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Abstract

Experimental collapse tests on full and model scale masonry bridges have shown that fill and spandrels can strongly affect the
behaviour and increase the load carrying capacity. To provide a structural description of the arch–fill interaction effects, a two-dimensiona
model of multi-span masonry bridges is developed in which arches and piers are described as beams made up of elastic, non-tensile resista
(NTR), ductile in compression material, and the fill as a Mohr–Coulomb material modified by a tension cut-off under plane strain conditions
The load carryingcapacity is evaluated by a finite element limit analysis procedure based on the kinematic theorem. The fill do
discretized by triangular elementsconnected by interface elements in order to allow possible velocity discontinuities at common sides of
adjacent triangular elements; arches and piers are discretized by two-noded straight beam elements. By linearization of the limit d
the generalized stress space, a linear programming problem is formulated and upper bounds of the collapse loads are obtained. Two
are discussed, concerning a real single-span bridge, tested up to collapse, and a multi-span bridge. The ideal ductility assumption
limit analysis is discussed by comparing the upper bound evaluations to the results obtained by incremental analysis in order to obtain
validity limits of the upper bound limit analysis for the proposed model.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Several models for predicting the load carrying capac
of masonry bridges have been developed either o
considering the vaults, modelled as plane arches, or a
including arch–pier interaction. In both cases the assumptio
of non-tensile resistant (NTR) material for masonry
made. The solving procedures can be divided into two la
categories corresponding to incremental methods and l
analysis. The former can be referred to in Castigliano [1] and
the latter in the works of Kooharian [2] and Heyman [3], who
extended the plastic limit analysis theorems to structura
systems under the hypothesis of a rigid non-tensile resist
constitutive material model.
∗ Corresponding author. Tel.: +39 010 353 2517; fax: +39 010 353 2534
E-mail address: gambarotta@diseg.unige.it (L. Gambarotta).
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Experimental results obtained from collapse tests
full scale and model scale bridges [4,5] have shown the
limits of the arch model for predicting the real behaviour
of bridges, highlighting the strong influence of fill an
spandrels on the collapse mechanism and the load carry
capacity. The growing need for assessing the real capa
of existing bridges has moved the research on to improv
the above-mentioned methods in order to take into acco
the structural contribution of fill and spandrels. Structura
modelling of the arch–fill interaction in mechanism analys
has been considered by Crisfield and Packam [6] and Hughes
et al. [7], where the soil pressure is taken into account
applying additional horizontal forces to the arch; in the no
linear incremental FE models developed by Crisfield [8] and
Choo et al. [9] the lateral response of the fill is modelled b
one-dimensional horizontal elements having an elastic–id
plastic constitutive equation with different responses
active and passive fill states.

http://www.elsevier.com/locate/engstruct
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In this paper a numerical procedure for the limit analys
of multi-span masonry bridges including the arch–fi
interaction is developed on the basis of the kinematic
theorem. The procedure is based on a two-dimensio
finite element discretization of the masonry bridge [10].
Arches and piers are modelled as plane beams
the fill as a continuum under plane strain condition
The fill is discretized by triangular elements and th
arches and piers by two-noded beams characterized
two generalized hinges at the ends; four-noded interfa
elements connect adjacent triangular elements in order to
allow localized strains along their edges, according to
Sloan and Kleeman approach [11]. Interface elements are
also applied to allow displacement discontinuities betwe
the fill and the arches at the extrados. The constitut
model assumed for arches and piers is non-tensile resis
(NTR) and ductile in compression, while the fill i
modelled as a cohesive–frictional material according to
Mohr–Coulomb hypothesis with tension cut-off.

In order to evaluate the capability of the method fo
providing realistic results, a first example is discuss
simulating a collapse test conducted on an existing sing
span bridge [12]. The second example concerns a three-sp
bridge in which the suitability of the method for taking int
account complex interactions between the arch–pier sys
and the fill is shown. The results obtained by assuming he
and resistant fill are comparedwith the results obtained by
assuming heavy but not resistant fill. This comparison poi
out the effect of the fill resistance on the collapse multipli
and the corresponding collapse mechanism. Moreover,
dependence of the load carrying capacity on the mechanica
parameters of the fill and of the masonry is analysed.

