ANALISI SISMICA DI UNA PASSERELLA PEDONALE MEDIANTE SAP2000

dimensioni 18.3m×3.66m×3.66m soletta: 13cm carico permanente: 50Kg/mq carico accidentale: 500Kg/mq q=2; zona sismica di II categoria,terreno C

1) DEFINIZIONE DEL MODELLO

File menu>new model; grid only

Quick Grid Lines	
Cartesian	Cylindrical
Coordinate System N	ame
GLOBAL	
- Number of Grid Lines	
X direction	11
Y direction	2
Z direction	2
- Grid Spacing	
× direction	1.83
Y direction	1.83
Z direction	1.83

Define menu>frame sections>add import new property Nota: è possibile vedere o modificare la griglia: define menu>coordinate/grid system

si possono definire le sezioni geometriche degli elementi strutturali

a1)importando profili da un sagomario descritto da file esistenti (*nomefile*.pro)

Define menu>frame sections>import new property

b)a partire da forme standard Define menu>frame sections>add new property

c)come sezioni generiche di cui si assegnano i parametri geometrici

Define menu>frame sections>add import new property>frame section property type: other>general

d) si possono direttamente disegnare (può essere comodo per sezioni composte).

Define menu>frame sections>add new property>frame section property type: other>section designer

Frame Properties	
Find this property:	Click to:

Nell'esempio che segue si crea una lista di possibili profili da cui verranno scelti in automatico gli elementi idonei.

DEFINIZIONE DI UNA LISTA DI SEZIONI DI SELEZIONE AUTOMATICA

Serve per creare una lista di possibili sezioni all'interno della quale il programma sceglierà quelle idonee.

Define menu>frame sections; import new property

Si attiva il materiale: steel

Si selezionano i profili doppio L

Si cerca il file: *euro.pro* che contiene una serie di profili. Qui seleziono tutti i profili doppio L 100x100:

c:\program files\computers and stru
Section Type: Double Angle
2.1100;14/15/ 2.1100;14/20/ 2.1100;14/25/ 2.1100;14/25/ 2.1100;14/26/ 2.1100;14/26/ 2.1100;15/10/ 2.1100;15/10/ 2.1100;15/12/ 2.1100;15/15/ 2.1100;15/26/ 2.1100;15/26/ 2.1100;15/20/ 2.1100;15/26/ 2.1100;15/20/ 2.1100;15/20/ 2.1100;15/20/
2L110×75×8/0/ 2L110×75×8/6/

Ancora in *add new property*>Add auto select

Si scrive 'aste' nell'*auto section name*, poi nella sezione di sn vado a cercare i profili doppio L che seleziono e porto nella sezione di dx:

٩u	to Selection Sections	
_		
		1
	Auto Section Name	aste
	Auto Section Type	Isteel
	0 / N /	Market Officer Market
	Section Notes	Modify/5how Notes
	Cl	
	- Choose Sections:	
	List of Sections	Auto Selections
	21100×6/0/	
	21100×6/6/	
	2L100×6/8/	
	2L100×7/0/	Add ->
	2L100×7/6/	
	2L100×7/8/	<- Remove
	2L100X8/0/	

2) DEFINIZIONE DELLE ASTE

DISEGNO DEI PRIMI ELEMENTI TRASVERSALI E LONGITUDINALI Si va nella vista 2-D alla quota z=3.66m Un elemento dell'elenco aste diventa l'elemento corrente: *Draw frame/cable menu>section:aste* (nota: esistono tasti di scelta rapida)

Properties of Object	×
Line Object Type	Straight Frame
Section	aste
Moment Releases	Continuous
XY Plane Offset Normal	0.

e si rende attivo il comando che segue in modo da spezzare gli elementi creati in corrispondenza dei nodi:

Draw menu>snap to> points and grid intersections view menu>set 2-D view, xy plane option, z=0NOTA: l'opzione attivata aiuta a tracciare gli elementi in corrispondenza dei nodi

Per costruire gli elementi del piano z=0, si tracciano tre linee definite da: [m]

x=0, y=0;	x=18.3, y=0
x=0, y=0;	x=0, y=3.66
x=0, y=3.66;	x=18.3, y=3.66

nota: un click con il pulsante dx consente di disegnare elementi spezzati; *esc* disattiva la penna;)

nota: *select object* consente di uscire dal comando attivo.

