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Abstract

Experimental collapse tests on full and model scale masonry bridges have shown that fill and spandrels can strongly affect the collapse
behaviour and increase the load carrying capacity. To provide a strudasaiption of the arch—fi interaction effects, a two-dimensional
model of multi-span masonry bridges is develdji@which arches and piers are described as lse@ate up of elastic, non-tensile resistant
(NTR), ductile in compression material, and the fill as a Mohr—Couloratenal modified by a tension cuffainder plane strain conditions.
The load carryingcapacity is evaluated by a finite element limit analysis procedure based on the kinematic theorem. The fill domain is
discretized by triangular elementsnnected by interface elements in order to allowsille velocity discontiuities at conmon sides of
adjacent triangular elements; arches and piers are discretized by two-noded straight beam elements. By linearization of the limit domains in
the generalized stress space, a linear programming problem is formulated and upper bounds of the collapse loads are obtained. Two examples
are dscussed, concerning a real single-span bridge, tested up to collapse, and a multi-span bridge. The ideal ductility assumption implicit in
limit analysis is discussed by comparing the upper bound evaluations testlits obtained by incremental analysis in order to obtain the
validity limits of the upper bound limit analysis for the proposed model.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction Experimental results obtained from collapse tests on
full scale and model scale bridge4,q] have shown the

Several models for predicting the load carrying capacity limits of the arch modefor predicting the real behaviour
of masonry bridges have been developed either only Of bridges, highlighting the strong influence of fill and
considering the vaults, modelled as plane arches, or alsospadrels on the collapse mechanism and the load carrying
including arch—pier interain. In both cases the assumption capacity. The growing need for assessing the real capacity
of non-tensile resistant (NTR) material for masonry is Of existing bridges has moved the research on to improving
made. The solving procedures can be divided into two large the above-mentioned methods in order to take into account
categories corresponding to incremental methods and limitthe structural contribution oflfiand spandrels. Structural
analysis. The former can be referred to in Castiglidfjapd moddling of the arch—fill interaction in mechanism analysis
the latter in the works of Koohariar2] and Heyman [3], who has been considered by Crisfield and Pack@jrarjd Hughes
extended the plastic limit analys theorems to structural et al. [7], where the soil pressure is taken into account by
systems under the hypothesis of a rigid non-tensile resistant applying additional horizontal forces to the arch; in the non-
constitutive material model. linear incremental FE models developed by Crisfi€jdand
Choo et al. ] the lateral response of the fill is modelled by
one-dimensional horizontal elements having an elastic—ideal

* Corresponding author. Tel.: +39 010 353 2517; fax: +39 010 353 2534, Pastic constitutive equation with different responses at
E-mail address: gambarotta@diseg.unige.it (L. Gambarotta). active and pasge fill states.
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In this paper a numerical procedure for the limit analysis and is represented by its centrelit®' . The plane strain

of multi-span masonry bridges including the arch-fill
interaction is developed o the basis of the kinematic

assumption for the fill implies the displacemeni(x) =
{ur(x) u(x)}T at a pointx = {x1 x2}T € 2% to be

theorem. The procedure is based on a two-dimensionalcontained in the plan€O, x1, x2) of the reference system,

finite element discretization of the masonry briddd]]

and the straim ¢ (X) = {11 €22 y12}" to be reresented by

Arches and piers are modelled as plane beams andthe in-plane components.

the fill as a continuum under plane strain conditions.
The fill is discretized by triangular elements and the

The displacements of points on a section of vaults
and piers having the centroid located at painte &

arches and piers by two-noded beams characterized bydepend on the displacemenix) of the centroid and
two generalized hinges at the ends; four-noded interface on the setion rotation ¢(x). Within the Euler—Bernoulli

elements connect adjacentatngular elements in order to

hypothesis, the generalized strain is represented by vector

allow localized strains along their edges, according to the ep(x) = {¢* x}T, ¢ being the axibstrain at he centroid

Sloan and Kleeman approach]]. Interface elements are

and x the curvature. If a loal reference framet, n) is

also applied to allow displacement discontinuities between introducedt being the tangent andtheunit vectors normal
the fill and the arches at the extrados. The constitutive to .#', the axial $rain at the fibre on sectioxat a distance
model assumed for arches and piers is non-tensile resistany from x along the unit vecton is e(x, y) = £2(X) — yx (X).

