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Abstract

The spatial stability analysis of two dimensional, steady channel flow is investigated
in the downstream entry zone. A model based on previous work, is presented for
the base flow, which represents a small deformation of plane Poiseuille flow. The
base flow evolution towards the fully developed state comes from the experimental
and theoretical study of M. Asai and J.M. Floryan ”Certain aspects of channel
entrance flow”, Phys. Fluids 16 (2004). This flow is found to be more stable than
the parabolic Poiseuille flow, both when exponentially and algebraically growing
disturbances are examined. The most destabilizing base flow defect is calculated
using a variational method. The compromise between the destabilising effect of
the defect, which diffuses downstream, and the instability growth is found to be
insufficient to provoke transition in the downstream laminar flow.
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1 Introduction

This work is concerned with the stability properties of entry channel flow.
The disturbance growth mechanism in parallel and quasi-parallel flows is of
great interest to understand transition to turbulence and has been the object
of several theoretical and experimental studies.

For simple shear flow cases, such as the Poiseuille flow, the experimental flow
behavior and the theoretical results are quite different. Transition to turbu-
lence is observed for minimum transition Reynolds number around Re = 1000
(Nishioka and Asai [12]), well below the critical value provided by linear sta-
bility theory, i.e. Rec = 5772 (Orszag [14]). The transition may occur at
Reynolds number lower than 5772 because of the subcritical character of the
instability. In fact, the stability characteristics of shear flows are extremely
sensitive to external perturbations. This property, linked to the non-normal
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nature of the dynamical disturbances operator, is crucial in determining the
outcome of laboratory experiments.

Research on the topic of transition in shear flows in the last ten years has been
concerned particularly with identifying worst case scenarios, i.e., those initial
(or inlet) conditions responsible for the largest initial growth of disturbances,
in a linearized setting. The disturbance can be distinguished by their growth:
exponential or algebraic. The physical mechanisms describing the origin of
disturbance growth may be extracted from the Reynolds-Orr equation. For
parallel shear flows the source term for the instability can be positive in two
manners. The phase shift at the wall implies a constructive interaction be-
tween the streamwise and wall normal velocity perturbation, at the origin of
exponentially growing Tollmien-Schlichting waves. Alternatively, by the lift-up
mechanism, wall normal fluctuation induces streamwise velocity fluctuation or
streaks (Butler and Farrell [4], Trefethen et al. [17]). This lift-up mechanism
implies algebraic amplification, which scales with the Reynolds number.

The argument goes that if the perturbation amplitude attains - even if only
transiently - a sufficiently large value, some nonlinear boot-strapping effect
will bring the system to transition. This new interpretation of linear stability
theory has led many scientists studying transition in shear flows to almost
abandon the traditional single-mode growth of the linear stability approach
which captures the asymptotic behavior of the system, to pursue studies of
nonmodal transient growth, optimal perturbations, and pseudospectra. The
concept of three-dimensional optimal disturbances has been introduced by
Butler and Farrell [4] and pursued by many others. All of the studies on
optimals in wall-bounded shear flows (whether temporal or spatial) have shown
that streamwise vortices transform into streaks downstream (in time or space)
and that the disturbance energy, mostly carried by the streaks, can grow by
orders of magnitudes over its initial value. The recent book by Schmid and
Henningson [16] provides a complete account of the recent view of transition.

In this article we are interested on the influence of weak base flow distortions
on linear stability results. The base flow uncertainty of the stability equation
can be represented with δU , a possibly finite, but typically small, distortion
of the idealized base flow Uref (i.e.: U = Uref + δU). The δU-pseudospectrum,
introduced by Bottaro et al. [3], is defined as

ΛδU (L) = {α ∈ C : ǫ ∈ Λ(L(Uref + δU)), for some δU with ‖δU‖ ≤ ǫ} ,

where Λ(L) is the spectrum of the linear stability operator L. The spectrum
of L(U + δU), is a subset of the unstructured pseudospectrum studied by Tre-
fethen et al. [17]. It is well known that the pseudospectrum of a hydrodynamic
stability operator can significantly differ from its spectrum when the operator
is non-normal, indicating the strong sensitivity of non-normal operators to ex-
ternal excitations, and the consequences of this fact in hydrodynamic stability
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theory have been explored in details in a seminal paper by Trefethen et al.

