
SISTEMA AMGA: GESTIONE STRAORDINARIA

Piano di RAZIONAMENTO

lo scopo principale è quello di ridurre il rischio di situazioni di FALLANZA (carenza della risorsa idrica) nelle quali è necessario ricorrere a restrizioni nelle erogazioni o razionamenti

FASI DEL RAZIONAMENTO

- ✓ MORBIDO
- ✓ MEDIO
- ✓ GRAVOSO
- In condizioni di EMERGENZA (razionamento della risorsa) si verificano passività nel bilancio dovute a:
 - ✓ danni che si verificano nelle condotte per sovrappressioni dovute a manovre di apertura e chiusura degli organi di intercettazione
 - ✓ energia non prodotta nelle centrali idroelettriche
 - ✓ maggior impegno del laboratorio chimico dovuto alla necessità di operare campagne supplementari di analisi batteriologiche
 - **✓** mancato introito relativo all'acqua fatturata

GESTIONE DELLA RISORSA IDRICA NEL BACINO ARTIFICIALE DEL BRUGNETO

Applicazione della Teoria STOCASTICA dei SERBATOI al bacino del BRUGNETO

Obiettivi

- ✓ Valutare l'andamento della disponibilità della risorsa idrica in funzione di una domanda prefissata nei diversi mesi dell'anno, attraverso l'analisi delle funzioni di probabilità degli afflussi al serbatoio
- ✓ Valutare l'effetto di diverse politiche preventive di gestione della risorsa

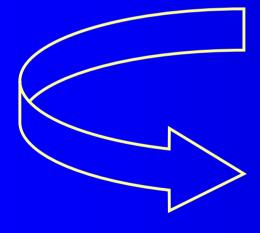
Dati

- ✓ Capacità MAX del serbatoio pari a 25 Mm³
- ✓ Bacino imbrifero relativo di superficie pari a 25 Km²

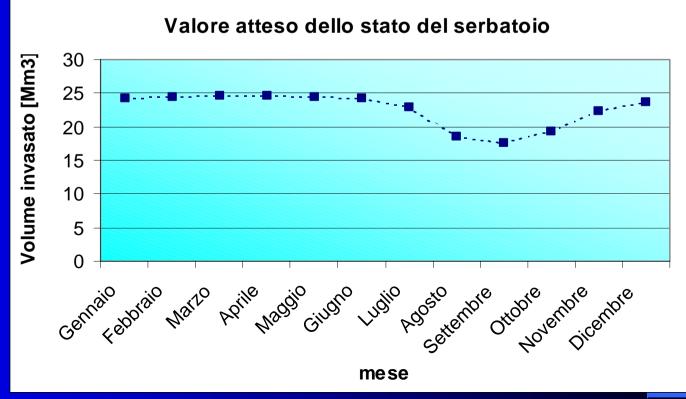
AFFLUSSI

Sulla base dell'analisi annuale di un campione di 30 anni di dati si osserva che la distribuzione di probabilità degli AFFLUSSI NETTI al serbatoio è rappresentata dalla funzione di densità di probabilità LOGNORMALE

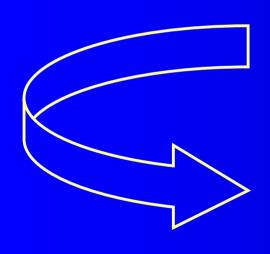
Parametri mensili AFFLUSSI

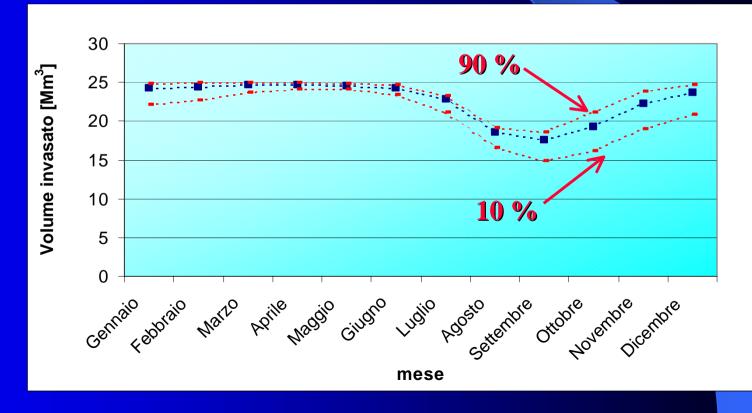

Mese	coeff. Affl.	Media	Dev. Std.
		[Mm ³]	[Mm ³]
Gennaio	1,18	5,1	4
Febbraio	1,03	3,5	2,6
Marzo	1,11	4,5	2,4
Aprile	0,81	3,1	1,5
Maggio	0,76	2,6	1,7
Giugno	0,65	1,6	0,6
Luglio	0,47	0,8	0,5
Agosto	0,18	0,4	0,3
Settembre	0,38	1,3	1
Ottobre	0,66	4,2	3,4
Novembre	1,09	6,7	4,1
Dicembre	1,08	5,3	3,3

Fabbisogno UTENZE


UTENZE su base mensile

Mese	Idropotabile	Irrigua
	[Mm ³]	[Mm ³]
Gennaio	2,2	-
Febbraio	2,2	-
Marzo	2,2	-
Aprile	2,2	-
Maggio	2,4	-
Giugno	2,4	-
Luglio	3,3	0,5
Agosto	3,5	2
Settembre	3,5	-
Ottobre	3	-
Novembre	2,7	-
Dicembre	2,5	-


- > Sulla base delle informazioni precedenti scegliere una suddivisione opportuna della risorsa disponibile in "STATI di SERBATOIO" per modellare il comportamento del sistema sotto forma di processo MARKOVIANO
- Costruire per ogni mese dell'anno la MATRICE delle PROBABILITà di TRANSIZIONE Π_i
- Calcolare i vettori delle probabilità Q_i* allo stato stazionario
- ➤ Valutare il VALORE ATTESO dello STATO del SERBATOIO in ciascun mese dell'anno e graficarne l'evoluzione nel tempo



$$E[V] = \frac{\sum_{i} Q_{i}^{*} \cdot i}{n_{i}} \cdot V_{U.S.}$$

- Valutare gli INTERVALLI DI CONFIDENZA al 90% sulla stima della media [n=30] e ricalcolare per I DUE LIMITI DELL'INTERVALLO
 - ✓ le matrici di transizione mensili Π_i
 - ✓ i vettori dello stato stazionario Q_i*
- ✓ i relativi valori attesi infine grafico dell'evoluzione nel tempo

- Definire, a scopo gestionale, gli INTERVENTI CORRETTIVI basati sul rilascio parziale della risorsa invasata relativi ad un PIANO DI RAZIONAMENTO LIEVE, MEDIO E GRAVOSO da attuarsi in corrispondenza di condizioni critiche di stato di serbatoio (SOGLIA di ATTENZIONE, di INTERVENTO e di ALLARME)
- Valutare la distanza dei VALORI ATTESI dai VALORI DI SOGLIA in corrispondenza dell'inizio dell'estate (fine MAGGIO)
- Assumendo di trovarsi in condizioni critiche (di soglia) all'inizio dell'estate (fine MAGGIO) valutare l'EFFETTO delle AZIONI di RAZIONAMENTO previste
- **Ricalcolare** a partire da Maggio
 - ✓ le matrici MODIFICATE delle probabilità di transizione Π_i
- ✓ i valori attesi modificati e dei relativi intervalli di confidenza al 90% Infine grafico dell'evoluzione nel tempo