(NTR) and ductile in compression, while the fill is

The piers are commonly considered built in at the base,

modelled as a cohesive—frictional material according to the while the connection between the vault springings and the

Mohr—Coulomb hypothesis with tension cut-off.
In order to evaluate the capability of the method for

top of the piers is assumed rigid.
Moreover, displacement discontinuities between the vault

providing realistic results, a first example is discussed extrados and the fill are allowed. With reference to the
simulating a collapse test conducted on an existing single-i-th beam section having the centroicathe corresponding
span bidge [L2]. The second example concerns a three-span point at the extradog?' is x* = x + gn, h being the beam

bridge in which the suitability of the method for taking into

section depth; the displacement jumpxdtis [u(x*)] =

account complex interactions between the arch—pier systemu (x*) — up(x*), us (x*) being the displacement of the fill
and the fillis shown. The results obtained by assuming heavyand u,(x*) = u(x) — (p(x)gt(x) the displacement at the

and resistant fill are comparedth the results obtained by

extrados, which depends on the displacemsix) and on

assuming heavy but not resistant fill. This Comparison points the rotationw(x) at sectionx. In the fd|owing, the normal

outthe effect of the fill resistance on the collapse multiplier

[un(x)T1 = nTux*)] and the tangentiafu;(x*)] =

and the Corresponding COIIapse mechanism. Moreover, thEtT [ux"1 components of the Ve|0cityjump are collected in

dependence of the load carrginapacity on the mechanical
parameters of the fill and of the masonry is analysed.
The appreciable increase diet load carrying capacity

the strain vector of the interfage” (x) = {[unll [u:D}7,
xe .7
The loads applied to the fill are the body forbéx),

provided by the fill corresponds to a different anld higher . ¢, represergtive of the weight per unit area of the
Qemand for the .arc_h strength resources. In partlcu!ar, _theﬁ", and the line forcep(x), x € 32s, defined over the upper
increased exploitation of the masonry strength with its boundaryd 2; corresponding to the free surface of the fil:

brittleness may turn out to be incompatible with the ideal
dudility assumption implicit in the limit analysis theorems.
In order to check this eventuality, in both examples an
incremental analysis of theadels is developed that allows
us to check the ductility dema corresponding to the
collapse mechanisms.

2. Structural model of the masonry bridge

Principal components of a typical masonry bridge are
vauts, piers, haunchigs, fill and spandrels, as shown in
Fig. 1(a). With the aim of getting the most relevant effects
of vaultfill interaction, in the present analysis a simple two-
dimensional model is assumelig. 1(b)) which considers

p(x) is expressed ap(x) = sp(X), p(x) being a reference
load ands a load multiplier. The stress field in the fill

2% is represented by the vector (X) = {011 022 T12}"

of the independent stress components. Line tractions act
on the fill through the interfaces at the extrados of the
vauts, representedy the normalo, and the tangential

n component in the local referencg n) collected in the
interface stress vecter »(xX) = {on 7}',Xx € #'. Vauts

and piers are subjected to external line forbgsx), x €

Z', referred to the centroid of the section and representing
the weght of the beam per unit length; externally applied
couples are ignored. Line tractions and couples act on the
arches as an effect of the line tractions applied through the
extrados interface bythe fill. Internal faces in arches and

the vaults, the piers and the fill as the resistant system, whilepiers are represented by the ax\lshearT and bendingV

it neglects the strengthening effect of the spandrels.
The fill is represented by the two-dimensional dom@in

stress resultants efred to points of the beam centrelige
From the Euler—Bernoulli hypothesis the generalized stress

under the hypothesis of plane strain. Vaults and piers arevectorap(x) = {N M}T at sectiorx € .Z is defined.

modelled as plane beams having rectangular cross section;

the i-th beam occupies the two-dimensional regi@é

The fill is assumed isotropic linear elastic—perfectly
plastic having a yielding function corresponding to the
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Fig. 1. (a) The bridge and its componerits) the structural model of the bridge.

