Navier-Stokes
calculations for a prototype Martian rotorcraft vehicle was carried out successfully using the
overlapping grids method [41], in this study, solutions for hovering rotor performance at Mars
experimental flow conditions were produced for a series of collective pitch angles, in a moving
grid system of about 10 millions grids points. Also, the unsteady viscous flow around a V-22
tiltrotor helicopter in high-speed forward flight was solved using moving overlapping grids [121].

The maturation process for overlapping grids generation tools is ongoing and is an area of ac-
tive research. Historically, users of the overlapping grids method have used grid generation tools
designed for block structured grids to generate required component grids to be used in the overlap-
ping grid system. It is just recently, that grid generation tools that exploit the flexibility inherent
to overlapping grids have been efficiently implemented and coupled with flow solvers. Table 4.2
lists some of the codes that are currently available for assembling overlapping grid systems. But
in general, the major distinguishing features between these different approaches to overlapping
grids generation lie in the grid construction algorithm, the manner of performing interpolation,
the data structures, amount of user data input and the details of implementation.

In this dissertation, the Ogen! grid generator [70], is used to assemble the overlapping grid sys-
tem. In Ogen, the user may first generate the component grids that describe the geometry or
may import the component grids into it in a readable format. The overlapping grid then is con-
structed. This latter step consists of determining how the different component grids interpolate
from each other, removing grid points from holes in the domain and eliminating unnecessary grid
points in regions of excess overlap.

"https://computation.llnl.gov/casc/Overture/

60

4.3. PROBLEM FORMULATION

Code

Comments

DiRTIib [131, 132]

Donor interpolation Receptor Transaction library. It is a solver
neutral library designed to provide the required capability for us-
ing overlapping grids in any general flow solver. It is designed
with the idea of minimizing the number of modifications required
in the flow solver. It is not freely available.

SUGGAR [130, 131]

Structured, Unstructured, Generalized overset Grid AssembleR.
It is used to build domain connectivity information for the wide
range of grid topologies and solver formulations in codes that use
DiRTlib. It can handle moving bodies simulations. It is not freely
available.

Chimera Grid Tools [33, 34]

Chimera Grid Tools (CGT) is a software package containing a va-
riety of tools for generating overlapping grids for solving complex
configuration problems. It is part of the OVERFLOW-D general
purpose Navier-Stokes solver. It can handle moving bodies simu-
lations. It is not freely available.

BEGGAR [10, 116]

It is a flow solution environment, specially designed for store sep-
aration problems. It provides automated grid assembly. It is spe-
cially targeted to production work environments. It can handle
moving bodies simulations and 6-DOF rigid body motion. It is
not freely available.

Ogen [70, 74]

It is part of the Overture framework, which is a collection of C++
libraries for solving PDEs on overlapping grids. Provides tools for
structured grid generation and overlapping grids assembly. It can
handle moving bodies simulations and adaptive mesh refinement
on moving bodies. It is freely available for research and academic
purposes.

Table 4.2: Some of the codes that are currently available for assembling overlapping grid systems.

4.3 Problem Formulation

Let us suppose we want to solve some PDE on a domain D in N space dimensions (N=1, 2 or 3),
using overlapping grids. Then, an overlapping grid system G of the domain D, consists of a set
of N structured component grids G,,

G = {4y}, g=1,2... N

that entirely cover the domain D and overlap where the component grids G, meet. Each com-
ponent grid is a logically rectangular structured grid in N space dimensions and is defined by
a smooth mapping M, from the computational space C = C(§,7,(,7) (the unit interval for 1D
applications, unit square for 2ID applications and an equivalent hexahedral domain for 3D appli-
cations) to the physical space P = P(x,y, z,t), such that

P=M,(C), celo,1", Pe"

61

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

Here P is equal to x = (z,y, z) for N = 3 and contains all the coordinates in physical space and C
is equal to r = (£,1,¢) for N = 3 and contains the logically uniform array in computational space.
Variables defined on a component grid, such as the coordinates of the grid points, are stored in
rectangular arrays. For example, grid vertices are represented as the array

P : grid vertices, i=(i1,...,in), io=0,...,NY, a=1,...,N

where NJ is the number of grid points in the i,-coordinate direction. In the case of Cartesian
grids, the grid vertex information and other mapping information is not stored, which results in
a considerable savings in memory use.

