

POLITECNICO DI MILANO DIS – DEPARTMENT OF STRUCTURAL ENGINEERING

Y POLITECNICO DI MILANO

Centre for Computational Structural and Materials Mechanics

GMA08

THERMOELASTIC DISSIPATION IN MICRO SYSTEMS

Raffaele ARDITO Claudia COMI Alberto CORIGLIANO

Attilio FRANGI Thermoelastic dissipation in micro systems R.Ardito, C.Comi, A.Corigliano, A.Frangi - GMA08

Damping phenomena in MEMS

Thermoelastic dissipation in micro systems R.Ardito, C.Comi, A.Corigliano, A.Frangi - GMA08

QTED theory
QTED FE
Q exp

10

normalized eigenfrequency

100

Main results

1.E+06

1.E+05

1.E+04

1.E+03

0.01

0.1

Ø

 Q_{TED} computed by FE model and complex eigenvalue analysis: good agreement with experimental and theoretical results for microbeams

Data from Le Foulgoc et al., J. Micromech. Microeng., 2006.

• small scale phenomena interpreted by a non-local thermoelastic model, with internal characteristic length ℓ

Future prospects

- Further developments of the FE code:
 - validation with reference to devices other than microbeams
 - extension to 3D problems
 - implementation of the nonlocal material model

- Future works on dissipation for small scale devices:
 - exploration of different kinds of nonlocal thermoelastic models
 - Including dissipation due to "surface effects"