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Formulation of equilibrium problems in Mechanics
based on global energy minimization

Elv) = fﬂ w(Vo(z))dr — £(v)

E(w)=min{E(v) | veH, v(z)=1u(z)vrel)



Unfortunately, the approach based on global minimization does not go far beyvond linear

elasticity. Even for finite elasticity, there are still many open problems [1].

[1] JM Ball, Some open problems in elasticity, CISM Course Poly-, (Quasi-, and Rank-One

Convexity in Applied Mechanics (2007), CISM Courses and Lectures, to appear

For melastic

hodies, global minimization makes no sense because the solutions are not path-independent,

in the sense that different loading processes with the same final value do not determine, in

general, the same solution.



The incremental problem in small-strain plasticity

Vv =Vvr4+ VP

E=E®+EP
E*#(1 Efﬂ CVve(z)- Voe(z)dr — #(v)

EP(I\ — uy|) fﬂ Jo CVus () - Vi (z) dz dA




The incremental problem in small-strain plasticity

Vo=V +VoP

E=E®*+FEP
E€(v) = %fn CVve(z)- Vv (z)dxr — £(v)

EP(A = uy) = [ [, CVus(x) - Vi (x) do dX

t— ft loading process

t— U, solution of incremental problem
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Displacement and load increment
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Displacement and load increment
Vegg — Ve = -E'IE’:- + éf:ﬁt't' ﬁ{-EE:I

fo..—f. =gi + %Eﬁ‘r + o(g?)

First-order energy increment

8E,. = fﬂiﬂ?u:r(x] Vuf(x)dx —£.(0) = f.(u) + fﬂﬂ?u: (x) -‘Ft't]: (x)dx
= | ,CVul(x) - Vitedx — €. (2 ) — £ (u,)
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there 1s nothing to minimize in o E

Second-order energy increment

6°E, = _I- [IE'E'H'(I} Vit (x) + CVuf(x)- Vil (x) }dx
T r{“r} _ E*Et(ut:}_ E:{u:)



there 1s nothing to minimize in o E

Second-order energy increment

§2E, = [ ,(CVa(x) - Vit (x) + CVul(x)=Vii;(x))dx
) TS "
—XG.) — 20 i) — £ )




there 1s nothing to minimize in o E

Second-order energy increment

62E, = [ ,(CVid(x) - Vi (x) + CVuf

one 1S reduced to minimize

1(0.) = 3 o CViLf (x) - Vit (x)dx — Is:ﬁ:q




there 1s nothing to minimize in o E

Second-order energy increment

62E, = [ ,(CVus(x) - Vit (x) + CVul(x >ﬁﬁ{x\ﬂdx

one 1S reduced to minimize

Iie) = 3/ Vit () - Vit (¥)aix — £ i)

This is Hill’s principle of maximum plastic work

R Hill, The Mathematical Theory of Plasticity, Oxford Umiversity Press (1950). Reprinted
in Ohcford Classic Series, Clarendon Presa, Osford (199%)



What 1s remarkable 1s that the quantity to be minimized
1s the energy increment, which includes both elastic

energy and dissipation

B Fedelich, A Ehrlacher, Sur un principe de minimuwm concernant des matériaur a com-

portement indépendant du temps physigue, C. K. Acad. Sci. Pans 308/11, 1391-1394, 1984

A Mhelke, Energetic formulation of multiplicative elasto-plasticity using dissipation dis-

fances, Cont. Mech. Thermodyn. 15, 351-382, 2003




The evolutionary problem in fracture mechanics
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The evolutionary problem in fracture mechanics

Elv) = fﬂ u!{?l-‘{l“]l:] dr — f[:t-‘:]

v area S(v)

condition of {rreversibility of fracture

p<e A = S(u,) C S(uy)

G Franctort, J-J Marigo, Revisiting brittle fracture as an energy minimization problem,

J. Mech. Phys. Sohds 46, 1319-1342, 1995



The evolutionary problem in fracture mechanics

E(v) = Jow(Vv(z))dz — {(v)

v area S(v)

condition of {rreversibility of fracture

p<A == Suy,) < S(uy)

