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Modelling the crack tip process zone in ductile and
guasi-brittle materials.

e Development of cohesive zone models.

® The problem of snap-back instability in structural

engineering.

Uniaxial tensile loading of slabs.

Three-point bending beams.

Bifurcation of the global equilibrium (Griffith instability).
Size-scale effects on strength and toughness.
Size-scale transition towards LEFM.

Size-scale transition towards ultimate strength collapse.

Fractal Cohesive Crack Model.



Modelling the crack tip process zone in

ductile and quasi-brittle materials

(a) CRACK TIP PROCESS ZONE




(b) DAMAGE ZONE in front of the real crack tip

Young's Modulus E

(Joint research programme between
Lehigh University and University of Bologna, 1982-83)



(c) COHESIVE FORCES behind the fictitious crack tip

(joint research programme between ENEL-CRIS
Milano and University of Bologna, 1983-86)



Development of Cohesive Zone Models

Dugdale (1960) crack-tip plastic zone (metals)

Barenblatt (1962) cohesive atomic forces (crystals)

Bilby, Cottrell crack-tip plastic zone (metals)

& Swinden (1963)

Rice (1968) crack-tip plastic zone (metals)

Smith (1974) analysis of different cohesive laws (metals)

Dugdale D.S. (1960) Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8:100-
114.

Barenblatt G.I. (1962) The mathematical theory of equilibrium cracks in brittle fracture, Adv.
App. Mech. 7:55-129.

Biloy B.A., Cottrell A.H., Swinden, K.H. (1963) The spread of plastic yield from a notch,
Proc. R. Soc. London A272:304-314.

Rice J.R. (1968) A path independent integral and the approximate analysis of strain
concentration by notches and cracks, J. Appl. Mech. 31:379-386.

Smith E. (1974) The structure in the vicinity of a crack tip: a general theory based on the
cohesive zone model, Engng. Fract. Mech. 6:213-222.



Hillerborg et al. Fictitious Crack Model, for the analysis of

(1976) the crack-tip process zone (concrete)
Carpinteri Cohesive Crack Model, for the analysis of
(1984-1989) snap-back instabilities (quasi-brittle mat’s)

Hillerborg A., Modeer M., Petersson P.E. (1976) Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite element. Cem. Concr.

Res. 6: 773-782.

Carpinteri A. (1985) Interpretation of the Griffith instability as a bifurcation of the global
equilibrium. In: S.P. Shah (Ed.), Application of Fracture Mechanics to Cementitious
Composites (Proc. of a NATO Adv. Res. Workshop, Evanston, USA, 1984), 284-316.
Martinus Nijhoff Publishers, Dordrecht.

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. Mech.
Phys. Solids 37:567-582.

Carpinteri A. (1989) Decrease of apparent tensile and bending strength with specimen
size: two different explanations based on fracture mechanics, Int. J. Solids Struct.
25:407-429.

Carpinteri A. (1989) Post-peak and post-bifurcation analysis on cohesive crack
propagation. Engng. Fract. Mech. 32:265-278.



The problem of snap-back instability

Strain softening represents a violation of the Drucker’s
Postulate. As a consequence, the following phenomena may

OCcCur.

 Loss of stability in the controlled load condition
(snap-through);

e Loss of stability in the controlled displacement
condition (snap-back).

e Dependence of the results on the type of mesh
used in the numerical analyses.

Maier G. (1966) Behaviour of elastic—plastic trusses with unstable bars, ASCE J. Engng.
Mech., 92:67-91.

Maier G., Zavelani A., Dotreppe J.C. (1973) Equilibrium branching due to flexural
softening, ASCE J. Engng. Mech., 89:897-901.

Carpinteri A. (1989) Softening and snap-back instability in cohesive solids, Int. J. Num.
Methods Engng., 28:1521-1537.



Snap-back instabilities in thin shells
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von Karman T., Tsien H.S. (1941) The buckling of thin cylindrical shells under axial
compression, J. Aero. Sci. 8:303-312.



0<a<35
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© = Complete Spherical Shell
Bifurcation Buckling Pressure

—————— = Nonlinear Prebuckling ® = Spherical Cap Bifurcation
' Pressure

R.L. Carlson, R.L. Sendlebeck and N.J. Hoff (1967) Experimental studies of the buckling
of complete spherical shells, Exp. Mech. 7:281-288.

A. Kaplan (1974) Buckling of Spherical Shells, In: Thin Shell Structures, Theory,
Experiment, and Design, Y.C. Fung and E.E. Sechler (eds.), Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 248-288.