Mohr—Coulomb criterion under the plane strain assumption (a)
and modified by introducing a tension cut-off. The
Mohr—Coulomb admissible domain is expressed by the

inequality

fe(o )= \/(011 — 0222 + 472, + (011 + 022) Sing
—2ccosp < 0, (1)
¢ and ¢ being the cohesion and the angle of internal

friction, respectively. The tension cut-off admissible domain
is expressed by the inequality (b)

fi(of)= \/(011 — 022)2 + 412, + (011 + 022) — 20%
<0 2)
whereot is the largest traction admitted.
In analogy, the displacement jump across the interfaces is

ruled by the Coulomb admissible domain expressed by the
inequality

fc(“ﬂ) =|t|+ontang —c <0, (3) Fig. 2. (a) The Mohr—Coulomb limit domain modified by tension cut-off
under the plane strain assumption; (b) the limit domain of the beam section
under the hypothesis of elastic, non-tensile resistant, plastic in compression
(4) behaviour.

together with the tension cut-off condition

fi(c #) =on—o0t < 0.
The constitutive model of vaults and piers is obtained by

assuming vanishing tensile resistance of the mortar joints |imits

orthogonal to the centreline of the vaults and piers. This 5 N M| oN 4N 1 N

follows the constitutive model of the beam section as elastic, - = — < — < ——— (1+ ——) , —=<— <0,

non-tensile resistant (NTR) and ductile in compression Np = Mp Np 3Np 27 Np

(oc denotes the masonry compressive strength). Within

the Euler—Bernoulli hypothesis, the constitutive model is

expressed in terms of internal forcéé and M, the axial

straine? and the curvaturg and is described by assuming | 2N 2/ 1 Nh

monotonically increasing applied forces. Four different 1~ =~ 1- 3V T 8IMe0l ) (5)

states can be recognized for the beam section, corresponding P e

to the A, B, C and Dregions shown irFig. 2b). Region A where Me(x) = EJyx. Region C, whichis symmetric to

defines elastic states for whish = EJx, N = EA:?, E, J region B with respect to axisg- = —3 and is defied ly the

and A being, respectively, the Young modulus, the centroidal |jmits P

moment of inertia and the area of the section. The stress  __ - _

staes in region B define a partially cracked section withthe _2 N _ M| _ 2N (1+‘_'r N ) 1N

3 ’ T Np T

whereNp = hb|oc| andMy = %bh2|oc|; the corresponding
constitutive equation at fixed axial force is

compressed part still elastic; this region is defined by the 3Np = Mp = Np

NI =
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Fig. 3. (a) FE discretization of the model; (b) detail lbétbeam, triangular and interface elements assemblage.

(N ocbh — N), defines stss states for which the

section is comletely compressed with a plastic portion;
its constitutive equation is obtained by substitutiNgfor

N in (5). Finally, region D defines stress states for which

analysis implemented in FE code (in this case LUSAS
rel. 13.4 has been applied) or by using a numerical
formulation based on tHemit analysis theoremdl3]. While

the former povides information on the structural behaviour

the section exhibits both cracked and plastically compressedat intermediate states of the loading program, the latter

regions this regon is defined by the inequalities

2N 4N IM| 2N N
12— )<——< 1+—),
3Np Np

T Mp T N
(if —1 < Nﬂp < —1,in the ldt side N has to be replaced
by N), and the corresponding constitutive equation at fixed
1 My

axial force is
(1 ) ( >2
I\lp 6 \ 3 Me(x) ’

IM| 2N
Mp  Np
The limit strength domain, i.e. the external limit envelope
in Fig. 2(b), can be obtained fron®) for y — oo anditis
expressed by the equation
N

IM| 2N
1+—)=o0.
(1+5)

folon) = —— + —
Finally, the ductility ratio

IV p Np
én X+ n én X n
2 ’ 2

at sectiorx € ¢! is defined.

