Chapter 3

Governing Equations of Fluid
Dynamics

The starting point of any numerical simulation are the governing equations of the physics of the
problem to be solved. In this chapter, we first present the governing equations of fluid dynamics
and their nondimensionalization. Then, we describe their transformation to generalized curvilin-
ear coordinates. And finally, we close this chapter by presenting the governing equations for the
case of an incompressible viscous flow.

3.1 Navier-Stokes System of Equations

The equations governing the motion of a fluid can be derived from the statements of the conserva-
tion of mass, momentum, and energy [5]. In the most general form, the fluid motion is governed
by the time-dependent three-dimensional compressible Navier-Stokes system of equations. For
a viscous Newtonian, isotropic fluid in the absence of external forces, mass diffusion, finite-rate
chemical reactions, and external heat addition, the strong conservation form of the Navier-Stokes
system of equations in compact differential form can be written as

dp
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This set of equations can be rewritten in vector form as follows

8_Q+(9E,-+8Fi+6G,~_(9E,,+8FU+8GU (3.1)
ot Oz Oy 0z Oz Oy 0z '

where Q is the vector of the conserved flow variables given by
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3.1. NAVIER-STOKES SYSTEM OF EQUATIONS

Q= |pv (32)

and E; = E;(Q), F; = F;(Q) and G; = G;(Q) are the vectors containing the inviscid fluxes in
the z, y and z directions and are given by

pu pv pw
pu2 +p pou pwu
E; = pU , F,=| p’+p |, G; = PWY (3.3)
puw pow pw2 +p
(per +p)u (per +p)v (pet +p)w

where u is the velocity vector containing the u, v and w velocity components in the x, y and 2
directions and p, p and e; are the pressure, density and total energy per unit mass respectively.

The vectors E, = E,(Q), F, = F,(Q) and G, = G,(Q) contain the viscous fluxes in the z, y
and z directions and are defined as follows

Tzz
| UT + VUTzy + Wz — Q2|

where the heat fluxes ¢, g, and g, are given by the Fourier’s law of heat conduction as follows

oT
qr _k %
aT
aT
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and the viscous stresses Tuq, Tyy, Tzz, Tay, Tyas Tazs Tex, Tye and Ty, are given by the following
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relationships
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where p is the laminar viscosity.

Examining closely equations eq. 3.1, eq. 3.2, eq. 3.3 and eq. 3.4 and counting the number of
equations and unknowns, we clearly see that we have five equations in terms of seven unknown
flow field variables u, v, w, p, p, T, and e;. It is obvious that two additional equations are
required to close the system. These two additional equations can be obtained by determining
relationships that exist between the thermodynamic variables (p, p, T, e;) through the assumption
of thermodynamic equilibrium. Relations of this type are known as equations of state, and
they provide a mathematical relationship between two or more state functions (thermodynamic
variables). Choosing the specific internal energy e; and the density p as the two independent
thermodynamic variables, then equations of state of the form

p=plep),  T=TIep) (3.7)
are required.
For most problems in acrodynamics and gasdynamics, it is generally reasonable to assume that

the gas behaves as a perfect gas (a perfect gas is defined as a gas whose intermolecular forces are
negligible), i.e.,

p=pRyT (3.8)

where R, is the specific gas constant and is equal to 287% for air. Assuming also that the
working gas behaves as a calorically perfect gas (a calorically perfect gas is defined as a perfect
gas with constant specific heats), then the following relations hold

p o R, YR,

)
Cy

ei = T, h=¢T, v =
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3.2. NONDIMENSIONALIZATION OF THE GOVERNING EQUATIONS

where v is the ratio of specific heats and is equal to 1.4 for air, ¢, the specific heat at constant
volume, ¢, the specific heat at constant pressure and h is the enthalpy. By using eq. 3.8 and
eq. 3.9, we obtain the following relations for pressure p and temperature 7" in the form of eq. 3.7

-1 €;
p=0—-1pe, T= —pz, _ 0=V 7 ) (3.10)
g9 g

where the specific internal energy per unit mass e; = p/(y — 1)p is related to the total energy per
unit mass e; by the following relationship,

