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Abstract

The aim of this dissertation is to contribute to a better comprehension of the mechanism of flap-
ping airfoils/wings propulsion and the associated unsteady acrodynamics, independently of their
possible practical applications. We describe an accurate and stable numerical method to numeri-
cally solve the incompressible Navier-Stokes equations, which, used together with the overlapping
grids method and to the numerical tools implemented, constitutes a very powerful tool to solve
fluid dynamics problems with fixed and moving/deforming boundaries in two and three space di-
mensions. The two-dimensional results are presented for airfoils undergoing heaving and coupled
heaving-and-pitching motion. The interest here is to determine the values of flapping frequency
and flapping amplitude best suited for flapping flight, in terms of maximum propulsive efficiency
and thrust production. We also study the influence of airfoil cambering and airfoil flexibility
on the aerodynamic performance. Finally, three-dimensional rigid finite-span wings undergoing
heaving, coupled heaving-and-pitching and root-flapping motion modes are investigated, with fo-
cus on the wake topology and aerodynamic performance, and their dependence on the flapping
motion parameters. We also establish the best criteria for vortical structures identification and
assess whether the assumption of two-dimensionality has some validity in three-dimensional cases.