[17]. In particular, it has been shown that the pseudospectrum can protrude
far into the unstable half plane beyond a critical value of the distortion ampli-
tude, for nominally subcritical conditions. The most destabilising distortion,
so-called the minimal defect, can be calculated by a variational approach. This
problem has been recently addressed in the temporal setting by Bottaro et al.

[3] for Couette flow, and in the spatial setting by Gavarini et al. [6] for pipe
Poiseuille flow. The approach has been extended by Hwang and Choi [8] to the
case of a two-dimensional wake, in order to suppress or enhance the absolute
instability.

The main objective of the present work is to investigate the stability properties
of two-dimensional, steady entry flow. The paper is organized as follows. The
model of entry flow is described in section 2. The following sections are dedi-
cated to the linear stability analysis, for both exponentially and algebraically
growing disturbances, of realistic entry flow accruing from experiments by Asai
and Floryan [1]. In the last section, before the conclusion, the worst possible
entry flow is identified, i.e. the entry distortion, of fixed norm, that maximizes
the growth rate of a mode, for subcritical values of the Reynolds number.

2 Base flow defect formulation

The channel flow induced by a streamwise pressure gradient is considered.
The mean velocity is made dimensionless using the maximum velocity U0, the
distances scale with the half-channel height h, so that the base flow reads
U(y) = 1 − y2. In this section we present a model of the channel entry flow,
downstream of the channel inlet, where the evolution has a universal character.
Recent review of the relevant literature as well as a detailed description of the
flow, in the case of channel entrance with sharp corners, are given in reference
[15].

We takes as a characteristic streamwise scale L = hRe, as in Prandtl’s bound-
ary layer approximation. This is the only difference with the model presented
by Sadri and Floryan [15] and Asai and Floryan [1]. By proceeding as we do,
the Reynolds number is scaled out in the dimensionless equations. From the
physical point of view, the normal direction is characterized by diffusive effects
and the longitudinal direction is dominated by advection, which justifies the
Reynolds number in the ratio of the different characteristic lengths. By scal-
ing the normal coordinates y with h, the streamwise coordinate x with hRe,
and the streamwise velocity with U0, it follows that U0/Re should be used as
the scale for the normal velocity V . The pressure is normalized by ρ(U0/Re)

2,
with ρ the density of the fluid.
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The dimensionless mean flow (U, V, P ), supposed to be two-dimensional and
stationary, may be represented by:

U(x, y) = U0(y) +AU1(y) e
−λ(x−x0),

V (x, y) = λAV1(y) e
−λ(x−x0),

−dP/dx = P0 +AP e−λ(x−x0).

(1)

The streamwise coordinate could be translated along x, i.e. we can introduce a
fictious origin x0. In the following x0 is fixed to zero. The streamwise invariant
solution (U0 = 1−y2, P0 = 2/Re) corresponds to the fully developed Poiseuille
flow. Asai and Floryan [1] give a relation between the velocity amplitude A
and the pressure amplitude as AP = −A/Re d2U1/dy

2|y=−1.

The flow is supposed to be slightly perturbed from plane Poiseuille flow, so the
equation describing the dynamics of the disturbance is be linearized around
the mean state (U0, P0). This equation, for the streamfunction, takes the form
of a generalized eigenvalues problem:

D4ψ + λ(U0D
2ψ − U ′′

0ψ) = 0, (2)

associated with homogeneous Dirichlet and Neumann boundary conditions:
ψ = Dψ = 0 for y = ±1. The first two modes are λ1 = −21.680/Re,
λ2 = −28.221/Re and correspond, respectively, to sinuous (antisymmetric)
and varicose (symmetric) modes, cf. figure 1.
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Fig. 1. The first and second eigenfunctions of equation (2), normalized with their
maximum.

Any defect can be expressed as a weighted sum in the set of eigenmodes:

δU(x, y) =
∞
∑

n

κnŨn(y)e−λn(x−x0). (3)
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The particular case dP/dx = 0, corresponding to a sinous disturbance, leads to
a Sturm-Liouville problem. In this form the projection weights κn are simply
determined by an appropriated scalar product; details are given in Appendix
A.