Figure 4.7 shows a simple overlapping grid system consisting of two component grids, an annular
boundary fitted grid and a background Cartesian grid. The top view shows the overlapping grid
system in physical space P while the bottom view shows each grid in computational space C. In
this example the annular component grid cuts a hole in the Cartesian background grid, so that
the latter grid has a number of unused points (chimera hole). These unused points are tagged
and no computation is performed there. They are either outside of the computational domain
C, or are eliminated to make the total number of grid points in the overlapping grid system G
smaller. The other points on the component grids are marked as either discretization points or
interpolation points. The discretization points are those where the discretization of the governing
equations or boundary conditions is applied and the interpolation points provide domain connec-
tivity by interpolating their solution values back-and-forth between the different overlapping grids.

The classification of points on a component grid into discretization, interpolation and unused
points and as well the computation of all the metrics and Jacobians used when forming discrete
approximations is done by Ogen [70], which is highly optimized to treat overlapping grids and
moving overlapping grids. Ogen takes as input a set of overlapping component grids along with
a classification of the boundaries of each grid as a physical boundary, an interpolation boundary
or a periodic boundary. This boundary information is held in a generic array ﬂagg(ﬁ ,), where
B =1 or 2 denotes the boundary side and a = 1,...,N is the i,-coordinate direction, i.e.,

> (0 physical boundary
flag,(3,a) = ¢ =0 interpolation boundary
< 0 periodic boundary

and
flag,(1,1) = left side
flag,(2,1) = right side
flag,(1,2) = bottom side
flag,(2,2) = top side
flag,(1,3) = front side (for 3D domains)
(2,3)

flag,(2,3) = back side (for 3D domains)

Physical boundaries are discretization points. Interpolation boundaries are non-physical bound-
aries where the grid generator will attempt to interpolate the points from other components grids.

62

4.3. PROBLEM FORMULATION

P(G) —>

O @ Interpolation points

O Unused points
A A Ghost points
Physical boundary

be(2,2)

|Z]N :._ —§§ ‘:Gl TT“?}‘
b ju il \ ﬂ

r A

jil be(1,1) —» “_U, ‘ ?—bc(z 1)
I EARRARRARS
[Mang dWR 11 UHLHA

=0 i=N, bc(1,2)

Figure 4.7: Simple overlapping grid system consisting of two component grids G,. An annular boundary
fitted grid (G2) and a background Cartesian grid (G1). The top view shows the overlapping grid in physical
space P while the bottom view shows each grid in computational space C.

A periodic boundary can either be a branch cut (as on an annulus) or it can indicate a periodic
domain. Unused points are determined by Ogen using physical boundaries to mark points exte-
rior to the domain following a hole-cutting algorithm [37, 70, 141]. The remaining interior points
are classified as either discretization points or interpolation points.

To determine which component grid to prefer when there are two or more grids that overlap each
other, the component grids are ordered with respect to their priority such that grid G, has priority
g. When there is a choice which grid points to use in the overlap domain, the basic strategy of
the overlapping grid algorithm is to prefer grid points from component grids with higher priority.

When adaptive mesh refinement (AMR) is used on an overlapping grid system, new refinement
grids are added where an error in the numerical solution is estimated to be large. The approach
used by Ogen [70], follows the pioneering work of Berger and Oliger [18], but with some mod-
ifications for moving grids [73]. The refinement grids are added to each component grid and
are aligned with the computational space C. The refinement grids are arranged in a hierarchical
way, with the base grids belonging to a refinement level r,e; = 0, the next finer grids belonging
t0 7iever = 1, and so on. The grids on refinement level 7., are a factor rfgeror finer than the
grids on level 77¢pe; — 1. An AMR regridding procedure is performed every 7,.c4qq time steps,
where 704744 is typically equal to 2 X 7 f4ct0r. This procedure begins with the computation of an
error estimate based on the current solution. Once the error estimate is obtained, grid points
are flagged if the error is larger than a tolerance. A new set of refinement grids is generated to

63

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

cover all flagged points, and the solution is transferred from the old grid hierarchy to the new
one. Since the regridding procedure takes place at a fixed time, it is effectively decoupled from
moving grids cases.