REPLICA DEGLI ELEMENTI

Dopo avere selezionato la prima asta trasversale si replicano le altre aste trasversali: *edit menu>replicate*

Replicate		
Linear	Radial	Mirror
Increments		Replicate Options
dx 3.6	6	Modify/Show Replicate Options
dy 0.		8 of 9 active boxes are selected
dz 0.		🔲 Delete Original Objects
Increment Dat	a	

selezionare le corde longitudinali

assign menu>frame>automatic frame mesh> auto mesh frame at intermediate joints and at intersection with other frames

l'operazione di suddivisione è necessaria per attivare la connessione tra gli elementi

per costruire gli elementi a quota z=3.66 select all edit menu >replicate

R	eplicate					
ſ	Linear		Radial	Mirror		
	Increments			Replicate Option	18	
	dx	dx 1.83 dy 0.		Modify/Show	Replicate Options	
	dy 🗍			9 of 9 active b	oxes are selected	
	dz 3.66		🔲 Delete Orig	jinal Objects		
	Increment D	iata 1				

view menu>set 2-D view, xy plane option, z=3.66m assign menu>clear display of assign

in questo modo viene disattivato il comando che mostra la suddivisione degli elementi.

ELIMINAZIONE DEGLI ELEMENTI INUTILI

Il comando che segue si applica per accorciare alcuni elementi. Si selezionano le due corde longitudinali; la penultima a dx trasversale; i due punti a dx che delimitano le due corde longitudinali

edit menu>edit lines>trim/extend frames; trim frame option

in questo modo le due estremità selezionate coincidono con l'elemento trasversale selezionato. Si seleziona e si cancella l'asta rimasta:

edit menu>delete view menu>set 2-D view, xz plane option

DISEGNO DEI DIAGONALI

Draw menu>draw frame cable (assicurarsi che la proprietà corrente degli elementi sia sempre 'aste') Si disegna la prima diagonale dall'origine al punto x=1.83, y=0, z=3.66 e poi, continuando, la seconda al punto x=3.66, y=0, z=0.

selezionare le due diagonali con una finestra che va da destra a sinistra e incrocia i diagonali

nota: se la finestra è fatta da dx a sn si seleziona tutto ciò che incrocia la finestra; se è fatta da sn a dx si seleziona tutto ciò che sta dentro.

edit menu>replicate

si ripete l'operazione duplicando i diagonali sul piano y=3.66m (selezionandoli con una finestra che li attraversa da dx a sn e poi con il comando *replicate*)

GRUPPI

Può essere comodo creare dei gruppi: diagonali, correnti_inf, correnti_sup, traversi

RELEASE

Si assegnano in questo modo delle connessioni diverse dalla connessione rigida, quali ad esempio vincoli cerniera agli estremi dei diagonali. Select mode Si selezionano i diagonali, dopodichè: Assign menu>frame>release/partial fixity>M33

3)GENERAZIONE DELLA SOLETTA

view menu>set 2-D view, xy plane option, z=0 define menu>area section add new section: impalcato

draw menu>draw rect area (assicurarsi che le proprietà attive siano quelle di impalcato) *snap to points and grid intersection*

disegnare l'elemento in senso orario a partire dal punto x=0, y=0 e lungo i quattro spigoli dell'impalcato.

Uscire dalla modalità con select mode

Si può vedere meglio l'impalcato con: set display option, fill objects, apply to all windows

Display Options For Active Window							
Joints Frames/Cables/Tendons General View by Cok							
🗌 Labels	🗖 Labels	🔲 Shrink Objects	 Objects 				
Restraints	Sections	Extrude View	C Section				
🔲 Springs	🗖 Releases	Fill Objects	C Material				
🔲 Local Axes	🔲 Local Axes	🔽 Show Edges	C Color Pr				
🔽 Invisible	Frames Not in View	🔽 Show Ref. Lines	C White B				
🔲 Not in View	🔲 Cables Not in View	🔲 Show Bounding Boxes	C Selecte				

SUDDIVIDERE LA SOLETTA

Selezionare tutti i punti delle travi inferiori e selezionare la soletta *Edit menu>edit areas> devide areas*

4) DEFINIZIONE DEI VINCOLI

view menu>set 2-D view, xy plane option, z=0

Selezionare i punti da vincolare: appoggio scorrevole a dx, appoggio a sn con: *Menu assign>joints>restraints.* Nota: conviene utilizzare i comando di guida rapida.

5)DEFINIZIONE DEI CARICHI

Carico permanente: peso proprio+50Kg/mq Carichi accidentali 500Kg/mq

Per definire due condizioni di carico permanente e accidentale:

Define menu>load cases, permanente, accidentale

Nota: *load case* e *analysis case* possono essere diversi; peraltro il programma crea un corrispondente *analysis case* appena viene definito il *load case*

Nota: self weight =1 (default) significa che nel *load case* si include il peso proprio.

