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Transition: a burning question for 100+ years!

What happens/why?

Time-Averaged
Velocity Profiles

|

Laminar Turbulent

http://en.wikipedia.org/wiki/Boundary layer transition

‘... the concept of boundary layer transition is a complex one and still lacks a
complete theoretical exposition.



1. What is “transition to turbulence” and why is it
Important?

2. Early attempts at describing transition analytically
In parallel shear flows (Rayleigh, Orr, Sommerfeld)

3. Partial experimental confirmations (Tollmien-
Schlichting waves)

4. Something does not work ... back to square one!
Transient growth and the “optimal perturbations”

5. Still having problems: nonlinear transients ...
6. And if we reversed the problem? Using chaos theory ...
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1. What is “transition to turbulence”’
and why Is It Important?

Osborne Reynolds (1842-1912)
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What is transition to turbulence?

Phenomenon which progressively brings a given flow —
take a simple Blasius boundary layer as an example —
from a laminar (orderly) state to a new state which is
3D, chaotic, possibly stochastic, vortical, ...

Transition corresponds to the breaking of (more than
one) symmetries of an initially well organized flow state.

In a boundary layer transition is triggered by
exogeneous disturbances.
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What is transition to turbulence?
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What is transition to turbulence?

4y | Not to scale

Laminar 5 Transitional 6 Turbulent
Rex = 10 Rex =3 X 10
vy To scale Se(X) |
X
5—> i« Laminar 99 |
B [
.| |
= Ue(X) i«— Turbulent——»
- Transitional .
o [ | i
I [ 1 | I | | I | I | I I I | 1 I I | | I I I | l | I | | l I I | I l | | | I l }
0 5 10 15 20 25 30 35 40

Transition to Turbulence in Shear Flows




Laminar flow: the boundary layer approx.

m Incompressible laminar boundary layer
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The Blasius boundary layer

m Incompressible laminar boundary layer
eguations with no external pressure gradient
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Blasius Similarity Solution

B Blasius introduced similarity

0 - variables
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4 99% boundary ) Ue v

n - ayerthickness - i B This reduces the BLE to
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: Vo 27+ 11 =0
- - il : /

2 1 | F(0)=f(0)=0, f(c0)=1
- y :
] I

1 B Slope at E m This ODE can be solved using
o the wall | Runge-Kutta technigue

AN RN LN AR RER RER B Resultis a boundary layer profile
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The triggering of instabilities

Freeslream Bow Shock
5 . Oacillation
sturbance Wave

inatability wave

boundary laver

a: acoustic wave
e: enlropy wave

w: vorticity wave

The creation of disturbance waves in the boundary layer from (the
possible interaction of) exogenous disturbances is called receptivity.
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Experimental observations (1)

T-5 Waves A= Vortex Formation Turbulent
{Primary Instability) (Secondary Instability) Spots
x*\ /
:x" { ; f/; = > T
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I ; K —
A ,-f";
I
Re., //
Stable ‘ortex Breakdown Edge
Laminar (Tertiary Istability) Contamination
Flow

Image: ONERA DAFE, Paris
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Experimental observations (2)

Image: Dept. Of
Mechanics, KTH,
Stockholm

Sinuous Instability Varicose Instability

Image: Fluid Dynamics Laboratory
Tokyo Metropolitan University
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Interpretation

Forcing Environmental Disturbances

anplinude » The receptivity process
Receptivity defines the type of
| l | disturbance waves
, Transient Growth which will emerge.
11 |
' 1 S '
Primary Modes ' Bypass

Secondary Mechanisms

Breakdown

|

S, - Morkovin, 1994
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Why Is turbulent transition important?
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Why Is turbulent transition important?

Aeronautics: delaying transition over wings Is
fundamental to reduce fuel consumption, CO,
emissions and operating costs.

100 Parasite drag
Interference drag

—— Afterbody drag

It has been estimated (Joslin, 1998) ol

that aircraft laminar flow control - Drag ducto lit

over wings, tail, nacelles, etc. 60 |-

can reduce DOC by a few pesomst

percentage points, leading to e

savings of several M$/year. . | riction dias
0

Figure 3. Aircratt drag breakdown. (From Thibert, Reneaux, and Schmitt 1990.)
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L aminar flow control

O Subsonic flight

@ Supersonic flight

O Subsonic wind tunnel
B Supersonic wind tunnel

B-18slot O
2D slot and porous [
30°wing slot [
Anson Mk.1 2D porous O
Vampire 30° wing porous O
F-94 swept slot O
30° wing slot [J
Flat plate. 2D airfoil, and ogive cylinder slot i}
30°, 50°, and 72.5° wing slot |
2D, 30° wing, and body of revolution slot [J
X-21 30° swept slot O

