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Modelling the crack tip process zone in ductile and 
quasi-brittle materials.
Development of cohesive zone models.
The problem of snap-back instability in structural
engineering.
Uniaxial tensile loading of slabs.
Three-point bending beams.
Bifurcation of the global equilibrium (Griffith instability).
Size-scale effects on strength and toughness.
Size-scale transition towards LEFM.
Size-scale transition towards ultimate strength collapse.
Fractal Cohesive Crack Model.



ModellingModelling the crack the crack tiptip processprocess zone in zone in 
ductileductile and and quasiquasi--brittlebrittle materialsmaterials

(a) CRACK TIP PROCESS ZONE



(b) DAMAGE ZONE in front of the real crack tip

(joint research programme between
Lehigh University and University of Bologna, 1982-83)



(c) COHESIVE FORCES behind the fictitious crack tip

(joint research programme between ENEL-CRIS 
Milano and University of Bologna, 1983-86)



Dugdale (1960) crack-tip plastic zone (metals)

Barenblatt (1962) cohesive atomic forces (crystals)

Bilby, Cottrell crack-tip plastic zone (metals)
& Swinden (1963) 

Rice (1968) crack-tip plastic zone (metals)

Smith (1974)              analysis of different cohesive laws (metals) 

Dugdale D.S. (1960) Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8:100-
114.
Barenblatt G.I. (1962) The mathematical theory of equilibrium cracks in brittle fracture, Adv. 
App. Mech. 7:55-129.
Bilby B.A., Cottrell A.H., Swinden, K.H. (1963) The spread of plastic yield from a notch, 
Proc. R. Soc. London A272:304-314.
Rice J.R. (1968) A path independent  integral and the approximate analysis of strain 
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DevelopmentDevelopment of of CohesiveCohesive Zone Zone ModelsModels



Hillerborg et al. Fictitious Crack Model, for the analysis of
(1976) the crack-tip process zone (concrete)

Carpinteri Cohesive Crack Model, for the analysis of
(1984-1989) snap-back instabilities (quasi-brittle mat’s)
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Maier G. (1966) Behaviour of elastic–plastic trusses with unstable bars, ASCE J. Engng. 
Mech., 92:67-91.
Maier G., Zavelani A., Dotreppe J.C. (1973) Equilibrium branching due to flexural 
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Strain softening represents a violation of the Drucker’s
Postulate. As a consequence, the following phenomena may 
occur: 

• Loss of stability in the controlled load condition 
(snap-through); 

• Loss of stability in the controlled displacement 
condition (snap-back). 

• Dependence of the results on the type of mesh 
used in the numerical analyses.

The The problemproblem of of snapsnap--backback instabilityinstability



von Kármán T., Tsien H.S. (1941) The buckling of thin cylindrical shells under axial 
compression, J. Aero. Sci. 8:303-312. 
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Snap-back instabilities in thin shells



R.L. Carlson, R.L. Sendlebeck and N.J. Hoff (1967) Experimental studies of the buckling
of complete spherical shells, Exp. Mech. 7:281-288.
A. Kaplan (1974) Buckling of Spherical Shells, In: Thin Shell Structures, Theory, 
Experiment, and Design, Y.C. Fung and E.E. Sechler (eds.), Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 248-288. 



UniaxialUniaxial tensiletensile loadingloading of of slabsslabs
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Rearranging of Eqs. (a) and (c) we have:
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Softening occurs when dδ/dσ < 0:
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Global stress-displacement response:

c uw lε> c uw lε= c uw lε<
(softening) (snap-back)

Carpinteri A. (1988) Snap-back and hyperstrength in lightly reinfoced concrete 
beams, Magazine of Concrete Research, 40:209-215. 

del Piero G., Truskinovsky L. (1998) A one-dimensional model for localized and 
distributed failure, Le Journal de Physique IV, 8:95-102.
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(snap-back condition)
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Introducing the energy brittleness number (Carpinteri, 1985):

Not the single values of parameters sE, εu and λ, but only their
combination B=sE/εuλ is responsible for the global brittleness
or ductility of the structure considered.
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Fracture energy GF (Jc integral)

= dissipated energy within

the volume

= dissipated energy

over the crack surface
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Dissipated energy = × Area × l  +         × Area

Dissipated energy / Area = × l  +



• Three Point Bending (TPB) test: specimen behaviour is 
brittle (snap-back) for:

• Low fracture toughness, GF,
• High tensile strength, σu, 
• Large structural size, h.
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• This behaviour is synthetically captured by the 
Brittleness Number sE:  
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• The ductile-brittle transition can be described by the 
Cohesive Crack Model.