3 Linear stability of Asai and Floryan [1] experimental flow

In the section we investigate the stability of the base flow found in the ex-
perimental and theoretical study of Asai and Floryan [1]. The contraction
section used in the experiment is symmetric with respect to the midplane of
the channel. So measurements show a deviation shape very similar to mode 2
in expansion (3) (i.e. κ2 ≫ κn, for n = 1, 3, 4, 5, ..).
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Fig. 2. Base flow profiles for different disturbance amplitudes.

3.1 Modal analysis

First, we study the evolution of disturbances with a modal analysis based
on the parallel flow assumption. This classical stability analysis is focused
on the sign of the least stable mode, labeled as Tollmien-Schlichting mode.
The approach adopted here is spatial, implying that the eigenvalue problem
is solved for α ∈ C with ω and β real. In compact form this system can be
noted as Lq̃n = αnq̃n. The modal stability, for arbitrary base flow distortion,
was studied earlier by Hidfi et al. [7]. The work of these authors has been
conducted in the temporal framework, which is simpler but not as physically
relevant as the spatial framework for the kind of open flows examined here.
Although the neutral curve is independent of a spatial or temporal viewpoint,
these two problems are quite different, because the spatial problem is elliptic.
In fact, with the possible exception of the unstable mode, the upper half of
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the complex α-plane contains downstream decaying modes while the lower
half corresponds to upstream decaying modes. The spatial approach permits
a direct comparison between the diffusion of the base flow and the growth of
the unstable mode.

Using Squire theorem, the modal analysis can be reduced to the Orr-Sommerfeld
equation with β = 0:

{(

−iω + iαU −
1

Re
∇2
)

∇2 − iαU ′′

}

v = 0 (4)

The growth rate and corresponding phase velocity c = ω/αr contours, in the
(Re, A) plane, are displayed in figure 3.
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Fig. 3. Growth rate imag(α) of TS mode (continuous lines) and corresponding phase
velocity c (dotted lines) in Reynolds number Re versus the amplitude A plane. The
shaded regions are unstable.

The distortion on the entry flow displays a stabilizing effect on the viscous
instability (Tollmien-Schlichting waves). For undisturbed Poiseuille flow, the
critical Reynolds number is 5772. This threshold increases with the defect’s
amplitude. In addition, for high distortions an inviscid intability appears,
linked to an inflection point of the mean velocity profile. This inviscid un-
stable mode is solution of Rayleigh’s equation:

{

(−iω + iαU)∇2 − iαU ′′
}

v = 0 (5)

The growth rate and the corresponding phase velocity, for the inviscid insta-
bility, are presented in figure 4. The eigenfunctions of the inviscid mode are
centered near the half-channel line and the corresponding phase velocities are
larger than for the viscous Tollmien-Schlichting modes.
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Fig. 4. Inviscid stability results. Growth rate imag(α) (continuous lines) and cor-
responding phase velocity c (dotted lines) in circular frequency ω versus the am-
plitude A plane. The dashed line indicates the neutral curve for inviscid instability
(i.e. imag(α) = 0).

3.2 Transient growth

As a next step, we investigate a transient, algebraically growing, perturbations,
that cannot be attributed to single-mode exponential growth. The search for
transiently growing perturbations starts with the search of optimal pertur-
bation, i.e. the search of the inlet condition that provides the largest energy
growth. Consequently, we define the maximum kinetic energy amplification
Gmax as,

Gmax = max
∀x∈[0;∞[

‖q(x)‖E ,

with the normalization, ‖q(0)‖E = 1. The subscript E denotes an energetic
norm defined as:

G

Re2
=

∫+1
−1 u2 dy|x=xopt

∫+1
−1 v2 + w2 dy|x=x0

(6)

The disturbances corresponding to this maximum take the form of streamwise
elongated and steady structures. In this case the parallel base flow assumption
is no longer valid and the characteristic scales for the perturbation must be
identical to those for the base flow defined in section 2. The algebraically
growing perturbations can be adequatly described by the use of linearized
equations in which the long scale (hRe) is used to normalize streamwise length,
and the short scale (h) is used for the cross-stream directions. Applying these
scales to the linearized Navier-Stokes equations it follows that the disturbance
equations, at leading order, are independent of the Reynolds number and
parabolic in the streamwise direction. Moreover, the linearization permits a
mode-by-mode study in Fourier space. Along the homogeneous directions the