The appreciable increase of the load carrying capacity
provided by the fill corresponds to a different and high
demand for the arch strength resources. In particular,
increased exploitation of the masonry strength with
brittleness may turn out to be incompatible with the ide
ductility assumption implicit in the limit analysis theorems
In order to check this eventuality, in both examples a
incremental analysis of the models is developed that allow
us to check the ductility demand corresponding to the
collapse mechanisms.

2. Structural model of the masonry bridge

Principal components of a typical masonry bridge a
vaults, piers, haunchings, fill and spandrels, as shown i
Fig. 1(a). With the aim of getting the most relevant effec
of vault–fill interaction, in the present analysis a simple tw
dimensional model is assumed (Fig. 1(b)) which considers
the vaults, the piers and the fill as the resistant system, w
it neglects the strengthening effect of the spandrels.

The fill is represented by the two-dimensional domainΩ f

under the hypothesis of plane strain. Vaults and piers
modelled as plane beams having rectangular cross sec
the i -th beam occupies the two-dimensional regionΩ i
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and is represented by its centrelineL i . The plane strain
assumption for the fill implies the displacementu(x) =
{u1(x) u2(x)}T at a point x = {x1 x2}T ∈ Ω f to be
contained in the plane(O, x1, x2) of the reference system,
and the strainε f (x) = {ε11 ε22 γ12}T to be represented by
the in-plane components.

The displacements of points on a section of vaul
and piers having the centroid located at pointx ∈ L i

depend on the displacementu(x) of the centroid and
on the section rotation ϕ(x). Within the Euler–Bernoulli
hypothesis, the generalized strain is represented by vec
εb(x) = {εa χ}T , εa being the axial strain at the centroid
and χ the curvature. If a local reference frame(t, n) is
introduced,t being the tangent andn theunit vectors normal
to L i , the axial strain at the fibre on sectionx at a distance
y from x along the unit vectorn is ε(x, y) = εa(x) − yχ(x).
The piers are commonly considered built in at the bas
while the connection between the vault springings and t
top of the piers is assumed rigid.

Moreover, displacement discontinuities between the va
extrados and the fill are allowed. With reference to th
i -th beam section having the centroid atx, the corresponding
point at the extradosI i is x∗ = x + h

2n, h being the beam
section depth; the displacement jump atx∗ is [[u(x∗)]] =
u f (x∗) − ub(x∗), u f (x∗) being the displacement of the fill
and ub(x∗) = u(x) − ϕ(x) h

2t(x) the displacement at the
extrados, which depends on the displacementu(x) and on
the rotationϕ(x) at sectionx. In the following, the normal
[[un(x∗)]] = nT [[u(x∗)]] and the tangential[[ut (x∗)]] =
tT [[u(x∗)]] components of the velocity jump are collected in
the strain vector of the interfaceεI (x) = {[[un]] [[ut ]]}T ,
x ∈ I i .

The loads applied to the fill are the body forceb(x),
x ∈ Ω f , representative of the weight per unit area of the
fill, and the line forcep(x), x ∈ ∂Ω f , defined over the upper
boundary∂Ω f corresponding to the free surface of the fill
p(x) is expressed asp(x) = sp(x), p(x) being a reference
load ands a load multiplier. The stress field in the fill
Ω f is represented by the vectorσ f (x) = {σ11 σ22 τ12}T

of the independent stress components. Line tractions
on the fill through the interfaces at the extrados of th
vaults, representedby the normalσn and the tangential
τn component in the local reference(t, n) collected in the
interface stress vectorσI (x) = {σn τ }T , x ∈ I i . Vaults
and piers are subjected to external line forcesbb(x), x ∈
L i , referred to the centroid of the section and representi
the weight of the beam per unit length; externally applie
couples are ignored. Line tractions and couples act on t
arches as an effect of the line tractions applied through t
extrados interface bythe fill. Internal forces in arches and
piers are represented by the axialN , shearT and bendingM
stress resultants referred to points of the beam centrelineL .
From the Euler–Bernoulli hypothesis the generalized stre
vectorσ b(x) = {N M}T at sectionx ∈ L is defined.