Uniaxial tensile loading of slabs

= <
) Eg, f0r8_8u \ (a)
azau(l—lj, forw<w,
o =0, forw>w,




G)

(b)
©

(a) No damage (b) Strain localization (c) Complete separation

s=21, fore<eg,
ok

5=Zl+w=21+w|1-2|  forw<w,
E E o

o =0, for o > w,



Rearranging of Eqgs. (a) and (c) we have:
0

(a) O'=E7, for o <e,l
(c) o=0, for o > w,
Y
(b) 5=wc+0(———cj
E o,
Softening occurs when dé/do < O:
(L—&j<0 = w,>g,l (softening)
E o,

Snap-back takes place when dé/dc > O:

(L_szo = w,<el (snap-back)
E o,



Global stress-displacement response:

w, > ¢g,l w, < gl

(softening) (snap-back)

Carpinteri A. (1988) Snap-back and hyperstrength in lightly reinfoced concrete
beams, Magazine of Concrete Research, 40:209-215.

del Piero G., Truskinovsky L. (1998) A one-dimensional model for localized and
distributed failure, Le Journal de Physique IV, 8:95-102.



W, < gul (snap-back condition)

(wc/2h) . i’
g, (I/h) ~ 2
Introducing the energy brittleness number (Carpinteri, 1985):
§ . = wc _ gF
b= =
2h o h
s, 1 .
B = 7 < — (snap-back condition)
81/{

Not the single values of parameters sg, g, and A, but only their
combination B=sc/g A Is responsible for the global brittleness

or ductility of the structure considered.




Fracture energy Gg (J. Integral)
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Three-point bending beams

« Three Point Bending (TPB) test: specimen behaviour is
brittle (snap-back) for:

* Low fracture toughness, G,
» High tensile strength, o,
e Large structural size, h.

 This behaviour is synthetically captured by the
Brittleness Number sg:

Gr
Sy =———
oo h

 The ductile-brittle transition can be described by the
Cohesive Crack Model.

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J.
Mech. Phys. Solids 37:567-582.



« Considering a TPB beam, we focus onto two limit situations:

(1) a=0: uncracked beam.

(2) a = h: limit situation of complete fracture with
cohesive forces.




« Casel:a=0
The load-deflection relation is linear: P=—3& , for (6<o,)

« Case2:a=h
The following equilibrium scheme can be considered:

The load-deflection relation is hyperbolic:

- 1 s\° 2 ~
P=g — |, for P<2/3  (x<h)

Both equations have the same upper limit: P<2/3 .



« By transforming the load bounds into deflection bounds, a
stability criterion for elastic-softening beams is obtained:

. ~ s\
0L, =— (@) >0, =-—=

2)

6 2¢

« When the two domains are disjoint, the P-5 curve is regular;

« When they are partially overlapped, it is well-founded to
suppose them connected by a curve with highly negative or

even positive slope (snap-back).
e Snap-back is thus expected when §,>6, = B = S_k <

0y
3



Unstable behaviour and catastrophical events when:

The relative brittleness of a structure is dependent on
loading condition and external constraints.



The Fictitious Crack Model

Arne Hillerborg

Fictitious crack length

A. Hillerborg, M. Modéer and P.E.
Petterson, Analysis of crack formation
and crack growth in concrete by means
of fracture mechanics and finite
elements, Cement and Concrete
Research, Vol. 6, 773-782, 1976.



FRacture ANAlysis Code
(ENEL-CRIS Milano and University of Bologna)
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Carpinteri A. (1985) Interpretation of the Griffith instability as a bifurcation of the global
equilibrium. In: S.P. Shah (Ed.), Application of Fracture Mechanics to Cementitious
Composites (Proc. NATO Adv. Res. Workshop, Evanston, USA, 1984), 284-316. Martinus
Nijhoff Publishers, Dordrecht.
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wp=[KRFj+HCHP

where: {w} = vector of the crack openings
[K] = matrix of the coefficients of influence (F;,=1)
{F} = vector of the closing forces
{C} = vector of the coefficients of influence (P =1)
F.=0, fori=1,..., (k-1),

w;=0, fori=Kk,...,n.

2n equations

2n unknowns: {w}, {F}



When the process zone is present, between nodes j and I:

(F =0, fori =1, ..., (j -1),
< i:Fu(l_ﬁ)’ forl:]; ---111

WC
w, =0, fori=|,..., n.

(2n + 1) equations

(2n + 1) unknowns: {w}, {F}, P

N.B.: The driving-parameter is the fictitious crack-tip
position (Crack Length Control Scheme).