1
e = ei+§ (u? + v? + w?) (3.11)
In our discussion, it is also necessary to relate the transport properties (u, k) to the thermody-
namic variables. Then, the laminar viscosity p is computed using Sutherland’s formula

T3
= 3.12
H (T + Cg) ( )

where for the case of the air, the constants are C1 = 1.458 x 10_6# and Co = 110.4K.
The thermal conductivity, k, of the fluid is determined from the Prandtl number (Pr = 0.72 for air)
which in general is assumed to be constant and is equal to

k= % (3.13)

where ¢, and p are given by equations eq. 3.9 and eq. 3.12 respectively.

The first row in eq. 3.1 corresponds to the continuity equation. Likewise, the second, third and
fourth rows are the momentum equations, while the fifth row is the energy equation in terms of
total energy per unit mass.

The Navier-Stokes system of equations eq. 3.1, eq. 3.2, eq. 3.3 and eq. 3.4, is a coupled system
of nonlinear partial differential equations (PDE), and hence is very difficult to solve analytically.
There is no general closed-form solution to this system of equations; hence we look for an ap-
proximate solution of this system of equation in a given domain D with prescribed boundary
conditions 0D and given initial conditions DU.

If in eq. 3.1 we set the viscous fluxes E, = 0, F, = 0 and G, = 0, we get the Euler system of
equations, which governs inviscid fluid flow. The Euler system of equations is a set of hyperbolic
equations while the Navier-Stokes system of equations is a mixed set of hyperbolic (in the inviscid
region) and parabolic (in the viscous region) equations. Therefore, time marching algorithms are
used to advance the solution in time using discrete time steps.

3.2 Nondimensionalization of the Governing Equations

The governing fluid dynamic equations shown previously may be nondimensionalized to achieve
certain objectives. The advantage in doing this is that, firstly, it will provide conditions upon
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CHAPTER 3. GOVERNING EQUATIONS OF FLUID DYNAMICS

which dynamic and energetic similarity may be obtained for geometrically similar situations.
Secondly, by nondimensionalizing the equations appropriately, the flow variables are normalized
so that their values fall between certain prescribed limits such as zero and one. Thirdly, the
procedure of nondimensionalization, also allows the solution to be independent of any system
of units and helps to reduce the sensitivity of the numerical algorithm to round-off-errors. And
finally, by nondimensionalizing the governing equations, characteristic parameters such as Mach
number, Reynolds number and Prandtl number can be varied independently. Among many
choices, in external flow aerodynamics it is reasonable to normalize with respect to the freestream
parameters so that

g=2, g=Y =2
AR A AR
=2 - Y a2
UOO/ OO, UOO
- P 7 T 5 P (3.14)
:—’ :—7 p:
P Poo T PooUgo
- tU,
t=—>2, ~t:e_;, ﬂ:i
L U% Hoo

where ~ denotes nondimensional quantities, the subscript o, denotes freestream conditions, L is
some dimensional reference length (such as the chord of an airfoil or the length of a vehicle), and
U is the magnitude of the freestream velocity. The reference length L is used in defining the
nondimensional Reynold’s number, this parameter represents the ratio of inertia forces to viscous
forces, and is given by

_ PooclUosc L
Moo

Rey, (3.15)

where the freestream laminar viscosity pe, is computed using the freestream temperature T
according to eq. 3.12.

When dealing with high speed compressible flow, it is also useful to introduce the Mach number.
The Mach number is a nondimensional parameter that measures the speed of the gas motion in
relation to the speed of sound a,

Then the Mach number M, is given by,

Uso Us Uso

My, = 22 — -
a  \/v(p/p) VIR

(3.17)

Finally, the remaining nondimensional quantities are defined as follows
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3.2. NONDIMENSIONALIZATION OF THE GOVERNING EQUATIONS

Rg
(3.18)

Now, by simple replacing into the governing equations eq. 3.1 the dimensional quantities by their
corresponding nondimensional equivalent, the following nondimensional equations are obtained