The fill is assumed isotropic linear elastic–perfectl
plastic having a yielding function corresponding to th
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Fig. 1. (a) The bridge and its components;(b) the structural model of the bridge.
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Mohr–Coulomb criterion under the plane strain assumpti
and modified by introducing a tension cut-off. Th
Mohr–Coulomb admissible domain is expressed by t
inequality

fc(σ f )=
√

(σ11 − σ22)2 + 4τ2
12 + (σ11 + σ22) sinϕ

− 2c cosϕ ≤ 0, (1)

c and ϕ being the cohesion and the angle of intern
friction, respectively. The tension cut-off admissible doma
is expressed by the inequality

ft (σ f )=
√

(σ11 − σ22)2 + 4τ2
12 + (σ11 + σ22) − 2σt

≤ 0 (2)

whereσt is the largest traction admitted.
In analogy, the displacement jump across the interface

ruled by the Coulomb admissible domain expressed by t
inequality

fc(σI ) = |τ | + σn tanϕ − c ≤ 0, (3)

together with the tension cut-off condition

ft (σI ) = σn − σt ≤ 0. (4)

The constitutive model of vaults and piers is obtained b
assuming vanishing tensile resistance of the mortar join
orthogonal to the centreline of the vaults and piers. Th
follows the constitutive model of the beam section as elast
non-tensile resistant (NTR) and ductile in compressio
(σc denotes the masonry compressive strength). With
the Euler–Bernoulli hypothesis, the constitutive model
expressed in terms of internal forcesN and M, the axial
strainεa and the curvatureχ and is described by assuming
monotonically increasing applied forces. Four differen
states can be recognized for the beam section, correspond
to the A, B, C and Dregions shown inFig. 2(b). Region A
defines elastic states for whichM = E Jχ , N = E Aεa, E , J
and A being, respectively, the Young modulus, the centroid
moment of inertia and the area of the section. The stre
states in region B define a partially cracked section with th
compressed part still elastic; this region is defined by t
s
e

s

,

g

l
s

Fig. 2. (a) The Mohr–Coulomb limit domain modified by tension cut-of
under the plane strain assumption; (b) the limit domain of the beam sect
under the hypothesis of elastic, non-tensile resistant, plastic in compress
behaviour.
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whereNp = hb|σc| andMp = 1
4bh2|σc|; the corresponding

constitutive equation at fixed axial force is

|M|
Mp

= −2N

Np

(
1 − 2

3

√
−1

6

Nh

|Me(χ)|

)
, (5)

where Me(χ) = E Jχ . Region C, whichis symmetric to
region B with respect to axis N
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= −1
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ge.
Fig. 3. (a) FE discretization of the model; (b) detail of the beam, triangular and interface elements assembla
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(N = σcbh − N), defines stress states for which the
section is completely compressed with a plastic portion
its constitutive equation is obtained by substitutingN for
N in (5). Finally, region D defines stress states for whic
the section exhibits both cracked and plastically compress
regions; this region is defined by the inequalities

−2N

Np

(
1 + 4

3

N

Np

)
≤ |M|

Mp
≤ −2N

Np

(
1 + N

Np

)
,

−1

2
≤ N

Np
≤ 0

(if −1 ≤ N
Np

≤ −1
2, in the left side N has to be replaced

by N ), and the corresponding constitutive equation at fixe
axial force is

|M|
Mp

= −2N

Np

(
1 + N

Np

)
− 1

6

(
1

3

Mp

Me(χ)

)2

. (6)

The limit strength domain, i.e. the external limit envelop
in Fig. 2(b), can be obtained from (6) for χ → ∞ and it is
expressed by the equation

fb(σ b) = |M|
Mp

+ 2N

Np

(
1 + N

Np

)
= 0. (7)

Finally, the ductility ratio

δ(x) = 1

εp
min

[
εn

(
x + h

2
n
)

, εn

(
x − h

2
n
)]

at sectionx ∈ L i is defined.