1

(6)

()

1
§(X) = — min
€p

3. FE evaluation of the load carrying capacity of the
bridge

The complexity of the proposed model inhibits analytical
solutions and evaluation®of the collapse load and
mechanism, so numerical stins based on a finite element

formulation must be pursued. To this end, the finite element
discretization of the bridge based on beam, triangular and g1 (k) =

interface elements shown Fkig. 3(a) has been considered.
Approximations of the load carrying capacity of the bridge

can be achieved either by a standard non-linear incrementa

does not require information about the elastic properties
of the material considered in the model which are very
often dfficult to evaluate. Moreover, limit analysis is a more

suitable ool for catching the collapse mechanism of the
structural system.

In the next setion, the FE discretization of the bridge
is descrbed; it allows one to evaluate an approximation of
the collapse load and mechanism by an application of the
upper bound theorem. To this end, velocity fields at incipient
collapse will be considered and denoted/as U, w = ¢.

3.1. FE upper bound limit analysis

The fill domain £2; is discretized by three-noded
triangular elements with six degrees of freedom, linear
interpolation of the velocity field and a constant strain
rate field. Four-noded interface elements connect the edges
shared by the triangular elements in order to approximate
possible discontinuities of the velocity field, according to
Sloan and Kleemantf] (Fig. 3(b)); the same elements are
used to model the interfaceg at the extrados of arches.

In order to obtain a linear programming problem, the
Mohr—Coulomb admissible domain assumed for the fill is
approximated in the space of stress components by a tangent
polyhedron havingy; faces defined, by analogy to Bottero
et al. [14], by the inequalities

fX(0) = o11(sing + g1(9)) + o22(SiNg — g1(%))
— 112v/2g2() — 2ccosp <0, k=1...p, (8)

where
cos
V2SIt oy + cof v
2 sindk 2
g2() = . . P = —k. ()]
\/25|r1219k+00§19k Pt



A. Cavicchi, L. Gambarotta / Engineering Structures 27 (2005) 605-615

(a)

(b)

Fig. 4. Piecewisdinearization of the admissible domains: (a) fik = 8);
(b) gereralized hingegpp = 6).

Analogously, the domain corresponding to the tension
cut-off condition is linearized by a polyhedron tangent to
the orighal domain havingp; faces, defined by the linear
inequalities

f(0) = 011(1 + 91 (%K) + 022(1 — g1 (¥k))

—T12V20() — 20t <0, k=1...p.  (10)

The resulting admissible domain in the stress space turns

out to be the intersection of the polyhedra defined by
inequalities 8) and (L0), as shown irFig. 4(a).

In order to apply the upper bound theorem, the associate
flow rule is assmed. The uniform discrete strain rate field

assumed in the triangular elements implies a uniform plastic
flow through the element domain, that allows one to impose

the flow rule only at a point of each triangular element.
Inequalities 8) and (LO) are presribed over the element,
so the yielding adnssbility conditions are collected in
the matrix formf® Né€® — r® < 0, from which
the flow ruleé® = N€TA° follows, Né(2p; x 3) being
the matrix that collects the coefficients of the EQg8) (

609

Fig. 5. (a) The intdace element; (b) the beam element.

nodal velocities, in order to maintain compatibility with the
velocity field of triangular elements. The nodal velocities are
collected in the vectov® = {vi V§ Vi Vi}T, wherevg =
(v v} (@ =1...4) andv] andv] are the nodal velocity
components of thg-th element node. The element velocity
field is describd by thevectorvT (¢) = {vtT (&) v T (&)},
vEE) = {vF )T, where sibscipts n andt denote the
components in the local coordinate system, normal and
tangent to the interface, respectively, superscriptand
— refer to the element faces argdis a local ®ordinate
(Fig. 5a)).

Local strain is described by the velocity junégs) =
{Tvn@©1 Tve®NT, where [vn@]1 = viE) — vy (€)
and[u (&)1 = v (§) — v (§), and depends on the nodal

gdvelocities via the compatibility equatioa(§) = B(&)ve.