6)ASSEGNAZIONE DEI CARICHI

selezionare le 5 solette (controllare a sn in basso che la dicitura sia: 5 areas selected)

assign menu>area loads>uniform (shell)

si assegna il load case name: permanente si asssegnano 50Kg/mq come carico gravitazionale

Area Uniform Loads							
Load Case Name PERMA	NENTE V N, m, C V						
Uniform Load	Options						
Load 500	Add to Existing Loads						
Coord System GLOBAL -	Replace Existing Loads						
Direction Gravity 💌	C Delete Existing Loads						

select menu>get previous selection assign menu>area loads>uniform (shell) si assegna il load case name: accidentale si assegnano 500Kg/mq come carico gravitazionale

7)MODIFICATORI

Le proprietà di membrana vengono modificate per impedire all'impalcato di trasmettere carichi nel piano caricando le aste trasversali

view menu>set 2-D view, xy plane option, z=0 Select menu>get previous selection Assign menu>area>area stiffness modifiers

Property/Stiffness Modification Factors					
Property/Stiffness Modifiers for Analysis					
Membrane f11 Modifier	0				
Membrane f22 Modifier	0				
Membrane f12 Modifier	1				
Bending m11 Modifier	1				
Bending m22 Modifier	1				
Bending m12 Modifier	1				
Shear v13 Modifier	1				
Shear v23 Modifier	1				
Mass Modifier	1				

assign menu>clear display of assign cliccare nella finestra 3-D: view menu>show grid

8)ANALISI

Analyze menu>run analysis

Nota: si fanno girare solo le analisi che interessano Nota: a questo punto può essere opportuno fare un controllo eliminando il *self weight* nella *load case* PERMANENTI e controllando che le reazioni dei vincoli siano pari al carico assegnato

9)PROGETTO DEGLI ELEMENTI IN ACCIAIO

Options menu>Preferences>steel frame design

Dopodiché selezionare il codice opportuno:

Steel Frame Design Preferences for Italian UNI 10011					
Item Value					Design Code:
	1	Design Code	Italian UNI 10011 🗾 👻		Subsequent design i:
	2	Time History Design	Envelopes		selected code.
	3	Framing Type	Moment Frame		
	4	Consider Deflection?	No		

Design menu>steel frame design>start design/check of structure

Il programma seleziona gli elementi ottimali tra quelli proposti; tuttavia l'analisi è stata fatta con gli elementi di tentativo, allora è necessario ripeterla

Design menu>steel frame design>verify analysis vs design section

L'opzione è attiva solo dopo avere lanciato la analisi.

L'analisi si deve ripetere fino a che le sezioni di progetto e dell'analisi sono le stesse

Analyze menu>run analysis

Design menu>steel frame design>start design/check of structure

Design menu>steel frame design>verify analysis vs design section

Fino a che non compare:

design menu>steel frame design>verify all members passed

10)ANALSI SISMICA CON SPETTRO DI RISPOSTA

Definizione delle masse: define menu>mass source

assegnazione dello spettro di risposta: define menu>functions>response spectrum choose function type to add, spettro 3274 Nota: si devono inserire due spettri, uno per la direzione orizzontale e uno per la direzione verticale. Gli spettri di risposta sono adimensionali, l'u.d.m. verrà introdotta successivamente come coefficiente moltiplicatore della analysis case

define menu>load cases

add new load

si aggiungono tre *load case* che rappresentano l'azione sismica spettrale in direzione x, y, z:

e le corrispondenti analysis case:

define menu>analysis case

in automatico le analysis case create sono le seguenti:

An	alysis Cases		
ſ	Cases		Click to:
	Case Name	Case Type	Add New Case
	DEAD	Linear Static	
	MODAL	Modal	Add Copy of Case
	AUCIDENTALE	Linear Static	
	sismay	Besponse Spectrum	 Modity/Show Lase
	sismaz	Response Spectrum	Delete Case

nell'*analysis case type* relative alle analisi sismiche si va a selezionare: *modify/show case* e si modificano le analisi sisma x, sismay, sismaz, scalando inoltre gli spettri a g:

Analysis Case Name sismax Set Def Name	Analysis Case Type Response Spectrum	
Modal Combination © CQC SRSS C BMC 10 Pot Dbl Sum GMC (1)	Directional Combination © SRSS © ABS © Modified SRSS (Chinese) ABS Scale Factor	
Modal Analysis Case Use Modes from this Modal Analysis Case MODAL	Diaphragm Eccentricity Eccentricity Ratio Overide Eccentricities Override	
Loads Applied Load Type Load Name Function Scale Factor Accel U1 ▼ FUNC1 ▼ 9.81		
Accel U1 FUNC1 9.81	Add	