3. FE evaluation of the load carrying capacity of the
bridge

The complexity of the proposed model inhibits analytica
solutions and evaluationsof the collapse load and
mechanism, so numerical solutions based on a finite elemen
formulation must be pursued. To this end, the finite eleme
discretization of the bridge based on beam, triangular a
interface elements shown inFig. 3(a) has been considered
Approximations of the load carrying capacity of the bridg
can be achieved either by a standard non-linear incremen
d

t
d

al

analysis implemented in FE code (in this case LUSA
rel. 13.4 has been applied) or by using a numeric
formulation based on thelimit analysis theorems [13]. While
the former provides information on the structural behaviou
at intermediate states of the loading program, the lat
does not require information about the elastic properti
of the material considered in the model which are ve
often difficult to evaluate. Moreover, limit analysis is a more
suitable tool for catching the collapse mechanism of th
structural system.

In the next section, the FE discretization of the bridge
is described; it allows one to evaluate an approximation o
the collapse load and mechanism by an application of t
upper bound theorem. To this end, velocity fields at incipie
collapse will be considered and denoted asv = u̇, ω = ϕ̇.

3.1. FE upper bound limit analysis

The fill domain Ω f is discretized by three-noded
triangular elements with six degrees of freedom, line
interpolation of the velocity field and a constant strai
rate field. Four-noded interface elements connect the ed
shared by the triangular elements in order to approxima
possible discontinuities of the velocity field, according t
Sloan and Kleeman [11] (Fig. 3(b)); the same elements are
used to model the interfacesI at the extrados of arches.

In order to obtain a linear programming problem, th
Mohr–Coulomb admissible domain assumed for the fill
approximated in the space of stress components by a tang
polyhedron havingpt faces defined, by analogy to Bottero
et al. [14], by the inequalities

f k
c (σ )=σ11(sinϕ + g1(ϑk)) + σ22(sinϕ − g1(ϑk))

− τ12
√

2g2(ϑk) − 2c cosϕ ≤ 0, k = 1 . . . pt , (8)

where

g1(ϑk) = cosϑk√
2 sin2 ϑk + cos2 ϑk

,

g2(ϑ) = 2 sinϑk√
2 sin2 ϑk + cos2 ϑk

, ϑk = 2π

pt
k. (9)
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Fig. 4. Piecewiselinearization of the admissible domains: (a) fill(pt = 8);
(b) generalized hinges(pb = 6).

Analogously, the domain corresponding to the tensio
cut-off condition is linearized by a polyhedron tangent t
the original domain havingpt faces, defined by the linear
inequalities

f k
t (σ )=σ11(1 + g1(ϑk)) + σ22(1 − g1(ϑk))

− τ12
√

2g2(ϑk) − 2σt ≤ 0, k = 1 . . . pt . (10)

The resulting admissible domain in the stress space tu
out to be the intersection of the polyhedra defined b
inequalities (8) and (10), as shown inFig. 4(a).

In order to apply the upper bound theorem, the associa
flow rule is assumed. The uniform discrete strain rate field
assumed in the triangular elements implies a uniform plas
flow through the element domain, that allows one to impo
the flow rule only at a point of each triangular elemen
Inequalities (8) and (10) are prescribed over the element,
so the yielding admissibility conditions are collected in
the matrix form fe = Neσ e − re ≤ 0, from which
the flow rule ε̇e = NeT λ̇

e
follows, Ne(2pt × 3) being

the matrix that collects the coefficients of the Eqs. (8)
and (10) corresponding to the generalized stress vect
σ e = Ae{σ11 σ22 τ12}T , (Ae is the element area),̇εe =
{ε̇11 ε̇22 γ̇12}T the element strain rate vectors andλ̇ the
(2pt × 1) plastic multiplier vector. As a consequence, th
power dissipated by the element isDe

p = reT λ̇.
The interface elements have four nodes and eight degr

of freedom (Fig. 5(a)). The two faces of the elemen
correspond to the edges of the two triangular eleme
connected by the interface. The velocity field at each element
face is obtained by linear interpolation of the correspondi
s

d

s

Fig. 5. (a) The interface element; (b) the beam element.

nodal velocities, in order to maintain compatibility with the
velocity field of triangular elements. The nodal velocities ar
collected in the vectorve = {ve

i ve
j ve

h ve
k}T , whereve

q =
{vq

1 v
q
2}T (q = 1 . . .4) andv

q
1 andv

q
2 are the nodal velocity

components of theq-th element node. The element velocit
field is described by thevectorvT (ξ) = {v+T (ξ) v−T (ξ)},
v±(ξ) = {v±

n v±
t }T , where subscripts n and t denote the

components in the local coordinate system, normal a
tangent to the interface, respectively, superscripts+ and
− refer to the element faces andξ is a local coordinate
(Fig. 5(a)).