O A320 fin perforated
[ 35° wing perforated
@ F-16XL Ship 2 perforated
B Swept wing perforated
O Swept wing perforated
O A300 nacelle perforated
@ F-16XL Ship 1 perforated
QO Boeing 757 perforated
O Falcon 50 perforated
QO Jetstar perforated and slot
O Citation nacelle porous
[ 23° wing perforated
[ 23° wing slot
[J 30° wing slot

1 1 1 1 1
1930 1940 1950 1960 1970

Year

1 1 1
1980 1990 2000

Overview of Laminar Flow Control Projects.
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L aminar flow control
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Inflation-adjusted monthly crude oil prices, 1946 - present
(from www.InflationData.com updated 16 January 2008, with June 2008 data added by author)

Green, 2008
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L aminar flow control

38th Fluid Dynamics Conference and Exhibit<BR> AlAA 2008-3738
23 - 26 June 2008, Seattle, Washington

Laminar Flow Control — Back to the Future?

John E. Green'
Aircraft Research Association Ltd., Bedford UK, MK41 7PF

In the 21" Century, reducing the environmental impact of aviation will become an increasingly important
priority for the aircraft designer. Among the various environmental impacts, emission of CO; can be expected
to emerge as the most important in the long term and reducing fuel burn to _become the overriding
environmental priority. Increasing fuel costs and the world’s limited oil reserves will add to the pressure to
reduce fuel burn. Starting from the limitations imposed on the aircraft designer by the laws of physics — the
Breguet Range Equation, the Second Law of Thermodynamics, the behaviour of real, viscous fluids — the
paper discusses the technological and design options available to the designer. Improvements in propulsion
and structural efficiency have valuable contributions to make but it is in drag reduction through laminar flow
control that the greatest opportunity lies. The physics underlying laminar flow control is discussed and the
key features and limitations of natural, hybrid and full laminar flow control are explained. Experience to date
in this field is briefly reviewed, with particular attention drawn to the substantial body of work in the 1950s
and 1960s that demonstrated the potential of full laminar flow control by boundary-layer suction. The case is
argued for revisiting the design of an aircraft with full laminar flow control, taking into account the advances
over the past half century in all aspects of aircraft engineering, notably in propulsion and materials. With
approximately half the thrust provided by the boundary layer suction system, this aircraft presents a
completely new challenge in airframe-propulsion integration. We understand the physics of boundary layer
control, we know that an aircraft with full laminar flow is potentially much more fuel efficient than the
alternatives, what is needed now is a wholehearted attack on the engineering obstacles in its path.
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Flow control technigues

Active techniques Passive techniques
Blowing and/or suction Shaping

Wall motion Compliant coatings
Wall heating/cooling Turbulators/roughness
MEMS Porous surfaces
Synthetic jets Poroelasticity

EMHD Riblets

Plasma flow control Super-hydrophobicity

(in H,0)
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2. Early attempts at describing
transition analytically in parallel
shear flows (Rayleigh, Orr,
Sommerfeld)
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The (Incompressible) disturbance equations

du; S u; dp 1 5
- = —Uj ) — - + —V Li;
ot dx;j Ox; Re y uy)
li'-luf'
= 0
x; 4
ui(%.,0) = u?{x,-] zl-i e ﬁ'/ = X
ui(x;,t) = 0 on solid boundaries
Re = U_od"/v
uy = U;+u decomposition
p = P+p
Introduce decomposition, drop primes, subtract eq's for {U;, P}
Au; au; al; dp 1 Au;
— = —Uj.—{—uj.—_r—.-—_-l-—"?zﬂx—ﬂj —
ot O O Ox; Re O
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The (Incompressible) disturbance equations

Ju; du; dp 1

— = —u —— + VZu;
. ' p i
ot dxj ax; Re y Uly)
o u; — 0 1
5}:} N
ui(x,0) = uf(x) O = X
ui(x;,t) = 0 on solid boundaries
Re = U, /v
vy = U+ u; decomposition
p = P+)p
Introduce decomposition, drop primes, linearize
Ju; Au; al; ¥, 1 I u;
— = —U— —uy— - .p — "?Eu,-—u,:[_—'
At ax; Ox; dx; Re * Ox;
'CJU,: . 0
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The (Incompressible) disturbance equations

