- Workflow of a CFD simulation:
 - Problem definition.
 - Geometry generation.
 - Mesh generation and mesh quality assessment.
 - Case setup:
 - Boundary conditions and initial conditions.
 - Physical models (many models but turbulence is the most important).
 - Selection of numerical schemes and stabilization options (many options available).
 - Run time parameters (timestep, iterations, saving frequency, final time, monitors).
 - Case parametrization if running and optimization case or space exploration.
 - And so on.
 - Launch the simulation using the available resources (parallel computing, GPUs, cloud computing, storage).
 - Monitor the solution (residuals and integral quantities) and co-processing.
 - Postprocessing Qualitative and quantitative assessment of the results.
 - Report Conclusions Comparison with experimental results Critical assessment of the results.

• Geometry generation.

• Mesh generation.

• Mesh generation.

• Definition of boundary surface patches – Boundary condition surfaces.

- Setting up the case. Which involves definition of the boundary conditions (numerical values), initial conditions, physical models, monitors, saving frequency, numerics, and so on.
- Launch and monitor the solution.