Local strain is described by the velocity jumpε̇(ξ) =
{[[vn(ξ)]] [[vt (ξ)]]}T , where [[vn(ξ)]] = v+

n (ξ) − v−
n (ξ)

and [[vt (ξ)]] = v+
t (ξ) − v−

t (ξ), and depends on the noda
velocities via the compatibility equatioṅε(ξ) = B(ξ)ve.
The linearity of the generalized strain rate field allows th
compatibility equations to be imposed only at the two en
points of the element; defined bẏεe = {ε̇(0) ε̇(l)}T and
Be = diag[B(0) B(l)], l being the interface length, the
element compatibility equation is expressed asε̇e = Beve.

Defining the interface stress vectorσ (ξ) = {σn(ξ) τ (ξ)}T,
collecting the resolved normalσn(ξ) and tangentialτn(ξ)

stresses, the Coulomb admissible domain (3), expressed as
two linear equationsf1,2(σ ) = ±τ + σn tanϕ − c ≤ 0,
and the tension cut-off condition (4) can be summarized
in the local inequalityf(σ (ξ)) = Nσ (ξ) − r ≤ 0. This
condition is specified at the end points of the interfac
so yielding the element admissible domain asfe(σ e) =
Neσ e − re ≤ 0, whereσ e = l

2{σn(0) τn(0) σn(l) τn(l)}T ,
with Ne = 2

l diag[ N N ] the (6×4) matrix of the vector
normal to the faces of the limit domain andreT = {rT rT }.
The corresponding associated flow rules areε̇(ξ) = NT λ̇(ξ)

and ε̇e = NeT λ̇
e
, respectively, where the vectoṙλ(ξ)

represents the plastic multiplier rate field at the interface a
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λ̇
e = {λ̇(0) λ̇(l)}T collects the corresponding values at th

end points. Since the linearity of the deformation rate fie
ε̇(ξ) implies the linearity of the fielḋλ(ξ) over the interface,
the power dissipated by the interface is

Dp =
∫

l
ε̇T (ξ)σ (ξ)dξ = rT

∫
l
λ̇(ξ)dξ = l

2
rT (λ̇(l) + λ̇(0))

= reT λ̇
e
. (11)

Two-noded, straight beam elements are assumed wh
deformation depends on two generalized hinges loca
at the end sections, allowing relative localized axialvm

α

and rotationalωm (m = 1, 2) velocities (Fig. 5(b)),
collected at each end section in the generalized strain
vector ε̇ = {vα ω}T . The generalized beam elemen
strain rate ε̇e = {(v1

α + v2
α) ω1 ω2}T is assumed,

where we have introduced the total axial relative veloc
(v1

α +v2
α) which depends, via the compatibility equatio

ε̇e = Beve, on the nodal velocity vector of the elemen
veT = {veT

i veT
j }, ve

k = {vk
1 vk

2 ωk}T .
The activation of a generalized hinge depends on

admissible domain of a rectangular section made up
non-tensile resistant and ductile in compression mate
(Fig. 2(b)). This domain, defined in the space of axi
and bending stress components, is discretized by
tangent polygon resulting as the envelope of the lin
inequalities

f h±
b (N, M) = ± M

Mp
− 2

(pb − 2)2

[
4(R − 1)2

− N

Np
(pb − 2)(pb + 2 − 4R)

]
≤ 0, R = 1 . . .

pb

2
, (12)

wherepb is thenumber of sides of the polygon (Fig. 4(b)).
By assuming uniform axial force N , the element

generalized stress vectorσ e = {N M1 M2}T is defined,
M1 andM2 being the bending moments at the end sectio
the admissibledomains (12) are collected in the inequality
fe = Neσ e + re ≤ 0 and the associated flow rul
ε̇e = NeT λ̇

e
is assumed,Ne(2pb × 3) being thematrix

of the coefficients in (12) and λ̇
e

the vector that collects
the 2pb plastic multiplier rate at the two hinges. Finally
the power dissipated by the beam is obtained as the su
of the contributions provided by each active hinge an
is expressed asDp = σ eT ε̇e = reT λ̇

e
. It is worth

noting that the dissipation at the generalized hinge ruled
the limit domain (7) only depends on ductile compressiv
strain, since cracking of NTR materials is not a dissipat
mechanism; this section property is only approximated wh
the approximation (12) is applied.