Load-deflection diagrams
(h=15 cm, notched specimens)

a,/h=0.0 (uncracked specimen)
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a,/h<0.25 = dP/d6>0  (snap-back)



Bifurcation of the global equilibrium
(Griffith instability)

OA ascending branch, dP/dd >(
AB softening branch, dP/d§ <(

BCY = softening branch, dP/dd >0
e R

B CD = softening branch, dP/dé <

]‘1% d.EF?Ecﬂon—control\ed

Loa.di.nca process

DEFLECTION, &

Carpinteri A. (1989) Cusp catastrophe interpretation of fracture instability, J. Mech.
Phys. Solids 37:567-582.




F

- %4-=0.05 kg/cm

%==0.01kg/cm

CMOD

5.0 7.5 10.0

OPENING OF NODE 1, w, [emx 10-3)

With a CMOD-controlled loading process, it is possible to
follow the virtual softening branch BC.



The effect of the structural size-scale

2000

1600
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Note the effect of the initial crack length a,: the deeper is the
crack, the more ductile is the behaviour.




 In a nondimensional plane, the mechanical behaviour is
governed by the energy brittleness number (Carpinteri, 1985).

0.09

10-5
10-3
~ 6270 10-5
~ 8359 10-5
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10-3
10-3
=1045 103
10-3

aglh =0 aslh = 0.5

e Snap-back condition: B S% = §; < 8? =11.6 x107

(e, = 0.87 x 10%; A = 4)



Size effects on fracture toughness

e The ratio P.,./P. erm CaN be plotted vs. the nondimensional size, 1/s..

e This ratio represents the ratio of the fictitious fracture toughness to the
true fracture toughness (considered as a material constant). This ratio
converges to unity for very small values of s..

100 %

" \ Linear Elastic
/7 Fracture Mechanics

Cohesive model

\ -
oo . 0 __
Limit analysis — =0.50

s,

4 5
. e I 3
Dimensionless size, ./ c, /gF 10

 The true fracture toughness, K,;, can be obtained with only very large
specimens.



Size effects on tensile strength

e The ratio P,../P_ern CaN be plotted against the nondimensional
size, 1/sg.

 This ratio represents the ratio of the apparent tensile strength to
the true tensile strength (considered as a material constant). This
ratio converges to unity for very small values of sg.

2

. . . 3
Dimensionless size, Ao, / G-10

 The true tensile strength, o, can be obtained with only very large
specimens.
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Size—scale transition towards LEFM

f
PCohes KIC

! true
PL.E.If.M. KIC

100 |

¥ Dimensionless size /1 G / Gy X 10°
/ h (ay/h=const)

Catastrophe manifold




Comparison with the BCS cohesive model

K,c =5.5 MN/m3?

(assumed fracture toughness
for BCS Model)

1 Limit Analysis
BCS Model

i experimental results
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Carpinteri A. (1986) Cohesive crack tip modelling of plastic fracture, in Fracture
Control of Engineering Structures (Proc. 6th European Conf. on Fracture, 1986),
Eds. H.C. van Elst, A. Bakker, EMAS, Sheffield, 75-82.



Fictitious crack depth at the maximum load (a,,/b)




LOAD

a,/h=0.1

FICTITIOUS CRACK DEPTH

AT THE MAXIMUM

DIMENSIONLESS SIZE, A1 Gu/gF

a,/h=0.3

FICTITIOUS CRACK DEPTH




Size-scale transition towards ultimate
strength collapse




The nominal tensile strength, f,, can be evaluated by
means of the uniaxial tensile test:

P,
fe=T

P, = maximum load, t = thickness of the specimen.

A scale-dependent value of the tensile strength, o, is obtained by a
three-point bending test, using the following expression:

6M,
(Tu = >

th
where:

M, = maximum bending moment in the
middle cross section,

t = thickness of the beam.



Comparison with design codes

Cohesive Model
— - -EC2 (2003)
—e— Model Code 90

0.8
beam depth [m]




The role of the brittleness number

f high fracture energy Gy
low tensile strength o,
| small size h

A

large initial crack depth a,/h
low slenderness |/h

[ low fracture energy Gy
high tensile strength ¢
_large size h

small initial crack depth ay /h
high slenderness I/h




INITIALLY CRACKED INITIALLY UNCRACKED

(stress-singularity) (Navier stress-distribution)



¢ =—1C Brittleness number (STRESS)
G, \Nh
Sp = th Brittleness number (ENERGY)
Gr 7 Irwin’s relationship

= (5, =5"¢ Relationship beetween s and s¢

Carpinteri A. (1986) Limit analysis for elastic-softening structures: Scale and
slenderness influence on the global brittleness, in Structure and Crack
Propagation in Brittle Matrix Composite Materials (Proc. Euromech Colloquium
204, Warsaw, Poland, 1985), Eds. A.M. Brandt, I.H. Marshall, Elsevier Applied
Science, London, 497-508.