0Q | OB;  OF;, 0G; OB, OF,  0G, (3.19)
ot 0% a0y 0z loks a7y 0z
where Q is the vector of the nondimensional conserved flow variables given by
F;
L

Q= |po (3.20)

pw

per

and E; = E;(Q), F; = F;(Q) and G; = G4(Q) are the vectors containing the nondimensional
pw

inviscid fluxes in the Z, ¢ and Z directions and are given by

pil pv
put+p i Pt ) P
0 F,=| po’+p |, G; = Py (3.21)
oW pu? +p
(pér+p)w

and E, = Ey(Q), Fy = Fo(Q) and G, = G(Q) are the vectors containing the nondimensional
39
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However, in the process of nondimensionalizing the equations, the terms M., and Rey, arises from
the nondimensional viscous flux vectors. Therefore, the definition of the heat flux components
and the viscous stresses may be modified as follows

o fL oT
e = " (y—1) M2 ReyPr 0i
_ L or
= T 1) M2 ReLPr 95 (3.23)
- il or

== (Y —1) M2 RepPr 07

and
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3.3. TRANSFORMATION OF THE GOVERNING EQUATIONS TO
GENERALIZED CURVILINEAR COORDINATES
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Finally, by nondimensionalizing the equations of state eq. 3.10, we obtain
p=(—1pe, T=—=-"""t (3.25)

where the nondimensional specific internal energy per unit mass & = p/(y — 1)p is related to the
nondimensional total energy per unit mass é; by the following relationship,

1
b= ¢+ 5 (07 + 07+ 07) (3.26)

Note that the nondimensional form of the equations given by eq. 3.19, eq. 3.20, eq. 3.21 and
eq. 3.22 are identical (except for the™) to the dimensional form given by equations eq. 3.1, eq. 3.2,
eq. 3.3 and eq. 3.4. For the sake of simplicity, the notation ~ will be dropped for the remainder of
this dissertation. Thus, all the equations will be given in nondimensional form unless otherwise
specified.

3.3 Transformation of the Governing Equations to Generalized
Curvilinear Coordinates

The Navier-Stokes system of equation (eq. 3.1, eq. 3.2, eq. 3.3 and eq. 3.4) are valid for any
coordinate system. We have previously expressed these equations in terms of a Cartesian co-
ordinate system. For many applications it is more convenient to use a generalized curvilinear
coordinate system. The use of generalized curvilinear coordinates implies that a distorted region
in physical space is mapped into a rectangular region in the generalized curvilinear coordinate
space (figure 3.1). Often, the transformation is chosen so that the discretized equations are
solved in a uniform logically rectangular domain for 2D applications and an equivalent uniform
logically hexahedral domain for 3D applications. The transformation shall be such that there is
a one-to-one correspondence of the grid points from the physical space (Cartesian coordinates)
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to computational space (generalized curvilinear coordinates).

Physical Computational
space space

x

Figure 3.1: Correspondence between the physical space (Cartesian coordinates) and the computational
space (generalized curvilinear coordinates).

Hereafter, we will describe the general transformation of the nondimensional Navier-Stokes sys-
tem of equations (eq. 3.19, eq. 3.20, eq. 3.21 and eq. 3.22) given in the previous section between
the physical space (Cartesian coordinates) and the computational space (generalized curvilinear
coordinates). The governing equations are written in strong conservation form and expressed in
terms of the generalized curvilinear coordinates as independent variables, thus the computations
are performed in the generalized curvilinear coordinate space.

The governing equations of fluid dynamics are transformed from the physical space P = P(x, y, z, t)
to the computational space C = C(£,n,(, T) by using the following transformations

T=7(t) =

§=¢(z,y, 2, t)

n=n(zy,z1) (3.27)
C:C(x Y, z, t)

where 7 is considered to be equal to ¢ and thus the transformation with respect to time is simple
defined as 7 =t as shown in eq. 3.27.