The finite element model is represented by the admiss
domains of the elements summarized in the inequalityf =
Nσ − r ≤ 0, whereσ is the vector of all the elemen
generalized stress components, and by the vectorε̇ of
the generalized strain rate components expressed by
associated flow rulėε = NT λ̇, λ̇ ≥ 0, λ̇ being the plastic
multiplier vector. By the global compatibility equation
se
d

te

e
f
l

e
r

;

y

n

le

e

ε̇ = Ba, involving the nodal velocity vectora and the
assembled compatibility matrixB, the standard linear
conditions on vectorsa andλ̇ are obtained:

Ba − NT λ̇ = 0, λ̇ ≥ 0. (13)

The external and internal kinematical constraints a
summarized by the homogeneous linear equation

Aa = 0, (14)

where matrixA depends on the boundary conditions on th
velocity field and on the location and topological propertie
of the internal rigid links. Moreover, the dissipation rateDp

of the mechanism represented by vectorsa andλ̇ is obtained
as Dp = rT λ̇, the sum of the contributions of all active
element mechanisms.

The applied loads are reduced to nodal forces a
collected in the nodal load vectorq = q0 + sq, obtained as
the sumof the contributions of the dead load vectorq0 and
the live load vectorsq, s being the unknown collapse load
multiplier. Denoting the power of the external dead loads
Pe = qT

0 a and imposing the normalizing condition implying
the positivity of the power of live loads

qT a = 1, (15)

the kinematically admissible multipliersk is expressed in the
standard form as the difference between the power dissipa
by the elements and the power of the external dead loads

sk = −Pe + Dp = {−qT
0 rT }

{
a
λ̇

}
. (16)

Finally, the collapse multiplier upper boundsu relating
to the finite element model considered is obtained as the
solution of the linearprogramming problem


su = min(−Pe + Dp) = min{−qT
0 rT }

{
a
λ̇

}
,

 A 0
qT 0
B −NT


{a

λ̇

}
=



0
1
0


 ,

λ̇ ≥ 0,

(17)

where the feasible domain imposes the compatibili
conditions (13), (14) and Eq. (15); the vectorsa andλ̇ that
minimize the load multiplier define an approximation o
the collapse mechanism, depending on the finite element
discretization.

4. Examples

4.1. Example 1: Prestwood bridge

In order to evaluate the capability of the procedure fo
predicting the collapse behaviour of real bridges, the fir
example relates to Prestwood bridge [12], a single-span
bridge tested to collapse within the experimental researc
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Fig. 6. Geometry of the model (mm).
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on masonry bridges supported by the Transport Resea
Laboratory (TRL).

The vault shape, having span� = 6550 mm and
upper rise f = 1428 mm, is distorted from the originally
segmental shape. The vault thickness ishs = 220 mm and
comprises asingle ring of bricks laid as headers; the fil
depth at the crown ishr = 165 mm and the total bridge
width is 3800 mm. The live load wasb = 300 mm wide and
was applied across thebridge at quarter-span (Fig. 6). The
fill density is γ f = 20 kN/m3 and the masonry density is
γm = 20 kN/m3.

The experimental collapse mechanism of the bridge
shown in Fig. 7. The vault collapse mechanism exhibits
four hinges that are clearly visible in the picture; th
mechanism developed with negligible material crushing.
The arch mechanism constrains the fill region under t
applied load to move downward and the fill at the other sid
of the bridge to move upward; the experimental collapse lo
wasPexp = 228 kN.