The linearity of the generalized strain rate field allows the
compatibility equations to be imposed only at the two end
points of the element; defined B = {¢(0) ¢()}" and
B® = diagB(0) B(l)], | being the iterface length, the
element compatibility equation is expressedas- B®ve.
Defining the interface stress vectof) = {on(£) T(£)}",
collecting the resolved normal,(¢) and tangentiaky (¢)
stresses, the Coulomigmissible domain3), expressed as
two linear equationsf; 2(6) = £17 + optang — c < 0,

and (L0) corresponding to the generalized stress vector 2Nd the tension cut-off conditio) can be summarized

¢ = A%{o11 020 112}, (A® is the element area}®
{é11 é22 y12}7 the element strain rate vectors akdhe
(2pt x 1) plastic multiplier vector. As a consequence, the
power dissipated by the elementD$ = reTi.

The interface elements have four nodes and eight degreeé"’ith N®

of freedom Fig.5a)). The two faces of the element

in the local inequalityf(o(§)) = No(§) —r < 0. This
condition is specified at the end points of the interface,
so yielding the element admissible domain #50®) =
Neo® —r€ < 0, wheres® = 5{on(0) 7(0) an(l) ()T,
2diad N N ] the (6x4) matix of the vector
normal to the faces of the limit domainan® = {r" r'}.

correspond to the edges of the two triangular elements The corresponding associated flow rulesaia = NTA(£)

connected by the interface. &kelocity field at each element

and é¢ = Ne€Ti° respctively, where the vectok (£)

face is obtained by linear interpolation of the corresponding represents the plastic multiplier rate field at the interface and
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1= {A(0) A(D}T collects the corresponding values at the ¢ = Ba, involving the nodal velocity vectoa and the
end points. Since the linearity of the deformation rate field assembled compatibility matri8, the stadard linear
&(&) implies the linearity of the field (£) over the interface, conditions on vectora andi are obtained:

the power dissipated by the interface is Ba_ NTi =0, iso. (13)

. | . .
Dp=/éT(g)a(§)dg =r" /x(g)ds = ErT(k(I)+X(O)) The external and internal kinematical constraints are
' ' summarized by the homogeneous linear equation

Aa=0, (14)
Two-noded, straight beam elements are assumed whose , .
deformation depends on two generalized hinges IocatedWhere matrixA depends on the boundary conditions on the

at the end sections, allowing relative localized axtal™ velocity field and on the location and topological properties

and rotationalAw™ (m = 1,2) velocities (Fig. 5b)), of the internal rigid links. Mogover, the dissipation rafep

collected at each end section in the generalized strain rate®f the mechanism represented by veceanda is obtained

rechal HE :
vectoré = {Av, Aw}T. The generalized beam element als Dp - r )r‘] the sum of he contributions of all active
strainrate é® = L 2 1 Aw?)T is assumed, ~ Sement mechanisms.

€ = {(Avy + Avg) Aw” Ao’} . . The applied loads are reduced to nodal forces and
where we have introduced the total axial relative velocity

1 2 . . - : collected in the nodal load vectgr= qg + sq, obtained as
(SU“ + Aevg) which depends, V|a_the compatibility equation the sumof the contributions of the dead load vectgyand
é® = B®v® on the nodal velocity vector of the element

Vel — {vf"T v‘?T} Ve — {uk K a)k}T the live load vectorsg, s being the unknown collapse load
oot b Tk 172 %7 - multiplier. Denoting the power of the external dead loads as
The activation of a generalized hinge depends on the P. — al aand imposing the normalizina condition implvin
admissible domain of a rectangular section made up of ,,© Yo posing 9 plying

. . e : . the positivity of the power of live loads
non-tensile resistant and ductile in compression material
(Fig. 2b)). This domain, defined in the space of axial g'a=1, (15)
and bending stress components, is discretized by the
tangent polygon resulting as the envelope of the linear