7



perturbations are expressed in Fourier-like form : exp(iβz − iωt). Finally, the
disturbance equations take the symbolic form Aqx = Bq, which in expanded
form, read:

ux + vy + iβw = 0

−iωu+ (Uu)x + V uy + Uyv = uyy − β2uzz

−iωv + (V u+ Uv)x + 2(V v)y + iβV w = −py + vyy − β2vzz

−iωw + (Uw)x + (V w)y = −iβp+ wyy − β2wzz

(7)

These equations are associated to homogeneous Dirichlet boundary conditions
at the walls. This system was previously used by Luchini [11] for optimal
perturbations in non-parallel boundary layer. The inflow condition for the
equations (7) was computed using the discrete Lagrange multipliers method:
a Lagrangian functional is defined as

L = G(L) +

L
∫

0

p̄T [(Aqx) −Bq] dx,

maximization of L leads to the unconstrained set of equations:

(Aq)x = Bq

p(x = L, y) = −2H−1Aq(x = L, y)

ĀTpx = −B̄T p

q(x = 0, y) = −(2EL)−1H−1Ap(x = 0, y)

(8)

The perturbations are normalized such that Ex=0 = 1. The equations are dis-
cretised using a Chebyshev pseudospectral method in the wall normal direction
and a finite difference scheme in the streamwise direction. The iterations were
pursued until the subsequent changes in the maximal gain dropped below a
threshold value, fixed at 10−4. The parameters ωopt, βopt and xopt, correspond-
ing to the largest possible gain, at fixed Reynolds number and amplitude, are
obtained using a shooting method. The optimal frequency was found to vanish
in all cases. The maximum gain Gmax/Re

2 and corresponding βopt and xopt are
drawn in figure 5 as function of the initial defect amplitude.

The streaks presents a weak sensitivity to the mean flow distortion, in contrast
with TS waves. When the defect amplitude increases, the streaks maximum
amplitude decreases slowly. Simultaneously, the corresponding location de-
creases and the streaks’ width increases. An example of optimal perturbation
is presented in figure 6.
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Fig. 5. Maximum gain (G), optimal streamwise location xopt and optimal spanwise
wave number (β) versus defect amplitude A.
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Fig. 6. Optimal inflow disturbances at x = 0 (left) and resulting streaks at
x = xopt/Re (right) for A = −0.2. The inflow perturbation is represented through
the cross-stream velocity (vectors). The outflow is displayed with isolines of the
streamwise velocity; the positive and negative values are respectively denoted by
continuous and dotted lines.

The optimal perturbations in the entry channel flow are very similar to those
found for the unperturbed Poiseuille flow (cf. Biau and Bottaro [2]).

4 Worst-case scenario

In the previous sections the stability properties of realistic entry flows was
investigated. The results show a net stabilizing effect. Now we are interested
in finding the worst, most destabilizing, flow distortion, following the method
developed by Bottaro et al. [3]. With a temporal stability study Bottaro et al.

described a technique to identify optimally configured defects of the base flow
capable of rendering Couette flow linearly unstable. The work has been ex-
tended to the spatial frame by Gavarini et al. [6] for the case of pipe Poiseuille
flow. This work has shown that the optimal base flow distortion is efficient to
provoke transition in laminar pipe flow. Hwang and Choi [8] have investigated
the effect of basic-flow modification on the absolute instability in a wake at
low Reynolds number. Using the method of calculus of variation, they opti-
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mally modify the basic flow to suppress or enhance the absolute instability.
For a two-dimensional parallel model wake and a circular-cylinder wake, this
work shows that the positive and negative velocity perturbations to the basic
flows, respectively, at the wake centreline and separating shear layer suppress
the absolute instability.

Here, the same technique is used for entry channel flow in subcritical con-
ditions, by considering disturbances developing in space. In this section, the
stability analysis is focused on the modal study. As shown previously, the
algebraically growing perturbations are weakly sensitive to small base flow
deviation.