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. 
Mech. Phys. Solids 37:567-582.

ThreeThree--pointpoint bendingbending beamsbeams
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• Considering a TPB beam, we focus onto two limit situations: 

(1) a = 0:  uncracked beam.

(2) a = h:  limit situation of complete fracture with  
cohesive forces.
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Nondimensional load

Nondimensional deflection



• Case 1: a = 0
The load-deflection relation is linear:                 ,  for3

4
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• Case 2: a = h
The following equilibrium scheme can be considered: 

221
6

⎛ ⎞λ
= ⎜ ⎟ε δ⎝ ⎠

%
%

E

u

sP

2 3≤%P

( )≤x h

( )σ ≤ σu

The load-deflection relation is hyperbolic: 
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• When the two domains are disjoint, the P−δ curve is regular;

• When they are partially overlapped, it is well-founded to
suppose them connected by a curve with highly negative or 
even positive slope (snap-back).

• Snap-back is thus expected when δ1>δ2                                          .                  

• By transforming the load bounds into deflection bounds, a 
stability criterion for elastic-softening beams is obtained:
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Unstable behaviour and catastrophical events when:

The relative brittleness of a structure is dependent on 
loading condition and external constraints.



Fictitious crack length

Arne Hillerborg

A. Hillerborg, M. Modéer and P.E. 
Petterson, Analysis of crack formation 
and crack growth in concrete by means 
of fracture mechanics and finite 
elements, Cement and Concrete 
Research, Vol. 6, 773-782, 1976.

The Fictitious Crack Model
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Carpinteri A. (1985) Interpretation of the Griffith instability as a bifurcation of the global 
equilibrium. In: S.P. Shah (Ed.), Application of Fracture Mechanics to Cementitious
Composites (Proc.  NATO Adv. Res. Workshop, Evanston, USA, 1984), 284-316. Martinus
Nijhoff Publishers, Dordrecht.

FRacture ANAlysis Code 
(ENEL-CRIS Milano and University of Bologna)





where:  {w} = vector of the crack openings

[K] = matrix of the coefficients of influence (Fi = 1)

{F} = vector of the closing forces

{C} = vector of the coefficients of influence (P = 1)

Fi = 0, for i = 1, …, (k–1),  

wi = 0, for i = k, …, n.

{ } [ ]{ } { }w K CF P= +

2n equations

2n unknowns: {w}, {F}



When the process zone is present, between nodes j and l:
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(2n + 1) equations

(2n + 1) unknowns: {w}, {F}, P

N.B.: The driving-parameter is the fictitious crack-tip 
position (Crack Length Control Scheme).



Load-deflection diagrams
(h=15 cm, notched specimens)

(concrete)

h δ

P

a0/h=0.0 (uncracked specimen)



(snap-back)

(mortar)

0 / 0.25    d /d 0a h P δ≤ ⇒ >

a0/h=0.0



BifurcationBifurcation of the of the globalglobal equilibriumequilibrium
((GriffithGriffith instabilityinstability))

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. Mech. 
Phys. Solids 37:567-582.



With a CMOD-controlled loading process, it is possible to
follow the virtual softening branch BC.

CMOD



The effect of the structural size-scale

P P

δδ

P P

δ δ

h=10cm h=20cm

h=40cm

h=80cm

Note the effect of the initial crack length a0: the deeper is the 
crack, the more ductile is the behaviour. 



• Snap-back condition:

• In a nondimensional plane, the mechanical behaviour is 
governed by the energy brittleness number (Carpinteri, 1985).
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• The ratio PCohes/PL.E.F.M. can be plotted vs. the nondimensional size, 1/sE. 
• This ratio represents the ratio of the fictitious fracture toughness to the 

true fracture toughness (considered as a material constant). This ratio 
converges to unity for very small values of sE. 