Applying the chain rule, the partial derivatives of any quantity ¢ = ¢(x,y, z,t) with respect to
the Cartesian coordinates can be written as
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GENERALIZED CURVILINEAR COORDINATES
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Then the governing equations may be transformed from physical space P to computational space
C by replacing the Cartesian derivatives by the partial derivatives given in eq. 3.28, where the
terms &g, N2y Coy Eys Mys Gy €2, M2 Gz, &, e and G are called metrics (they represents the ratio of arc
lengths in the computational space C to that of the physical space P) and where £, represents
the partial derivative of £ with respect to z, i.e. 9¢/0x, and so forth.

J hysical space COmputationaI space

(x’ y»Z»t)"(é’,"):f:T) _ 1 'il

Boundary 1 e=== Boundary 3
=== Boundary 2 e=ms Boundary 4

Figure 3.2: Transformation from physical space to computational space. Left: structured grid in physical
space. Right: logically uniform grid in computational space.

In most cases, the transformation eq. 3.27 from physical space P to computational space C is not
known analytically, rather it is generated numerically by a grid generation scheme. That is, we
usually are provided with just the z,y and z coordinates of the grid points and we numerically
generate the metrics using finite differences. The metrics &, Mz, Gy Eys Mys Cyr €25 M2, 2, &, e and (g
appearing in eq. 3.28 can be determined in the following manner. First, we write down the
differential expressions of the inverse of the transformation eq. 3.27,

dt = trdr + ted& + t,dn + ted(
dr = x.d7 + 2¢d€ + 2pdn + 2dC
dy = yrd7 + yed€ + yydn + ycd¢
dz = zpd7 + 2¢d§ + 2ydn + z¢dC

(3.29)

where the inverse of the transformation eq. 3.27 is

43



CHAPTER 3. GOVERNING EQUATIONS OF FLUID DYNAMICS

t=t(r)=r1
T = x(£7’rl7 C? T) (3'30)
y=y(&n¢T)
= Z(ﬁ?n?C’T)
and recalling that for a grid that is not changing (moving, adapting or deforming)
ot
E =1 and
ot Jt Ot
—=—=—=0 th
9 an o us
dt =dr
Expressing eq. 3.29 in matrix form, we obtain
dt 1 0 0 0] [dr
dx _ | me my mg d€ (3.31)
dy Yr Ye Yo ¥c| |dn
dz Zr ze zy zZ¢] LdC

In a like manner, we proceed with the transformation eq. 3.27, and we obtain the following
differential expressions

dr = dt
d¢ = &dt + Eedx + gydy +&.dz (3 32)
dn = nedt + nudx + nydy + n.dz '
d¢ = Gdt + Cedx + Gydy + (.dz
which can be written in matrix form as
dr 1 0 0 O dt
df gt éz éy gz dz
— 3.33
dn M T Ny M| |dy (3.33)

¢ e Cy s dz

By relating the differential expressions eq. 3.33 of the transformation eq. 3.27 to the differential
expressions eq. 3.31 of the transformation eq. 3.30, so that the metrics

6267 Nz, Cma fyﬂ?gpfy, §Z7 UED CZ7£t7 M, Ct

can be found, we conclude that

-1

1 0 0 O 1 0 0 O
& & & &| _ |z mg omy ag (3.34)
N e My 1z Yr Ye Yn Yc
G G Gy Cx Zr Z¢ 2y &
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This yields the following metrics relationships

fz = ‘]96 (ynZC - yCZn)
&y = Jo (xczy — Tn20)
&=z (xnyC - nyn)

gt = - (Tthgw + Ttyfgy + TtZsz)
e = Ja (Ycze — Yezc)
y = Jo (wezc — wc2)
ne = Ju (TcYe — weyc)
e = — (TN + Teyrily + Te2702)
Co = Jz (Z/ﬁzn - ynzﬁ)
Gy = Ju (Tnze — we2)
C=Jg (*7:5?/77 - fcnf’/&)
G = — (2:Co + Y- Gy + T22,C2)

(3.35)

For &, n: and (; the following values are obtained after some manipulation

& = o [or (yezn = yn2c) + yr (wn2¢ = wcz) + 2r (2cyy — 2ayc)]
e = Ju (2 (Yeze — yoze) + yr (weze — weze) + 2 (eyc — weye)) (3.36)
G = Ja (27 (yn2e — Yezm) + yr (wezn — Tn2e) + 27 (Tyye — Teyn)]

In eq. 3.35 and eq. 3.36, J, is the determinant of the Jacobian matrix of the transformation
defined by

d(&,1m,¢)

e = ‘a@c,y,z)

or

1
g (3.37)
C e (ypze — yezn) — i (Yezg — ycze) + ¢ (Yezn — Yne)

which can be interpreted as the ratio of the areas (volumes in 3D) in the computational space C
to that of the physical space P.