=reTi°, (11)

the kinematically admissible multiplieg is expressed in the
standard form as the difference between the power dissipated

: it
inequaliies by the elements and the power of the external dead loads:
f1E(N M):iﬂ—#[MR—nz a
b Mp  (pp—2)7? % =—Pe+Dp={-qp rT}{i}' (16)
N b
— N (P 2)(pp+2— 4R)] =0, R=1... % (12) Finally, the collapse multiplier upper boursg relaing
to the finite element modelonsidered is obtained as the
wherepy is the number of sides of the polygoFRig. 4(b)). solution of the lineaprogramming problem
By assuming uniform axial force N, the ekment a
generalized stress vectef = {N M; Ma}T is defined, Su = Min(—=Pe + Dp) = min{—q} T} {k} ,

M1 andM> being the bending moments at the end sections; A 0 0
the admssibledomains {2) are collected in the inequality T a 17
f€ = N®® 4+ r® < 0 and the associated flow rule q OT {x} =11t (17)
é® = NTi%is assumedNe(2pp x 3) being thematix B —N 0

of the coeffcients in (2) and A° the vector that collects
the 2pp plastic multiplier rate at the two hinges. Finally,
the power disgated by the beam is obtained as the sum where the feasible domain imposes the compatibility
of the contributions provied by each active hinge and conditions (3), (14) and Eq. {5); the vectorsa andA that

is expressed asDp, = 0°Té® = reTi% It is worth minimize the load multiplier define an approximation of
noting that the dissipation at the generalized hinge ruled by the collapse mechanism, dejling on the finite element
the limit domain ) only depends on ductile compressive discretization.

strain, since cracking of NTR materials is not a dissipative

mechanism; this section property is only approximated when

x>0,

the goproximation (2) is appied. 4. Examples
The finite element model is represented by the admissible
domains of the elements summarized in the inequdlity 4.1. Example 1: Prestwood bridge
No — r < O, whereo is the vector of all the element
generalized stress components, and by the vet&taf In order to evaluate the capability of the procedure for

the generalized strain rate components expressed by thepredicting the collapse behaviour of real bridges, the first
associated flow rulé = NTA,1 > 0, A being the plastic ~ example elates to Prestwood bridgdd], a single-span
multiplier vector. By the global compatibility equations bridge tested to dtapse within the experimental research
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£'=2000

£=6550

#'=2000

Fig. 6. Geometry of the model (mm).

on masonry bridges supported by the Transport ResearchP,

Laboratory (TRL).

The vault shape, having spah = 6550 mm and
upper risef = 1428 mm, is distorted from the originally
segmentallsape. The vault thickness i = 220 mm and
comprises asingle ring of bricks laid as headers; the fill
depth at the crown i, = 165 mm and the total bridge
width is 3800 mm. The live load wés= 300 mm wide and
was apfied acros thebridge at quarter-sparkrig. 6). The
fill density isy¢+ = 20 kN/m® and the masonry density is
Ym = 20 kKN/m®.

The experimental collapse mechanism of the bridge is
shown in Fig. 7. The vaillt collapse mechanism exhibits
four hinges that are clearly visible in the picture; the
mechanism developed with Hégble material crushing.

The arch mechanism constrains the fill region under the

applied load to move downward and the fill at the other side
of the bridge to move upward; the experimental collapse loa
was Pexp = 228 kN.

In Fig. 8 the collapse mechanism resulting from the
numerical limit analysis is shown, obtained by assuming
compressive strengtly. = 4.5 MPa for the ath masonry
and angle of internal frictiop = 37° (see Ref. 4]) and
cohesiorc = 10 kPa for the fill. The mall black circles on

the arch ring represent the active hinges, while the greyscale

in the fill domain deotes different values of the ratios

between the principal shear strain rate at each element anaEf

the maximum in the fill.
As in the experimental testn the numerical collapse

mechanism four groups of hinges develop. The loaded side
of the arch moves downward, and the arch mechanism
pushes the left side; as a consequence, the fill over the left

side is movedipward. The first hinge on the left side of the
arch does not develop at the springing,

the fill constrains the hing® move upwad. This behaviour
agrees with the experimental result showirig. 7.