Fractal Cohesive Crack Model

Resistant cross- Deformation bands: Damage domain:
section: lacunar fractal lacunar fractal of invasive fractal of
of dimension D=2—d_ dimension D=1-d, dimension D=2+d,

e These three fractal domains are the cause of the size-scale

effects on the nominal values of tensile strength o, critical
deformation g, and fracture energy G (Carpinteri, 1994).



By renormalizing:

F=0,4,=0 4

u res

where: 4 =pb°, A _ pl&ds)

res

The fractal tensile strength o,” is
the true scale-invariant material
constant and presents fractal
physical dimensions: ¢ =" b .

Analogous reasoning gives, for critical deformation g, and
fracture energy Gg respectively:

e, =e b G, =G b"
The three power-law exponents are not independent:

dy+d +d. =1
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Overlapping crack model

Quasi-brittle materials show the phenomenon of strain localization
In compression when the elastic limit is overcome.

We can define a crushing energy (per unit surface), as the area
below the softening curve in the o— w diagram.

Displacement

Van Mier 1984: Dahl e Brincker 1989: Van Vliet e Van Mier 1996;
Jansen e Shah 1997; Suzuki et al. 2006.



The crushing energy is a true material parameter, as can be
demonstrated from the application to uniaxial compressive
tests of concrete specimens with different slenderness
and/or size-scale.
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In analogy with the Cohesive Crack Model, the Overlapping Crack Model
can be defined by a couple of constitutive laws:

G, =30+60 N/mm

w, =1 mm

Carpinteri A., Corrado M., Paggi M., Mancini G. (2007) Cohesive versus overlapping
crack model for a size effect analysis of RC elements in bending, In: Design,
Assessment and Retrofitting of RC Structures, Vol. 2 of FraMCoS-6, Catania, Italy,

Taylor & Francis, 655-663.



Numerical algorithm for RC beams in bending

Equation set consisting in N
equations:

{F}  Nodal force vector

[KW] Stiffness matrix related to the nodal displacements (w;, = 1)
{w}  Horizontal nodal displacements vector
{Km} Influence coefficients vector for the bending moment

M Applied bending moment

2n+1 unknowns: {F}, {w} and M



Additional equations:

> N equations

F=0 for i=12,.,(Gj-1), i#r —
F;.:F;,uEl— W’tj for i=j .., (m-1)
WC
w; =0 for i=m,..., p
E:E,uﬁl_wi) for i=(p+1),...n
W o
F =F,6 o F =F

_~nodo n




Experimental assessment of the proposed model

Bosco and Debernardi (1992) GEOMETRY
h =200, 400, 600 mm
L/h= 10

=0.13% =+ 1.71%
0. =0.12% + 0.5%

P

[} 1
: {); q) 5
2, O s ' s
2 0.1H
2 4

BT
e CONCRETE
f.= 3 MPa
f =30 MPa

Ge = 0.065 N/mm
Ggf =30 N/mm




Bending moment-rotation diagrams as functions of the
reinforcement percentage and of the beam size

— Numerical
—— Experimental
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= Numerical
—— Experimental
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Snap-back instability in micro-structured composites
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The macroscopic responses, o, VS. g, With v,=const are compared

Carpinteri A., Paggi M., Zavarise G. (2005) Snap-back instability in micro-
structured composites and its connection with superplasticity, Strength,
Fracture and Complexity, 3:61-72.
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C s=1.58x10° d= 5.1 um
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Stress-strain curves for different values of the brittleness number:
snap-back instability occurs for inclusions with d > 7 um



Snap-back instability in the delamination of
retrofitted beams

Load [kN]

10 15

Mid-span deflection [mm]

Numerical vs. experimental results

Carpinteri A., Lacidogna G., Paggi M. (2007) Acoustic emission monitoring
and numerical modeling of FRP delamination in RC beams with non-
rectangular cross-section, RILEM Mat. Struct. 40:553-566.
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The effect of the mechanical percentage of FRP

Carpinteri A., Paggi M. Analysis of snap-back instability in the delamination
of FRP-strengthened beams, ASCE J. Engng. Mech., to appear.



The effect of contact on the decohesion of
layered beams with interfacial defects

, — I
o e
[

Carpinteri A., Paggi M., Zavarise G. (2007) The effect of contact on the
decohesion of laminated beams with multiple microcracks, International
Journal of Solids and Structures, 45:129-143.



— FE model: n=10

004 006 0.8
CMOD [m]

Numerical results Typical experimental unstable
(10 periodically distributed defects) response due to nonuniform bonding