• The true fracture toughness, KIC, can be obtained with only very large 
specimens. 
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SizeSize effectseffects on on fracturefracture toughnesstoughness



• The ratio PCohes/PL.E.F.M. can be plotted against the nondimensional
size, 1/sE. 

• This ratio represents the ratio of the apparent tensile strength to 
the true tensile strength (considered as a material constant). This 
ratio converges to unity for very small values of sE. 

• The true tensile strength, σu, can be obtained with only very large 
specimens. 

Cohes f

U.S. u

,P
P

σ
σ

0 0.00a
h

=

1 Es

310u Fhσ G

SizeSize effectseffects on on tensiletensile strengthstrength



 Es → ∞ ⇒

2

2

u
htσ

6

2

u
htσ

4

2

u
htσ

max u( )
2
hM thσ= ×

2
h

uthσ



SizeSize––scalescale transitiontransition towardstowards LEFMLEFM

Catastrophe manifold

h (a0/h=const)
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a0/h=0.1

a0/h=0.1 – 0.5

a0/h=0.5

Specimen width, h (cm)
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Comparison with the BCS cohesive model

Carpinteri A. (1986) Cohesive crack tip modelling of plastic fracture, in Fracture 
Control of Engineering Structures (Proc. 6th European Conf. on Fracture, 1986), 
Eds. H.C. van Elst, A. Bakker, EMAS, Sheffield, 75-82.



Fictitious crack depth at the maximum load (am/b)
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SizeSize--scalescale transitiontransition towardstowards ultimate ultimate 
strengthstrength collapsecollapse
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The nominal tensile strength, ft, can be evaluated by 
means of the uniaxial tensile test:

u
t

Pf
t h

=

Pu = maximum load, t = thickness of the specimen.

A scale-dependent value of the tensile strength, σu, is obtained by a 
three-point bending test, using the following expression:

2
6 u

u
M

t h
σ =

where:

Mu = maximum bending moment in the 
middle cross section,

t = thickness of the beam.

h

h



ComparisonComparison withwith design design codescodes



The role of the brittleness number

( )F 0h a t= −G high fracture energy GF      
low tensile strength σu      
small size h

large initial crack depth a0/h
low slenderness l/h

low fracture energy GF        
high tensile strength σu               
large size h

small initial crack depth a0/h
high slenderness l/h
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INITIALLY CRACKED INITIALLY UNCRACKED

I ICK K= umax σσ =
(stress-singularity) (Navier stress-distribution)

h
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Brittleness number (ENERGY)

Irwin’s relationship

Relationship beetween s and sE

Carpinteri A. (1986) Limit analysis for elastic-softening structures: Scale and 
slenderness influence on the global brittleness, in Structure and Crack 
Propagation in Brittle Matrix Composite Materials (Proc. Euromech Colloquium
204, Warsaw, Poland, 1985), Eds. A.M. Brandt, I.H. Marshall, Elsevier Applied
Science, London, 497-508. 



• These three fractal domains are the cause of the size-scale 
effects on the nominal values of tensile strength σu, critical 
deformation εc and fracture energy GF (Carpinteri, 1994).

Resistant cross-
section: lacunar fractal 
of dimension D=2–dσ

Deformation bands: 
lacunar fractal of 

dimension D=1–dε

Damage domain: 
invasive fractal of 

dimension D=2+dG
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1 d
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FractalFractal CohesiveCohesive Crack ModelCrack Model



where:    

• The fractal tensile strength σu
* is 

the true scale-invariant material 
constant and presents fractal 
physical dimensions:

• By renormalizing:

( )22
0 , .d

resA b A b σ−∗= =

0u u resF A A∗ ∗= σ = σ

.d
u u b σ−∗σ = σ

• Analogous reasoning gives, for critical deformation εc and 
fracture energy GF respectively:

d
F F b∗= GG Gd

c c b ε−∗ε = ε

• The three power-law exponents are not independent:

1d d dσ ε+ + =G
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Carpinteri and Ferro, 1994 
The three size-
dependent curves 
collapse onto a 
unique one!