In computational space C, solution values at interpolation points are generally determined by a
tensor-product polynomial interpolation scheme [76]. A simple interpolation method is to directly
transfer the flow variables from the donor cell or point to the receptor cell or point. With little
additional work, however, a more accurate higher-order interpolation scheme can be used, e.g., a
polynomial interpolation scheme. Hence, it is clear that higher-order interpolation schemes can
be used with no major difficulties, but a larger overlapping region with more stencil points will
be needed. In this dissertation, solution values at interpolation points are determined by using a
non-conservative Lagrange interpolation scheme, whose interpolation stencil is fully compatible
with the stencil of the numerical scheme discussed in the following chapter. More sophisticated
interpolation algorithms that maintain conservation are presented by Chesshire and Henshaw
[38], Wang [206] and Zheng and Liou [217, 218].

Consider the situation depicted in figure 4.8, in which a point Pigz (where i = (i1,42),%q =
0,...,N§,a = 1,2 and N§ is the number of grid points in the i,-coordinate direction) is to be
interpolated from component grid G;. Ogen supplies the Cig ! coordinates in computational space
C (r = (r1,72)) of point Pigz, such that Cig L= M;ll(Pigz). Therefore it is only necessary to know
how to interpolate a point from a rectangular grid. A list of the overlapping grid system G domain
connectivity information such as interpolation points, the donor grid from which they interpolate,
the location of the interpolation point in the computational space C of the donor grid and so on,
is provided and kept by Ogen [70]. In particular, if grid G, has nfp interpolation points, then for
each n = 1,2,...,nfp

ip=ip? (interpolation point n on grid g)
(

dg= dgJ donor grid for interpolation point ip?)

w= 1w (interpolation width of the overlap area of grid g)
r = dgm? (donor grid location of interpolation point ip?, r = M;gl (P))
j= dgsf (lower left corner of the donor grid stencil of ip¥)

denote the interpolation information associated with the interpolation point. The width of the
interpolation stencil 4w is chosen based on the order of accuracy, the type of PDE (elliptic,
parabolic, hyperbolic, mixed), and by the behavior of the overlap when the grid size decreases;
see [37] for details. In the following, we will assume that iw > 2.

Then, the two dimensional interpolation formula of any quantity ¢ on a component grid G, is
given by standard Lagrange interpolation,

iw—1 tw—1
=D > Bmdii (4.1)

mi1 =0 m2 =0

where

64

4.3. PROBLEM FORMULATION

P=M,(C)

G
C 1 INTERPOLATION P(gl)

STENCIL
\\ |y ()
® /

t, "
C=M,(P)

Figure 4.8: Interpolation scheme for overlapping grids. The interpolation is performed in computational
space C.

Bm = L:'lnlfl (7:1) c?r:zuz (7:2)v To = (Ta - 7a) Arg,

Here m = (my,ms), Arq, = 1/N§, and the Lagrange polynomials Cﬁ}” are defined in the usual
way as

1 _
]._‘[3‘207]‘;&” (r—17)
w—1

£i11)(T) _ :
: J=0,j#p (1 =)

Extension of eq. 4.1 to three dimensional cases is straightforward. The above approach to in-
terpolation not only permits an easy way of implementing arbitrary order interpolation schemes
(e.g., bi-linear, bi-quadratic, tri-linear, Lagrange, spline cubic), but also makes the interpolation
step less prone to error [37].