Once relations for the metrics and for the Jacobian of the transformation are determined, the
governing equations eq. 3.19 are then written in strong conservation form as

o0Q OE; oF; 0G; O0E, 0F, 0G,
- = + +

o " og Tam T T oe Tam A (3:35)

where
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5 Q

Q= 7.

A 1
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F = Ji (mQ + n.Ei + "7yF +1.G3)
Gi= 1 (GQ + B + P+ GG (3.39)
- 1
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The viscous stresses given by eq. 3.24 in the transformed computational space are

. 2
Tex = __[2 (ﬁmug + Ny + Cl‘uc) - (ﬁyvg + Ny + Cyvc) -
3 Rey,
- (gzwﬁ + nwy + Csz)]
. 2 p
Tyy = __[2 (ﬁyvg + nyvp + Cyvg‘) - (53:“5 + Ny + Ca:ug) ce
3 Rey,
- (fzwf + nwy + gsz)]
. 2 pu
Taz = gR_eL[Q (gzwf + n.wy + Csz) - (§xu§ + NzUy + Cqu) . (3.40)
— (§yve + nyvy + Gyue)]
Toy = Tyz = RLeL(fy“E + nyun + Gue + Exve + Navy + Cove)

Ty = Tog = RLQL(fzug + nauy + Gue + ewe + npwy + Gwe)

. . L
Tyz = Tzy = R/_eL(£ZU£ + 120y + Gug + Eywe + nywy + Gyue)

and the heat flux components given by eq. 3.23 in the computational space are

. p
= - T, T, T
I (y — 1) MZ Rey,Pr (&Te +naTy + GTc)
. p
=- T, T, T
Ty (v — 1) MZ Rep, Pr (& Te +myTy + G T¢) (3.41)
. p
(&Te +n.T) + C.T¢)

&= T “ 1) MZ Re,Pr

Equations eq. 3.38 and eq. 3.39 are the generic form of the governing equations written in strong
conservation form in the transformed computational space C (see [14], [85] and [181] for a detailed
derivation). The coordinate transformation presented in this section, follows the same develop-
ment proposed by Viviand [202] and Vinokur [201], where they show that the governing equations
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of fluid dynamics can be put back into strong conservation form after a coordinate transformation
has been applied.

Comparing the original governing equations eq. 3.19, eq. 3.20, eq. 3.21 and eq. 3.22 and the trans-
formed equations eq. 3.38 and eq. 3.39, it is obvious that the transformed equations are more
complicated than the original equations. Thus, a trade-off is introduced whereby advantages
gained by using the generalized curvilinear coordinates are somehow counterbalanced by the re-
sultant complexity of the equations. However, the advantages (such as the capability of using
standard finite differences schemes and solving the equations in a uniform rectangular logically
grid) by far outweigh the complexity of the transformed governing equations.

One final word of caution. The strong conservation form of the governing equations in the
transformed computational space C is a convenient form for applying finite difference schemes.
However, when using this form of the equations, extreme care must be exercised if the grid is
changing (that is moving, adapting or deforming). In this case, a constraint on the way the
metrics are differenced, called the geometric conservation law or GCL (see [50], [55] and [185]),
must be satisfied in order to prevent additional errors from being introduced into the solution.