The diagrams inFig. 9(a), obtained by assuming an
internal friction anglep = 37° and a compresge strength
of the archo, = 4.5 MPa, show he influenceof the fill
cohesiorc on the collapse load; the lower line corresponds
to the valueobtained assuming no resistant fil®,
46.2 KkN. Assumingc 1 kPa, thecollapse load is

1491 kN, about 65% of the experimental value
Pexp = 228 kN, which is obtained numerically assuming
¢ = 10 kPa. The diagrams iRig. Yb), obtained assuming
the intenal friction angleg 37 and cohesiorc
10 kPa, show the influence of the compressive strength of
the arch on the colfzse load; the value obtained assuming
unlimited compressive strength B, = 267.9 kN, which

is about 17% higher than the value obtained assuming
oc = 4.5 MPa, P, = 2280 kN; the morresponding values
obtained assuming no resistant fill akg = 57 kN and

Py = 46.2 kN resgectively.

The strengthening effects of the fill correspond to a
higher exploitation of the strength resources of the arch;
in particular the development of the collapse mechanism
predicted by the limit analysis requires the development of
plastic compressive strains higher than those predicted by
simplified models without fill resistance that could be no

d longer consistent with the masonry behaviour. The diagrams

in Fig. 10 show the lod—deflection curve (referred to the
vertical displacement of the section at the load position)
obtained by the incremental analysis, compared to the upper
bound obtained by limit analysis; the different collapse loads
corresponding to dfierent ductilitys valuesare shown. The
results are obtained by assumimg= 4.5 MPa,c = 10 kPa
andg = 37°; the elastic moduli assumed for masonry and
fill in the incremental analysis arfg;,, = 15000 MPa and
= 300 MPa, respectively.

The section of the arch thatdireaches the compressive
elastic limit is located under the area where the load is
applied; the corresponding load step is indicated by 1
in the diagram of-ig. 10. Thedifference between the results
provided by the incremental analysis with< 2 and the
upper bound estimated from limit analysis is about 13%.

In this case the effect of a limitation of ductility on the

eV ng, as happens in theye elopment of the collapsmechanism is limited. This
arch where the fill is heavy but not resistant; the presence of

result agrees with the experimental behaviour of the bridge
and shows that limit analysis can be applied with a good
approximation.

4.2. Example 2: A multi-span bridge

The second example relates to a three-span bridge having
circular arches, thickness = 1 m, spart = 14 m and span
torise ratiof /¢ = 2. The height of the piersts= 10 m and
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Fig. 8. The collapse mechanism of the Prestwood bridge FE model.
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1.8 zcz—;;-f ha 08 '_“ Upper bound
1.6 07— =L = = = — — — -
o 14 I o S
i) —_ —_ - —_— 0.6
¥ 124 i & 1 =3
= Experimental < 0.5 5=2
B 19 2 i ~ =
E“ 0.8 - Resistant fill o® 4] 8=1
al 067 Non resistant fill 1 ¢=0.01 MPa
0.4 0.2
0.2
0 T T T T —>
0 1 2 3 4 3 0o 1 2 3 4 5 6 7 8
clo, (*10%) vi? (%10%)
(b) A | ¢=0.01 MPa Fig. 10. The load/deflection curve and the ductility demand.
079 | $=37°
06 yt = 18 kN/m®, ma®nry densityym = 20 kN/m®. The
o~ 054 Resistant fill other conditutive parameters (cohesian angle of internal
3 o4 friction ¢ and masonry compressive strengtf) hawe been
;} ol varied in different analyses. The dead loads applied are due
i Non resistant fill to the weights bthe fill and of the arch, while the live load
0.27] corresponds to a 6 m wide triangular symmetric pressure
0.1+ distribution at the mid-spanF{g.11). In the fllowing,
¥ heavy and resistant fill isomsidered in radel A, while in
0 05 . 1-5‘ 2 model B the fill is assumed heavy but not resistant; model
S /e (*107) C is defined \ith the same assumptis as model B but the
_ _ _ _ haunching, which is modelled as a rigid body.
Fig. 9. The influence (a) of the coheriand (b) of the angle of internal In Fig. 11 the Collapse mechanism of model A is