There are two different ways to interpolate in an overlapping grid [143] (figure 4.9). When the
interpolation type is implicit, the solution values at the interpolation points are coupled, because
they interpolate from both discretization and interpolation points in the donor grid dg. This
makes the required overlap smaller compared to when explicit interpolation is used, since in that
case only discretization points are allowed to be donor or interpolee points. When implicit in-
terpolation is used, a small system of equations must be solved to obtain the solution at the
interpolation points in terms of the values at other points, hence it becomes necessary to solve a
linear system of equations in order to update the solution values at all interpolation points after
each time step for time-dependent PDEs. The advantage of implicit interpolation is that the

65

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

amount of overlap is less and thus there are fewer grid points. Explicit interpolation is sometimes
preferred when a time-dependent problem is solved on the overlapping grid, because it simplifies
the solution procedure, but with the shortcoming of having more overlap between the grids.

Finally, when building an overlapping grid system G, where we want the overlap to be as small
and centred as possible, the following practical issues regarding to the type of interpolation must
be considered. When the interpolation is implicit, the component grids must overlap one another
by at least half a grid cell (for second or third order interpolation). Furthermore, the required
amount of overlap is independent of the number of components grids that overlap. The situation
is different for explicit interpolation. For instance, if the discretization and interpolation stencils
are three points wide in each grid direction, the amount of overlap must exceed one and a half
grid cells where the two component grids overlap each other. Also, the overlap must be up to
three grid cells wide, close to where more than two component grids overlap each other. For
further details and a complete demonstration, the interested reader should refer to [37, 141, 143].

(" Implicit Interpolation A
gl O—O—O—W
\)

(Explicit Interpolation)
gl <
\ J

© @ Interpolation points .
Interpolee points

@ O Discretization points

Figure 4.9: FExplicit and implicit interpolation for a one-dimensional overlapping grid.

In addition, component grids are usually created with one or more rows of auxiliary ghost cells
around the boundary of each component grid G,, these ghost cells are used to facilitate the
discretization of boundary conditions. In the present dissertation, two rows of ghost cells are
used in order to be compatible with the stencil of the numerical method and the order of the
interpolation scheme. Clearly, the number of rows of ghost cells depends of the size of the
numerical stencil, the interpolation width sw and the order of the interpolation scheme.

66

4.3. PROBLEM FORMULATION

4.3.1 Extension of the Overlapping Grids Method to Moving Boundaries
Problems

The presence of moving bodies changes the relative position of the overlapping grids continuously
during the flow simulation. As the component grid (around a moving body) traverses through the
computational domain, overlapping connectivity information, such as interpolation stencils and
unused points regions (Chimera holes), is recomputed. The automation of hole cutting and inter-
polation stencils computation, makes the present methodology a powerful tool for the simulation
of flows with one or multiple moving bodies, since the grids do not have to be regenerated as the
solution evolves. Only Chimera holes and the interpolation stencils used to provide domain con-
nectivity are recomputed at each time step, an operation which can be performed very efficiently.
In general, the motion of the component grids and/or boundaries may be an user defined time
dependent function, may obey the Newton-Euler equations for the case of rigid body motion or
may be the boundary nodes displacement in response to the stresses exerted by the fluid pressure
for the case of fluid structure interaction problems (FSI).

Figure 4.10: Mowing overlapping grid. The new overlapping grid system G interpolation stencils and
chimera holes are determined by Ogen at each time step.

When a component grid changes position during a moving grid computation, the overlapping
grid generator Ogen [70] is called at each time step in order to update the interpolation stencils
and Chimera holes. The component grids themselves do not have to be recomputed unless they
deform in shape. An optimized algorithm is used to determine the new points classification for
each grid. The algorithm only considers component grids affected by the moving boundary and
a new classification of points begins by assuming that the actual structure is similar to that of

67

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

the grids at the previous time. After identifying interpolation points that are no longer valid,
a local search is made for new candidates. In the event that the local search algorithm fails in
completing the new classification of points, then the general overlapping grid algorithm is used
(global search). Without any automation, such problems require the user to provide a priori all
the input that would enable hole cutting and interpolation stencil identification for any given
configuration of the overlapping grid, a cumbersome and time consuming operation.