The five size-
dependent curves 
collapse onto a 
unique one!

Van Mier and van Vliet , 1999
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LeggiLeggi costitutivecostitutive del del clscls: : Overlapping Crack Model

Van Mier 1984; Dahl e Brincker 1989; Van Vliet e Van Mier 1996; 
Jansen e Shah 1997; Suzuki et al. 2006.

Quasi-brittle materials show the phenomenon of strain localization 
in compression when the elastic limit is overcome.

We can define a crushing energy (per unit surface), as the area 
below the softening curve in the σ – w diagram.

OverlappingOverlapping crack modelcrack model



(Ferrara and Gobbi, 1995)

The crushing energy is a true material parameter, as can be 
demonstrated from the application to uniaxial compressive 
tests of concrete specimens with different slenderness 
and/or size-scale.



The slenderness-
and scale-dependent 
curves collapse onto 
a narrow band!



1 mmc
cw ≅

In analogy with the Cohesive Crack Model, the Overlapping Crack Model
can be defined by a couple of constitutive laws:

30 60 N/mmF = ÷cG

Carpinteri A., Corrado M., Paggi M., Mancini G. (2007) Cohesive versus overlapping 
crack model for a size effect analysis of RC elements in bending, In: Design, 
Assessment and Retrofitting of RC Structures, Vol. 2 of FraMCoS-6, Catania, Italy, 
Taylor & Francis, 655-663.



Nodal force vector

{ } [ ]{ } { }w mF K w K M= +

{ }F

[ ]wK

{ }w

{ }mK

M

Stiffness matrix related to the nodal displacements (wi = 1)

Horizontal nodal displacements vector

Influence coefficients vector for the bending moment

Applied bending moment

Equation set consisting in n
equations:

22nn+1 unknowns: +1 unknowns: { } { },     and  F w M

NumericalNumerical algorithmalgorithm forfor RC RC beamsbeams in in bendingbending

h



Additional equations:
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h = 200, 400, 600 mm
L/h= 10
ρt = 0.13% ÷ 1.71%
ρc = 0.12% ÷ 0.5%

ft = 3 MPa
fc = 30 MPa
GF = 0.065 N/mm
GF

c = 30 N/mm

GEOMETRY

CONCRETE

ExperimentalExperimental assessmentassessment of the of the proposedproposed modelmodel

Bosco and Debernardi (1992)



h = 200 mm

Bending moment-rotation diagrams as functions of the 
reinforcement percentage and of the beam size

Numerical
Experimental



h = 400 mm

Numerical
Experimental



h = 600 mm

Numerical
Experimental



SnapSnap--backback instabilityinstability in in micromicro--structuredstructured compositescomposites

Carpinteri A., Paggi M., Zavarise G. (2005) Snap-back instability in micro-
structured composites and its connection with superplasticity, Strength, 
Fracture and Complexity, 3:61-72.

The macroscopic responses, σ1 vs. ε1, with vf =const are compared

u1 u1

R R

u1 u1



Stress-strain curves for different values of the brittleness number:
snap-back instability occurs for inclusions with d > 7 μm
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Carpinteri A., Lacidogna G., Paggi M. (2007) Acoustic emission monitoring 
and numerical modeling of FRP delamination in RC beams with non-
rectangular cross-section, RILEM Mat. Struct. 40:553-566.

SnapSnap--back instability in the delamination of back instability in the delamination of 
retrofitted beamsretrofitted beams

Numerical vs. experimental results



Carpinteri A., Paggi M. Analysis of snap-back instability in the delamination 
of FRP-strengthened beams, ASCE J. Engng. Mech., to appear.

The effect of the mechanical percentage of FRP



The The effecteffect of contact on the decohesion of of contact on the decohesion of 
layeredlayered beamsbeams with with interfacialinterfacial defectsdefects
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Carpinteri A., Paggi M., Zavarise G. (2007) The effect of contact on the 
decohesion of laminated beams with multiple microcracks, International 
Journal of Solids and Structures, 45:129-143. 



Typical experimental unstable
response due to nonuniform bonding

Numerical results
(10 periodically distributed defects)