friction on the collapse load. . L . .
P shown, where he arch—pierfill interaction is clearly

the thikness ish, = 3 m; thedepth of fill atthe crown is represented. The failure mearism of the arch—pier system
h; = 1 m. The asumed mairial parameters are: fill density  is characterized by thirteen groups of hinges attained at the
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Fig. 11. The collapse mechanism of the three-span bridge (model A).

crowns and at the haunches of the arches and at the bottom(a) o
sections of the pis. In the region close to the springings
the presence ohe fill constrains the haunches and inhibits
the hinge activatin; in particular, the haunchings remain
rigid even though they have been assumed to have the same
material paranters as the fill.

The mechanism developed alls the crown of the central
arch to move downward, imposing the rotation of the piers
and the contraction of the lateral arches in which the crowns
move upward; a compatible iraddtic deformation field is
attained in the fill, which is constrained to move upward.

Rigid
haunching

Fig. 12. The collapse mechanisms of model B (a) and model C (b).

Inelastic §iding is spread over a large region of the fill that 0.7 if g
extends beyond the ends of the external archeBids. 1Za) ol ?; o%sza
and (b) the collapse mechanisms of model B and model C i
are shown, respectively; the collapse mechanism of model B %‘ Il Resistant fill (A)
is limited to the central archpsit behaes as a single-arch ol i
bridge. A~ 0.3

The diagrams irfrig. 13 show the depndence of the load 02+ Non resistant fill (C)
carrying capacity on the compressive strength in models A 0.1 i
and C. The values from model A turn out to be about 2 o 8 AR R R RN Y
times as great as the corresponding values of model C. The A e i
diagrams inFig. 14(a) and (b) show the dependence of the o fe (*107%)

load carrying capacity on the values of the cohesion and
of the angle of internal friction in model A: the lower line Fig. 13. The influence of the masonrmgrapressive strength on the collapse
corresponds to model C. load.

The results obtained show that the FE limit analysis
procedure is able to solve complex models, but the validity by assumingr; = 12 MPa,c = 20 kPa andp = 30°; the
of the ideal ductility hypothesis has to be verified. In masonry and fill elastic moduli assumed for the incremental
Fig. 15 the loa/deflection diagram (referred to the vertical analysis areE,, = 15000 MPa andEf = 300 MPa,
displacement of the mid-gp section) obtained by the respectively.
incremental analysis is shown, compared to the upper bound The limit§ = 2 is reached in the centrarch at the mid-
obtained by limit analysis. The results have been obtained span section; the difference between the results provided by
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D19 5z 67 Vit (*10%)
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(b) N Fig. 15. The load/deflection curve and ductility demand.

081 | 6, =12MPa

0.7 | ¢=0.02MPa numerical analysis. On the other hand, the model presents

0.6 some limitations that have to be taken into account. The
< s N cistant fill (A plane strain assumption for the fill corresponds to assuming
= esistant fill (4) the gandrels to be providing perfect smooth boundary
mic conditions; the effects of this assumptions have to be

0'2 evaluated ad depend on the geometry of the bridge.

= Non resistant fill (C) Moreover, a more realistic description of the development

‘ of passive and active fill pressures at the arch extrados needs

T T T T T
20 25 30 35 40

Q)

to take account of differentacresponding displacements
that are larger in the latter case. Finally, the numerical

representation of discontinuities in the velocity field that
characterizes the solutiors collapse problems assuming

pefect plasticity is still an open problem; the interface
elements used allow discontinuities to develop but their
the incremental analysis with < 2 and the upper bound  directions are arbitrarily fixed by the triangular element
estimated from limit analysis is about 9%. shae.

Fig. 14. The influence of the cohesior) émdof the angle of internal friction
(b) of the fill on the collapse load.
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