Finally, as the problem of moving boundaries is a transient problem, the governing equations are
intrinsically time dependent, thus they must be modified in order to handle the unsteady nature
of the moving boundaries problem. The time derivative of any quantity ¢ = ¢(x,y, z,t) at a fixed
point of the physical space P is related to its time-derivative at a fixed point of the computational

space C by the equation
o9\ (09 :
(5),- (). ¢)

with V¢ evaluated in the physical space P. In eq. 4.2, G is the rate of change of position of a
given set of grid points Pig in the physical space and can be called the grid points velocity or grid

velocity and is equal to
. P
G = (i > (4.3)

In eq. 4.2 and eq. 4.3, tp =t and t¢ = 7 and from eq. 3.27 we know that ¢ = 7. Thus,

¢
ot

_9¢

p Ot

g
—G-V¢ where G = P

. - (4.4)

c

By replacing eq. 4.4 into the respective governing equations, they are now expressed in a reference
frame moving with the component grid. It is important to mention that the new governing
equations expressed in the moving reference frame, must be accompanied by the proper boundary
conditions. For a moving body with a corresponding moving no-slip wall, only one constraint
may be applied and this corresponds to the velocity on the wall

u (Pig|wall7t) = G7 where Piglwall € aDwall (t) (4'5)

4.3.2 Time Stepping Algorithm

In figure 4.11, the pseudo C++ code for the basic time-stepping algorithm for moving overlapping
grids with AMR regridding used by Ogen is presented [74]. In the algorithm, Q' denotes the
numerical solution of a system of PDEs on a domain represented by an overlapping grid system
G. The input of the algorithm is an overlapping grid system G = G generated by Ogen and
the final time # 4,4 over which the equations are to be integrated (for the purpose of the present
discussion the precise governing equations involved or their numerical approximation are not of
interest). The algorithm begins with the specification of the initial conditions according to the
class Set_initial_Conditions and the possibly creation of an initial AMR hierarchy of grids ac-
cording to an AMR algorithm contained in the if-end clause. The AMR steps involve estimating
the error, regridding to better resolve the solution and interpolation of the solution from the old
overlapping grid, including its hierarchy of refined grids, to a new one. These steps are repeated

68

4.4. OVERLAPPING GRIDS ASSEMBLING ALGORITHM

until either the error tolerance is met or until the maximum number of refinement levels have
been added.

Once the initial solution and initial AMR grid hierarchy have been determined, the discrete so-
lution is advanced in time. At the top of the while loop, the solution, Q;', and grid, Gy, are
known at the current time ¢. Before advancing the grid and solution to the next time level, the
algorithm checks to see whether the AMR grids need to be regenerated, then an AMR regridding
procedure is performed every n,¢4-iq steps.

1 | PDE_To Solve (G, tfina1)

2 |

3 t=0; n =0 G=gg

4 Q} = Set_Initial Conditions (G}') ;

5 while ¢ <tfina

6 if(n mod Tpegria =0) /% rebuild the AMR grids */

7 e; = Apply Error _Estimator (G, Q7) ;

8 Gy = regrid (G}, e:) ;

9 Q; = Interpolate To_New Grid (Q}, G}, G;) ;

10 Go=65 Q' =Q)

11 end

12 At = Compute_TimeStep (G}, Q7) ; /% compute overlapping grids timestep */
13 Gyt = Move_Components_Grids (G}, Q}) ; /% predict the new grid state */

14 Update_Overlapping Information (G7+') ; /* update overlapping grid connectivity */
15 Q;*! = Advanced _TimeStep (G7,G7*,QF, At) ; /* advance the solution */

16 interpolate (G, Q7*) ; /* interpolate overlapping grid points */
17 Apply Boundary_Conditions (G, G, QF, QP! t + At) ;

18 t=t+ At g;:g;“; n=n+1;

19 end

20|}

Figure 4.11: Pseudo C++ Code for the basic time stepping algorithm for overlapping grids.

