Computational aerodynamics Introduction to aerodynamic design and analysis

- Anything with an engine powerful enough will fly.
- Adding wings and using the right incidence angle (or angle of attack) will help a lot.
- Our task in aerodynamics is to make the body stay aloft by generating the required lift, and to make it happen in an efficient way, that is, with low drag.
- Where low drag translates into reduced fuel consumption and extended operating range, among many things.

Photo credit: https://www.programmes.uliege.be/cocoon/20172018/cours/APRI0004-1.html Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose.

Photo credit: https://johneaves.wordpress.com/2009/08/25/its-a-mish-mash-tuesday/ Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose.

Introduction

- Then things get more complicated as everything becomes multidisciplinary:
 - Environmental concerns, that is, less pollutant emissions and decreased perceived external noise (among many ecological concerns).
 - Operational costs, such as, fuel consumption, operating range, endurance, and payload.
 - Stability, controllability, and improved flight performance (flight mechanics and flight dynamics).
 - Good handling qualities.
 - Safety concerns and human behavior.
 - Regulatory requirements.
 - Operational requirements.
 - Aeroelasticity, structural design, and structural weight.
 - Maintainability and reliability.
 - And so on.

Introduction

- Hereafter, we will focus on airfoils and wings.
- However, the principles that we are going to study can be applied to any field where aerodynamics/hydrodynamics is relevant. For example,
 - Downforce generation for high performance cars.
 - Automotive applications Car, buses, and trucks.
 - Trains and mass transportation systems.
 - Naval applications.
 - Compressors and turbines.
 - Wind turbines.
 - Sports aerodynamics.
 - Energy harvesting applications.
 - Civil engineering Bridges, buildings, and skyscrapers.
 - And many more.
- In some applications, you might be interested in changing the sign of a force or zeroing a force, e.g., generation
 of negative lift (downforce) or mitigating lateral forces.