3.4 Simplification of the Navier-Stokes System of Equations: In-
compressible Viscous Flow Case

Equations eq. 3.1, eq. 3.2, eq. 3.3 and eq. 3.4 with an appropriate equation of state and boundary
and initial conditions, governs the unsteady three-dimensional motion of a viscous Newtonian,
compressible fluid. In many applications the fluid density may be assumed to be constant. This
is true not only for liquids, whose compressibility may be neglected, but also for gases if the
Mach number is below 0.3 [6, 53]; such flows are said to be incompressible. If the flow is also
isothermal, the viscosity is also constant. In this case, the dimensional governing equations in
primitive variable formulation (u,v,w,p) and written in compact conservative differential form
reduce to the following set

8—u-I-V-(uu):%)—i-l/VQu

where v is the kinematic viscosity and is equal v = p/p. The same set of equations in nondimen-
sional form is written as follows

V-(u)=0
ou

1 2
E+V~(uu)——Vp+R—CLV u

which can be also written in nonconservative form (or advective/convective form [60])

V-u=0

Ou 1 o
E+u-Vu——Vp+R—eLV u

or in expanded three-dimensional Cartesian coordinates
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ou  ou Ou Ou_ Op 1 (QPu Ou Ou
ot oz dy dz  Ox  Rep \0x2  0y2 022
ov ov ov ov  Op 1 v v 9% (3.42)
a*“%*”a—y”&—‘aw—q(ww—yﬁ@>
8_w+ 8_w+ 6_w+ 8_w__@+ 1 82w+82w+82w
b Y Yo, T 0x2 Oy 022

ot or oy 0z 0r  Rep,

This form (the advective/convective form), provides the simplest form for discretization and is
widely used when implementing numerical methods for solving the incompressible Navier-Stokes
equations, as noted by Gresho [60].

Equation eq. 3.42 governs the unsteady three-dimensional motion of a viscous, incompressible
and isothermal flow. This simplification is generally not of a great value, as the equations are
hardly any simpler to solve. However, the computing effort may be much smaller than for the
full equations (due to the reduction of the unknowns and the fact that the energy equation is
decoupled from the system of equation), which is a justification for such a simplification. The set
of equations eq. 3.42 can be rewritten in vector form as follow

0Q JOE; O0F; 0G; B OE, OF, 0G,
F I i F P (3.43)

where Q is the vector containing the primitive variables and is given by

(3.44)

2 e 2 o

and E;, F; and G; are the vectors containing the inviscid fluxes in the x, y and z directions and
are given by

U v w
2
o |ut+Dp o VU o wu
E; = w , F; = 0?1 e G; = wo (3.45)
UwW VW w? + p

The viscous fluxes in the z, y and z directions, E,, F, and G, respectively, are defined as follows

0 0 0

E,= ||, Fo,=|""|, G,=|"" (3.46)
Tay Tyy Tzy
Trz Tyz T2z

Since we made the assumptions of an incompressible flow, appropriate nondimensional terms and
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INCOMPRESSIBLE VISCOUS FLOW CASE

expressions for shear stresses must be used, these expressions are given as follows

2 Ou

Tox = R_EL%
2 0Ov
Tyy = ReL dy
2 ow

T. = —
** " Rey, 0z

1 ou
Toy = R_eL <a—y+
1 ow
Tez = R_eL (a—l—

1 ow n
Tys = — | —
Y Rer \ Oy

Tyz = Ty
Tze = Taz

Tzy = Tyz

@
ox

(3.47)
)

@
0z

Following the procedure presented in the previous section, the nondimensional incompressible
Navier-Stokes system of equations eq. 3.43 in the computational space C is expressed as

0Q OE; OF; 0G;

OB,

OF, 0G,

ot T ee Ty Tac T ee Tan T (345
where
5 Q
Q= 7.
A 1
E J_ (fxE + fyF + gz )
~ 1
F,= J_ ("hE +nyFi+ 77sz)
A 1
G; = 7 (GEi+ Fi+ .Gy) (3.49)
- 1
E, :J_(gac v+§yF +&.G )
A 1
F,= J_ (anv + 77va + nva)
A 1
G'v = J_ (éxEv + Cva + CZG'U)