The first step in the main time-stepping loop moves the grids one time step according to the class
Move_Components_Grids. The motion of the component grids G, and/or boundaries may be
an user defined time dependent function, may be determined by the Newton-Euler equations of
motion (i.e., rigid body motion) or may be the response to the stresses exerted on the boundaries
by the fluid pressure (i.e. fluid structure interaction). Then, the new grid position gg“ is deter-
mined at t+At. After the grids have moved, the overlapping grid generator is called to update the
overlapping grid connectivity information for Q;H'l (class Update_Overlapping_Information)
which includes the new classification of points as discretization, unused, or interpolation points.
The numerical solution may now be advanced to the next time level according to the current state
Q;" and grids Gg' and gg“, as indicated by the class Advanced_Time_Step. After the solution
is advanced at all discretization points, the interpolate class is called to update the solution
on overlapping grid interpolation points and on the interpolation points on the refinement grids.
The boundary conditions are then applied (class Apply_Boundary_Conditions) so that the
solution Q?H is now specified at all interior, boundary and ghost points.

4.4 Overlapping Grids Assembling Algorithm

In this section, the algorithm for assembling overlapping grids is outlined and illustrated. In
general, the method consist of three major steps. The first step is simply the geometry definition
and component grids generation. The second step consist in detecting all hole points outside of
the computational domain, and the third step consist in finding the grid points to interpolate

69

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

from (donor or interpolee points) for all interpolation points on the fringe of the hole (receptor
or interpolation points). As we are only interested in illustrating the assembling algorithm, the
detailed and theoretical definitions will be avoided as much as possible. For a detailed explanation
of the algorithm see for example [37, 70, 143, 141, 149)].

g,

Physical boundary

Figure 4.12: Left. Initial overlapping grids system G. Right. Individual component grids G.

We now proceed to describe the major steps and its corresponding substeps. First, the algorithm
must start with a set of component grids G, and a set of boundary conditions and constraints
(figure 4.12), this step can be seen as mainly CAD and grid generation work.

The second step consist in marking hole boundaries and removing exterior or unused points (fig-
ure 4.13). This step can be seen as a two-substeps process. Firstly, for each physical boundary
we find points on other component grids G, that are near to and inside or outside of the physical
boundary. After this substep, the holes in the grid will be bounded by a boundary of exterior or
unused points next to a boundary of interpolation points. Next, all remaining points within the
hole are marked as exterior or unused points. These points can be now easily swept out since the
hole cutting algorithm ensures that all holes are bounded by interpolation points. At this stage,
we have created a Chimera hole.

The third step consist in finding and classifying all valid interpolations points. This step starts
with the highest grid priority and proceed in decreasing priority order such that fewer restrictions
are enforced on the grids with higher priority. Here, the points on the physical boundaries and
interpolation boundaries are collected into a list of interpolation points. Then, we proceed to
classify these points by using improper interpolation [70]. A point is said to interpolate in an
improper way from another grid if it simply lies within that grid. Since all the points in the
list lie within the domain they must interpolate from some other grid or else there is something
wrong (figure 4.14). Next, we proceed to find all the proper interpolation points. In this step, the
points belonging to the list of improper interpolation points are classified as proper interpolation
points or discretization points. A point of a grid is said to be a proper interpolation point if the
appropriate stencil of points exist on the donor grid and consists of the correct types of points

70

4.4. OVERLAPPING GRIDS ASSEMBLING ALGORITHM

@ Interpolation points B Unused points
— Physical boundaries

BRSPS
gaghay

Figure 4.13: Overlapping grid system G after cutting holes and removing all exterior or unused points.
The hole cutting algorithm generates a barrier of unused points and interpolation points that bounds the
entire hole region.

for the implicit or explicit interpolation. We also attempt to interpolate the discretization points
on cach grid from grids of higher priority (figure 4.15). At this step, we should have a valid
overlapping grid system G.

o e Interpolation points
— Physical boundaries
o [
» - -
P RR§PS2 >
A
\
[T, S
Tt T
e ¢l
* SadNAY *
K = v

Figure 4.14: Overlapping grid system G after marking points on the physical boundaries (stairstep bound-
ary) and interpolation boundaries.

71

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

At this stage, an additional step known as trimming (figure 4.16), is performed. Basically, this
step consist in reducing the amount of overlap. Here, any interpolation point that is not needed
is removed from the computation according to an user defined criteria or minimum overlap re-
quirement. Interpolation points that are needed but can just as well be used as discretization
points are turned into discretization points.

o e Interpolation points
— Physical boundaries
o " DN
ihapesd

Figure 4.15: Owverlapping grid system G after marking all proper interpolation.