In Fig. 8 the collapse mechanism resulting from th
numerical limit analysis is shown, obtained by assumin
compressive strengthσc = 4.5 MPa for the arch masonry
and angle of internal frictionϕ = 37◦ (see Ref. [4]) and
cohesionc = 10 kPa for the fill. The small black circles on
the arch ring represent the active hinges, while the greysc
in the fill domain denotes different values of the ratios
between the principal shear strain rate at each element
the maximum in the fill.

As in the experimental test, in the numerical collapse
mechanism four groups of hinges develop. The loaded s
of the arch moves downward, and the arch mechani
pushes the left side; as a consequence, the fill over the
side is movedupward. The first hinge on the left side of the
arch does not develop at the springing, as happens in
arch where the fill is heavy but not resistant; the presence
the fill constrains the hingeto move upward. This behaviour
agrees with the experimental result shown inFig. 7.

The diagrams inFig. 9(a), obtained by assuming an
internal friction angleϕ = 37◦ and a compressive strength
of the archσc = 4.5 MPa, show the influenceof the fill
cohesionc on the collapse load; the lower line correspond
to the valueobtained assuming no resistant fill,Pu =
46.2 kN. Assuming c = 1 kPa, thecollapse load is
h

le

d

e

ft

e
f

Pu = 149.1 kN, about 65% of the experimental value
Pexp = 228 kN, which is obtained numerically assumin
c = 10 kPa. The diagrams inFig. 9(b), obtained assuming
the internal friction angleϕ = 37◦ and cohesionc =
10 kPa, show the influence of the compressive strength
the arch on the collapse load; the value obtained assumin
unlimited compressive strength isPu = 267.9 kN, which
is about 17% higher than the value obtained assumi
σc = 4.5 MPa, Pu = 228.0 kN; the corresponding values
obtained assuming no resistant fill arePu = 57 kN and
Pu = 46.2 kN respectively.

The strengthening effects of the fill correspond to
higher exploitation of the strength resources of the arc
in particular, the development of the collapse mechanism
predicted by the limit analysis requires the development
plastic compressive strains higher than those predicted
simplified models without fill resistance that could be n
longer consistent with the masonry behaviour. The diagra
in Fig. 10 show the load–deflection curve (referred to the
vertical displacement of the section at the load positio
obtained by the incremental analysis, compared to the up
bound obtained by limit analysis; the different collapse loa
corresponding to different ductilityδ valuesare shown. The
results are obtained by assumingσc = 4.5 MPa,c = 10 kPa
andϕ = 37◦; the elastic moduli assumed for masonry an
fill in the incremental analysis areEm = 15 000 MPa and
E f = 300 MPa, respectively.

The section of the arch that first reaches the compressive
elastic limit is located under the area where the load
applied; the corresponding load step is indicated byδ = 1
in the diagram ofFig. 10. Thedifference between the results
provided by the incremental analysis withδ ≤ 2 and the
upper bound estimated from limit analysis is about 13%.

In this case the effect of a limitation of ductility on the
development of the collapse mechanism is limited. This
result agrees with the experimental behaviour of the brid
and shows that limit analysis can be applied with a go
approximation.

4.2. Example 2: A multi-span bridge

The second example relates to a three-span bridge hav
circular arches, thicknesshs = 1 m, span� = 14 m and span
to rise ratiof/� = 2. The height of the piers ish = 10 m and
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Fig. 7. The Prestwood bridge: the collapse mechanism.

Fig. 8. The collapse mechanism of the Prestwood bridge FE model.
ue
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Fig. 9. The influence (a) of the cohesion and (b) of the angle of internal
friction on the collapse load.

the thickness ish p = 3 m; thedepth of fill atthe crown is
hr = 1 m. The assumed material parameters are: fill density
Fig. 10. The load/deflection curve and the ductility demand.

γ f = 18 kN/m3, masonry densityγm = 20 kN/m3. The
other constitutive parameters (cohesionc, angle of internal
friction ϕ and masonry compressive strengthσc) have been
varied in different analyses. The dead loads applied are d
to the weights of the fill and of the arch, while the live load
corresponds to a 6 m wide triangular symmetric pressu
distribution at the mid-span (Fig. 11). In the following,
heavy and resistant fill is considered in model A, while in
model B the fill is assumed heavy but not resistant; mod
C is defined with the same assumptions as model B but the
haunching, which is modelled as a rigid body.