4.1 The sensitivity functions

Operators resulting from perturbations of the base flow only, unlike general
perturbations, are subject to Squires theorem and transformation. Hence, we
limit ourselves here to considering only the Orr-Sommerfeld equation. An in-
finitesimal, locally parallel variation δU in the Poiseuille flow, injected into
the Orr-Sommerfeld equation, symbolically written as LOS, leads to:

LOS(U + δU ;α + δα)(v + δv) = 0, (9)

which can be rewritten, after linearisation, as:

LOS δv + δU
∂LOS

∂U
v + δα

∂LOS

∂α
v = 0. (10)

In order to isolate the eigenvalue variation, we now project onto the ad-
joint subspace spanned by a(y), with the scalar product (·, ·) defined by
(p, q) =

∫

y p
∗q dy. The function a(y) is solution of the adjoint Orr-Sommerfeld

equation:

LOS
†a =

{[

−iω + iα∗U +
1

Re
∇2
]

∇2 + 2iα∗U ′∂y

}

a = 0, (11)

with homogeneous Dirichlet and Neumann boundary conditions. The variation
in a given eigenvalue arising from an arbitrary variation δU is:

δα =

+1
∫

−1

GUδU dy, (12)
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where the sensitivity function GU is an appropriate combination, after inte-
gration by parts, of direct and adjoint eigenfunctions of the given mode:

GU = αa∗∇2v − α(a∗v)′′, (13)

with the direct-adjoint normalization:

−(a, ∂αLOSv) =

1
∫

−1

a∗ [U ′′ + 2α(αU − ω)+(
4iα

Re
− U

)

∇2
]

v dy = 1.

4.2 Distortions in the base flow: the minimal defects

We define an energy–like norm to quantify the deviation from the undisturbed
Poiseuille flow:

ǫ =
∫

y

(U(x = 0, y)− Uref(y))
2 dy.

Using Lagrange multipliers and following the method described in Bottaro et

al. [3], we obtain :











U = Uref + Im(GU (x=0,y))
2λ

λ = −
√

1
4ǫ

∫

y (Im(GU(x = 0, y)))2 dy

The most sensitive mode, which maximises the imaginary part of the sensi-
tivity function ‖Im(Gu)‖∞ with respect to ω, is followed during the iterative
process. The most sensitive mode is preferred to the most unstable one, be-
cause the latter could converge to a local minimum. The results are presented
in figure 7, where the growth rate is represented in the plane Reynolds num-
ber, in the range 1000 < Re < 4000, versus amplitude of the defect, in the
range 5 × 10−6 < ǫ < 10−4.

The domain of attraction of the laminar state shrinks for large Re (as Reγ

say, with γ < 0), so that small but finite perturbations lead to transition.
The minimum energy threshold satisfies the Reγ-scalings, with γ = −3/2.
Trefethen et al. [17], by using arguments based on dominant balance of non-
normal growth and nonlinear-feedback conjectured that γ < −1. Chapman [5],
through a formal asymptotic analysis of the Navier-Stokes equations, found
that for streamwise initial perturbations γ = −3/2 (factoring out the unstable
modes), while for oblique initial perturbations γ = −5/4.

In order to compare the effect of the base flow defect diffusion against the
growth of the instability, the so-called eN method is used. The case is consid-
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Fig. 7. Iso-αi (continuous lines) in Reynolds number (Re) and defect energy norm
(ǫ) plane. The stable domain is shaded. The dashed lines are isolines of the frequency
ω of the most unstable mode.

ered of Re = 2000 and ǫ = 5 × 10−5; the corresponding optimal frequency is
ω = 0.773.

The laminar basic flow is specified by projection on the set of eigenfunction (see
equation 3), defined in section 2. The inflow distortion δU(x = 0, y) is obtained
by the optimisation described previously. So that the mean velocity profiles
are available at any streamwise location (x) using the discrete projection:

δU(x, y) =
∑

n

Qn(κne
−λnx) with κ = Q−1 δU(x = 0, y). (14)

The matrix Q is constitued by the eigenfunctions of equation (2), i.e. Qnm =
Ũn(ym). Some shapes are plotted in figure 8.