By now, the overlapping grid system G has been assembled and optimized for the minimum or
desired overlap. The last step simply consist in a consistency check, where we check if the clas-
sification of the grids points is consistent and if all discretization and interpolation points satisfy
the necessary requirements. It is worth to mention that this consistency check is recursively
done after each one of the previous steps. This check will mark all points that fail to satisfy the
requirements and the output may be used as a reference for troubleshooting the overlapping grid
system generated by Ogen [70].

In the above algorithm, one of the most important operations which is recursively performed is
the task of inverting a component grid mapping M, corresponding to a general component grid
Gy in order to find a donor or interpolee point for an interpolation point PY. Hence, it is essential
to perform this operation as quickly as possible. Using figure 4.8 as a reference, the algorithm
used by Ogen is as follows [37, 70, 141, 143],

1. Before attempting to invert the mapping, we first must check if Pig ? lies inside the rectangle
09 that bounds the donor component grid G;. If the point does not lies inside 99!, then
it cannot be interpolated and we are done. Else, if the point Pigz is inside Q9| the second
problem is to generate a sufficiently good initial guess for Newton’s method, which is used
to determine the Cig ! coordinates of the point Pigz’.

2. If Pig? lies within the rectangle Q9', we need a good initial guess for Newton’s method. In
order to get a good initial guess for this step, we do an optimized local search through all

72

4.5. DISCRETIZATION ON OVERLAPPING GRIDS

o e Interpolation points
— Physical boundaries
L, -0 L
gao8

—

==

Figure 4.16: Final overlapping grid system G after removing excess of interpolation points

grid points in order to find the closest grid point to Pigz on the donor component grid Gj.
As soon as the closest point to Pigz is determined, we proceed to the next step.

3. Now we can determine the C’ig1 coordinates of the point Pig2 by inverting the component
grid G; transformation M, with a Newton iteration, using the closest point found in the
previous step as an initial guess. As soon as Cf' of Pf2 has been found (CJ' = M;ll(Pig),
it is trivial to determine the enclosing grid cell and the interpolation stencil according to
the interpolation scheme.

We emphasize the above point, since the construction of a composite grid requires some compu-
tation and it is important to do certain tasks efficiently, so that the turnaround time for the grid
assembly algorithm is small (specially for moving grids where the domain connectivity information
have to be recomputed at each time step).

4.5 Discretization on Overlapping Grids

On an overlapping grid system G, the solution of a PDE can be seen as the solution of the
transformed PDE on a set of unit domains in computational space C. The governing PDE is
transformed from physical space P to computational space C by replacing the Cartesian deriva-
tives by their equivalent in the transformed computational space C (see Chapter 3, Section 3).
Hereafter, we present a simple example of how to discretize a model one-dimensional PDE on a
structured overlapping grid system G. For the sake of simplicity, the following example considers
Cartesian coordinates, nevertheless, the discretization on the unit interval in the transformed
computational space C is straightforward. Let us consider the boundary value problem (BVP)
for the one-dimensional Poisson equation,

73

CHAPTER 4. ON STRUCTURED OVERLAPPING GRIDS

Uee = f, weP0,Y, Pewr¥, N=1
u (0) = go, (Dirichlet boundary condition)

4.6
ug (1) = g1, (Neumann boundary condition) (4.6)

eq. 4.6 is to be discretized on the overlapping grid system G shown in figure 4.17, by using
standard finite differences. A second-order discretization to this problem is

Uy = go (Dirichlet bc on Gy)

U;.1 —2U; + U
h2
g1

= f(P9), i=1,2,...,N;—1, (dponG)

Un, — (OéoVo + a1V + OQVQ) =0, (Lp on gl)

Vo — (BoUpn,—2 + f1UnN,—1 + f2Un,) =0, (ip on Go)

Vi1 —2V;+Viy
hQ
Go

(4.7)

= f(P?), i=1,2,...,Na, (dpon Gs)

Vao+1 — V-1
= gl
2hg,

(Neumann be on Go)

where be stands for boundary conditions, dp stands for discretization points, ip stands for in-
terpolations points and i = ig-coordinate direction with @ = 1. As the problem is solved in
one-dimension, the notation variabley-coordinate direction will be dropped for all index variables.