This condition transforms global minimization into
global minimization



An Iinconvenience of evolutionary global minimization

one-dimensional problem

E(v) =3 [ kv(z)dr + v #,

no loads
boundary conditions v(0) =0, v(l) = Al

for'@dz+ 3 [l(z) = Al



An Iinconvenience of evolutionary global minimization

one-dimensional problem

E(v) = 31! J"Ef kv'?(z) dx + v #u

no loads
boundary conditions v(0) =0, v(l) = Al

f{f“l?"[:l’]dl'—l- Z [v]{z) = 3l

necessary condition for a minimum: V’(X) = const

Ev)=gkl (811" [ Y #

reS(v)



Solution of the minimum problem for

Ew)=4k(B-11 Y ()" +7 %0

reS (v

Local minimizers

for#v=0: uX)=px, Eu)=%klg?,
for#tv>0: U'(x)=0, E()=y#,.



f — N-
fgiZV—O. uix)=p£x, EU)=%klg?
v>0: UXxX)=0, E(u)=y#u |

Ei

#u:D




it 13 wrong to conclude that the bar breaks at 7 = 4., Indeed, & = 5. 12 only
a situation 1 which two different configurations have the same energy, which 15 a global

minimum. But these configurations need not be accessible from each other.

/ #L_E
F#Fo=1
lnr. 11
. Fl,:l
0 3 3

a tran=ition from #£, = 0 to #, = 1 requures the finite energy «. while a continuation
along the branch #, = 0 only requires an infinitesimal energy [3]. The conclusion is that the
bar never breaks. This confirms the well known fact that Gnthth's theory 15 unable to predict

the fracture onset



This shows that an analysis based on global minimization 1s
unrealistic, and makes 1t evident that the solutions of the
evolutionary problem are, in general, only local minimizers
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Barenblatt’s regularization

o

Bu) =2 [y ku?(z)dr+ Y 8([u](z:))
=1

E,I. E,I.

——

Griffith

[u]

Barenblatt



Griffith’s and Barenblatt’s solutions

Fy =1

Fu=

#Fo=1

Griffith Barenblatt

Advantages of Barenblatt’s model:
e predicts fracture onset,
e shows the size effect.



Inconvenience of Barenblatt’s model:
e atunloading, 1t predicts a jump from #,=1 to #,=0,
in contradiction with the irreversibility of fracture.



This drawback of the model onginates from the fact that in the applications of

Barenblatt’s theory the energy of a jump 18 usually considered as a part of the free energy. A

more correct response 1s obtained by assuming that it 12 mstead a dizspated energy

rather than from specific constitutive assumptions, elastic unloading can

be obtained from imcremental mimmization




An adhesive contact problem with elastic unloading

punch

glue

rigid plane \/\




O A

u layer thickness
o adhesion force

U, state variable u.(t) = max {u(s), s<t}

c = f(u) equation of loading curve

g(u) = f(u)/u slope of unloading line g'(u) <0



E = E° + Ed

the elastic and the dissipa,tive parts of the energy

Ef(u ) = 2 glum) u?, = [ flv) dv — % glum) uZ,.




Incremental energy minimization
Given: t—u, u,yt),
Minimize
E,..,—E.=s38E.+>s%8%, + o(s?)
under the condition:
Fd=—Zg'(u,)uii, =0
which implies

U = U



b=

first-order minimization

g () 1t + glim

uu——g’um



] Lo

first-order minimization

0 () i + gL — } ¢ (1)

o2,



b=

first-order minimization

0 (tm) i+ T — 3 o () i




first-order minimization

OF, = 4 o (1) i+ Tl Gt — 4 (4m) i
g (g ) (0% — wo) iy =min , gy = 0

U<u, = iy =0

u=u, = Jd =0 nothingto minimize



second-order minimization

S, |y = —0 (ttm) i (i, — L)

Uy, (1L, — 21) = min

U = U

U,

u




second-order minimization

S, |y = —0 (ttm) i (i, — L)

solution:

-

u=>0 = i,

|
=

u<0d = u,




directions of loading-unloading, as given by
incremental energy minimization



Conclusions

e A number of inelastic, path-dependent problems
can be solved by incremental energy minimization.

e In general, the domain of the (incremental) energy
functional 1s not a linear space. The associated field
equations are piecewise linear. This determines the
different responses at loading and at unloading

e Sometimes the first-order incremental problem 1s
trivial, and the solution 1s provided by the second-
order problem.