In Fig. 11 the collapse mechanism of model A is
shown, where the arch–pier–fill interaction is clearly
represented. The failure mechanism of the arch–pier system
is characterized by thirteen groups of hinges attained at
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Fig. 11. The collapse mechanism of the three-span bridge (model A).
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crowns and at the haunches of the arches and at the bo
sections of the piers. In the region close to the springing
the presence of the fill constrains the haunches and inhibi
the hinge activation; in particular, the haunchings remai
rigid even though they have been assumed to have the s
material parameters as the fill.

The mechanism developed allows the crown of the central
arch to move downward, imposing the rotation of the pie
and the contraction of the lateral arches in which the crow
move upward; a compatible inelastic deformation field is
attained in the fill, which is constrained to move upwar
Inelastic sliding is spread over a large region of the fill tha
extends beyond the ends of the external arches. InFigs. 12(a)
and (b) the collapse mechanisms of model B and mode
are shown, respectively; the collapse mechanism of mode
is limited to the central arch, so it behaves as a single-arch
bridge.

The diagrams inFig. 13show the dependence of the load
carrying capacity on the compressive strength in models
and C. The values from model A turn out to be about
times as great as the corresponding values of model C.
diagrams inFig. 14(a) and (b) show the dependence of th
load carrying capacity on the values of the cohesion a
of the angle of internal friction in model A; the lower line
corresponds to model C.

The results obtained show that the FE limit analys
procedure is able to solve complex models, but the valid
of the ideal ductility hypothesis has to be verified. In
Fig. 15 the load/deflection diagram (referred to the vertica
displacement of the mid-span section) obtained by the
incremental analysis is shown, compared to the upper bo
obtained by limit analysis. The results have been obtain
m

e
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B

e

d

d
d

Fig. 12. The collapse mechanisms of model B (a) and model C (b).

Fig. 13. The influence of the masonry compressive strength on the collaps
load.

by assumingσc = 12 MPa,c = 20 kPa andϕ = 30◦; the
masonry and fill elastic moduli assumed for the incremen
analysis areEm = 15 000 MPa andE f = 300 MPa,
respectively.

The limit δ = 2 is reached in the centralarch at the mid-
span section; the difference between the results provided
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Fig. 14. The influence of the cohesion (a) andof the angle of internal friction
(b) of the fill on the collapse load.

the incremental analysis withδ ≤ 2 and the upper bound
estimated from limit analysis is about 9%.

5. Conclusions

The structural model and the numerical procedu
proposed here, which is based on the kinematic theorem
limit analysis, provide upper bounds of the collapse load a
the corresponding collapse mechanisms of masonry bridg
taking into account arch–fill interaction. Two examples ar
considered in order to show the capabilities of the F
approach and the strong influence of the fill on the bridg
strength. In particular, the first example concerning a re
bridge tested to collapse has provided a good simulati
of the experimental results. The second example relati
to a multi-span bridge has shown the capability of th
procedure for representing thecomplex interaction between
piers, arches and fill at collapse. The effectof a limitation
of the masonry ductility has been analysed by developing
reference incremental analysis of both the example mod
described. The results obtained show that the collap
mechanisms can develop almost completely even if t
ductility is limited, demonstrating that limit analysis can stil
be used successfully.

The approximations introduced have allowed us to defi
a simplified model able to describe some relevant aspec
of the arch–fill interaction requiring less cumbersom
f
d
s

g

s
e

Fig. 15. The load/deflection curve and ductility demand.

numerical analysis. On the other hand, the model prese
some limitations that have to be taken into account. T
plane strain assumption for the fill corresponds to assum
the spandrels to be providing perfect smooth bounda
conditions; the effects of this assumptions have to
evaluated and depend on the geometry of the bridg
Moreover, a more realistic description of the developme
of passive and active fill pressures at the arch extrados ne
to take account of different corresponding displacement
that are larger in the latter case. Finally, the numeric
representation of discontinuities in the velocity field tha
characterizes the solutionsof collapse problems assumin
perfect plasticity is still an open problem; the interfac
elements used allow discontinuities to develop but th
directions are arbitrarily fixed by the triangular eleme
shape.
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