−0.03 −0.02 −0.01 0 0.01 0.02
−1

−0.5

0

0.5

1

∆ U 

y

x Re=0
x Re=0.8
x Re=1.6

Fig. 8. Minimal defect for Re = 2000, ǫ = 5 × 10−5 and ω = 0.773 at various
dowstream locations.

A local stability analysis of this nearly parallel base flow is now performed

12



to determine the growth rate of the locally unstable disturbances for various
frequencies ω. The stability diagram of amplified Tollmien-Schlichting waves
as a function of the streamwise distance is depicted in figure 9.
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Fig. 9. Iso-growth rate (αi) for Re = 2000, ǫ = 5 × 10−5.

Let us consider now a wave which propagates downstream at a fixed frequency
ω. Figure 10 shows that this wave is amplified up to a certain distance and is
damped further downstream because of the defect diffusing away. At any sta-
tion x > 0, the wave amplitude ATS can be related to its initial amplitude ATS

0

by the relation : ATS/ATS
0 = exp(

∫ x
0 −αi dx). The initial amplitude is linked

to external noise through some receptivity mechanism. The streamwise vari-
ation of the natural logarithm ln(ATS/ATS

0 ) is plotted in figure 10 for several
frequencies, the continuous line represents the envelope of these curves, called
the N factor: N = max ln(ATS/ATS

0 ); ∀ω. At each location, N represents the
maximum amplification factor of the disturbances.
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Fig. 10. N factor for Re = 2000, ǫ = 5 × 10−5 and ω = 0.5, 0.55, ... 1.

Figure 10 illustrates the calculation of the N factor. The associated evolution
of mean flow defect si also represented. As can be seen, the amplification factor
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is too weak to overcome the viscous damping of the defect, and the N -factor
maintains very small values.

5 Conclusions

In this study, spatial linear stability theory has been used to examine the sta-
bility of channel entrance flow. The presence of the entrance has a stabilizing
effect in accordance with the well-know result that shear flows in a pressure
drop region (accelerated flow) are more stable than those in the pressure de-
crease region (decelerated flow). For weak base flow distortion, in a negative
pressure gradient (accelerated flow), the mean velocity profile has no inflection
point and the instability - if it exists - is very weak. So the critical Reynolds
number increases and the instability region decreases. For strong distortions,
an inflection point gives rise to an inviscid instability described by Rayleigh
theory. Secondly, the optimal distortion was determined but the instability
growth is too weak to overcomes the viscous damping of the defect. Far down-
stream the defect is damped and critical values reach the classical results for
Poiseuille flow.

Work in progress focuses on the stability of base flow distortions which depend
on spanwise coordinate, to try and capture the defect of minimal norm which
could cause transition in subcritical duct flow. The final goal will be to compare
and link such steady, finite amplitude structures to experimental observations
of streaks and self–sustained structures in channel flows.

Acknowledgements. The author wishes to thank professor A. Bottaro for his
helpful comments on this work. The stay of the author at the University of
Genova is supported by a Marie Curie grant through the FLUBIO project.
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A Receptivity to inflow disturbances

For boundary layer flows, Libby & Fox [9] proposed a procedure to calcu-
late the mode amplitude from an inflow condition imposed at x0. Luchini [10]
extended this results to overcome the leading edge singularity linked to alge-
braic form. In channel flow, without singularity at x0 = 0, the Sturm–Liouville
problem obtained for the auxiliary function H = (ψ/U)′ is:

(U3H ′)′ + (3U ′′U2 − λU4)H = 0, (A.1)

with the associated orthogonality relation :

1
∫

−1

HkHldy = Ckδkl Ck =

1
∫

−1

H2
kdy,

with δkl the kroneker symbol. The defect is expanded in the form:

δψ(x, y) =
∑

k

Ake
λ(x−x0ψk(y),

so that the amplitude Ak can be expressed using inflow condition:

Ak = C−1
k

∫

y

(

δU(x0, y)

U(y)

)′ (

ψk(y)

U(y)

)′

U4 dy.

Moreover, multiplying equation A.1 by ψk and integrating shows that eigenval-
ues λ are real and negatives, which implies the base flow distortion is damped
in the downstream direction.
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