U, Uz ... Uy2 Uy Uy, \

1

> —0—0—4A gz

Vo Vi Va2 ... Vn2 Vi Vn, Vi

A
\/
o

z=0 @ O ® o=t
>

a2«
ad<

© @ Interpolation points
@ © Discretization points

A .
: . Donors of Interpolee points A A Ghost points

/

Figure 4.17: Owverlapping grid discretization in one dimension.

In eq. 4.7, U; is the approximate solution on grid G; on the subinterval [0, b], with Pigl = ihg,,
hg, = b/N; and Ny the number of nodes on grid G;. Respectively, V; is the approximate solution
on grid Gy on the subinterval [a, 1], with 73292 = ihg,, hg, = (1 — a)/N2 and N3 the number of
nodes on grid G». The interpolation weights «,, and 3, are chosen appropriately according to

74

4.6. COMMENTS ON OVERLAPPING GRIDS

the interpolation scheme (see section 4.3). For this example, we assumed implicit interpolation
and an interpolation width 7w equal to 3, hence the interpolation stencil is equal to j+m, where
7 is the lower left corner of the donor grid dg interpolation stencil and 0 < m < iw — 1. The
Neumann boundary condition at ¢ = Ns on grid Gy is implemented by adding a ghost point
V n,+1; then, by using centred finite difference approximations, we obtain the value of the ghost
point which is considered to be defined by the Neumann boundary condition and is equal to
VN,+1 = 2hg,91 + Vn,—1. At this point, the system of equations eq. 4.7 can be solved by using
any direct or iterative solution method, obtaining in this way the approximate solution of eq. 4.6
on the discrete overlapping domain PE € (P9 U P92).

4.6 Comments on Overlapping Grids

The main advantage of the overlapping grids scheme is that individual body-fitted conforming
structured grids can be created separately for each component defining the overall geometry and
then superimposed to form one complete grid system that covers the entire physical domain,
all without any constraints on the grid boundaries as long as overlap exists between adjacent
grids. This allows complex geometries to be treated more easily, theoretically reducing the time
and effort to generate a grid; also, as several overlapping grids are used, only the Chimera holes
and the interpolation stencils are recomputed as the solution evolves in time when dealing with
moving boundaries.

Of course, the main disadvantage of the overlapping grid scheme is that the algorithm is far more
complex than a single-block or multi-block structured grid algorithm due to the use of multiple
structured overlapping grids. Drawbacks to using overlapping grids include having to interpolate
in a non-conservative way data points along overlapping zones, which in practice rarely seems to
be an issue if good standard practices are followed [32]. In addition, the data structure bookkeep-
ing can be especially complex if more than two grids overlap one another. Additional to the flow
solver, class libraries are needed to interconnect the overlapping grids, create proper hole regions
(Chimera holes), define hole boundaries, and determine the interpolation stencils for properly
transmitting information among overlapping grids. Though this is perhaps a bit complex and
time consuming, the computational efficiency and convenience that is gained by using such a
scheme when dealing with complex or moving geometries makes the method worthwhile.

There are two additional practical complications related to generating an overlapping grid. First,
it can be hard to judge a priori if the component grids overlap each another sufficiently. Second,
the user can make a mistake when labeling the boundaries of the component grids, which can
lead to an inconsistent definition of the overlapping grid system. Creating an overlapping grid
is therefore sometimes an iterative process which requires much user experience and care, and
where the component grids are changed by the user until a valid overlapping grid can be formed.

Finally, the use of overlapping grids does not eliminate the planning stage in grid generation
process. Care must be taken to ensure that the grid distributions in the overlapping grid system
are not drastically different. Radical differences between overlapping grids can lead to poor in-
terpolation results. Poor interpolation can in turn lead to increased computational time, due to
poor solution convergence.

75