In eq. 3.49, Q is the vector containing the primitive variables and E,-, f“z and Gz are the vectors
containing the inviscid fluxes in the &, 1 and ¢ directions respectively, and are given by
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[0 U
Q—i U & 1 fuU+pés
e v g U+ |
- Pt (3.50)
\% W
F»:i uV + png - _i uW + p(y
Cde WV Ay | Y Je |V DGy
lwV + pn, wW + p(,
where U,V and W are the contravariant velocities
U=u& +0v8y +w,, V=ung+vny+wn, W=ul+v( +wl,
The shear stresses given by eq. 3.47 expressed in the computational space C are as follow
Tow = R_eL (Exug + Npuy + Gpue)
Tyy = ReL (Eyve + myvy + Gyue)
Tay = Ter (&xwe + nwy + Cwe)
Toy = —5— (§yue + nyuy + Cuue + Exve + nevy + Cve)
Rey, (3.51)
Taz = —— (&g + Nty + Cuc + Eawe + Mpwy + Gwe)
RGL
Tyz = Rep (&ywe + nywy + Gue + Eve + nvy + Cue)
Tye = Ty
Tzx = Txz
Tzy = Tyz

Substituting the expressions for the shear stresses given by eq. 3.51 into the viscous flux vectors
E,, F, and G, (given by eq. 3.49) in the &, and ( directions respectively, we obtain the following

equations



3.4. SIMPLIFICATION OF THE NAVIER-STOKES SYSTEM OF EQUATIONS:
INCOMPRESSIBLE VISCOUS FLOW CASE

0
B 1 ajug + bruy — crvy + cowy + boue — dive + dowe
Y JeRer | a1ve + ety + bivy — cswyy + diug + bave — dswe
| a1Wwg — CoUy + C3Uy + blwn — dQUC + dgvg + waC
i 0
P 1 aguy + biug + c1ve — cowge + baue — eyve + eswe (3.52)
Y JeRep | aguy — crug + bivg 4 czwe + eque + byve — egwe ’
| 2wy, + coug — c3v¢ + brwe — eaue + e3ve + bawe
i 0
G 1 aszu¢ + b2u5 + d1U§ - dzwg + bgun + e1vy — e2wy
Y JyReq, azve — cqug + bave + dzwe — eruy,y + b3v, + ezwy,
|azwe + daug — d3ve + bawg + cguy — ezvy, + bawy,
where
a=E+6+EE,  a=ntun+nl,  a=0G++C
by = &umy + fyny + &1z, by = £:Co + gyCy +&.¢,
b3 = CaMz + Cyny + CaMzs (3 53)
c1 = gxny - nzgya c2 = Nz&: — &, C3 = gynz - nygm
dl = gwgy - ngya d2 = ngz - ngza d3 = gyCz - Cyg,m
€1 = 77m<y - Cmnya ez = (znz — N2, €3 = "71/(2: - Cynz
equations eq. 3.52 and eq. 3.53 written in a more compact way, can be expressed as
i 0
b L (V€ VO ue+ (V- Vn)uy+ (VE- VO ug
" JeRer | (V€ V& ve + (VE-Vn) vy + (V- V() v
L(VE -V we + (VE- V) wy + (VE- V() we
- 0 _
F - 1 (VTI : Vﬁ) ug + (VU ’ Vﬁ) Uy + (VTI : VC) U¢ (3.54)
" JeRer | (V- V&) ve + (V- V) vy + (V- V() v
(V- V&) we + (V- Vi) wyy + (Vi - V() we |
N 0 Z
G L (VC YO ue+ (V¢ Vi) uy + (V€ VO ue
" JeRer | (VC-VE e + (V- V) vy + (V(- V) v
(V- VE) we + (V- V) wy, + (V- V() we ]

Equation eq. 3.48, together with eq. 3.49, eq. 3.50 and eq. 3.54, are the governing equations of an
incompressible viscous flow written in strong conservation form in the transformed computational
space C. Hence, we look for an approximate solution of this set of equations in a given domain
D with prescribed boundary conditions 8D and given initial conditions DU. So far, we have just
presented the governing equations; in the following chapters the grid generation method as well
as the numerical scheme for solving the governing equations will be explained.