0 = =
ui(x;,0) = ud(x) O - x
uj(xj,t) = 0 on solid boundaries
Re = U6 /v
uy = U+ u decomposition
p = P+/p
Linearised Navier-Stokes equations,
du; Au; U, d 1
f_I — —Uj'_ *—Uj - I—E_P—I— 1":-"rzt.r',:
dt dx; dx;  dx; Re
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Stability definition

E(t
Stable : lim L — 0
f— 00 E{ ]
Conditionally stable : 36 >0: E(0) < 6 = stable
Globally stable : Conditionally stable with 6 — =
. dE Y
Monotonically stable :  Globally stable and o <0 ¥Yt=0

Transition to Turbulence in Shear Flows




Stability definition

Rer : Re < Reg  flow monotonically stable

Rec : Re < Reg flow globally stable

Re; : Re < Rey  flow linearly stable (6 — 0)
E
11
IV
111
Re
Rep Reg Rej

Initial energy E vs the Reynolds number Re
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Local stability of the Blasius boundary layer

Initial conditions :

{fu,v.whx.y,z,t =0) = {uo,vo,wo}(x.y.2)
Boundary conditions : depend on flow case
{u,v,wli{x,y =wn.,z,t) = 0 solid boundaries

Semi-infinite domain :
{u,v,whx,y -+ o0,z t) — 0 free stream
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Local stability of the Blasius boundary layer

We can reduce the original 4 eq's & 4 unknowns to a system of 2 eq's and 2 unknowns
This is in two steps

Q@ Take the divergence of the momentum equations. This yields

Vip=-2U"—.
P ax

@ The new pressure equation is introduced in the momentum equation for v. This yields

'E“ t:il k | il 'ti l -'1-_
L iuvd Vv vl vt v=0
[(m M m:) gx Re' |

The three-dimensional flow is then analyzed introducing the normal vorticity

_ti'u Hw
"= %z Bx’

where n satisfies

Transition to Turbulence in Shear Flows




Local stability of the Blasius boundary layer

Assume wave-like solutions:

vix.v,z,t) = #(y)exp i(lox + fz — wt)

Introduce the ansatz in the equations for {v,n}. This yields

i .
w4 iaUWD? — kY — ialU” — —(D* —K*¥| " = O
(—iw + iaU)( ) —i E?E[ ]'_v
(—iw + ial) ~ (D? k%) = —igU'v
7% i e\ ' — [

Here, k* = o® + 3% and D' = &' /dy’.

Orr-Sommerfeld modes | #n, r'fﬁ.au‘n}'rn";-_

Squire modes : {7 =0, fjm, wm M
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Notations

W = (X

v Real{|3(y)| W) eilaxtBz—alertic)t]y

5(y)| e cos[ax — crt) + Bz + ¢(y)]

W angular frequency

Cr phase speed

C; temporal growthrate

x streamwise wavenumber
B Spanwise wavenumber
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Some old and useful results

. Squire modes are always damped

. For each 3D mode there exist always a 2D mode
more amplified (Squire theorem)

. Inviscid result: necessary condition for instability is
the existence of an inflection point in the base flow
profile U(y) corresponding to a maximum of vorticity
(Rayleigh and Fjgrtoft theorems)
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Numerical results (OS equation)
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Numerical results (OS equation)

« Re =500

E | | I
& |. 1 [ Y |
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3. Partial experimental
confirmations (Tollmien-
Schlichting waves)

Walter Tollimien (1900-1968) Hermann Schlichting (1907-1982)
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Experimental results (wind tunnel)

y/ 0%

Very well-controlled
experimental
conditions

3.0
/e
20r o ©
1.0
e L Bakchinov et al., 1998
.0 1.0 2.0

(very low free stream Tu)

Fig. 2. — Amplitude (a) and phase (b) profiles of the generated TS-wave in experiment A (F' = 455). The z-positions are from left to right =100,
125, 160 and 200 mm (Res.=370, 405, 460 and 520). Labels: z=0 mm (o }; 2=-2.75 mm (@ ); 2=5.25 mm {A); Linear PSE-calculations (—).
Note that each amplitude profile at the last z-position is normalized to a value of 0.2 at the outer maximum.
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Numerical results (CFD)

* 2D TS waves
SUPERCRITICAL TRANSITION
(for ‘small’ disturbance levels)

A-vortices hairpin vortices

Philipp Schlatter, 2009
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Most experiments disagree ...

In reality, there is large disagreement between different
experimental installations and theory, for all shear flows ...

Poiseuille | Couette | Blasius

Re, 5772 o0 519

Re .| ~2000 | ~420 | ~400

A strong dependence on initial Be

conditions (exogeneous disturbances)
IS present.

Rep Reg Rey
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Streaks

... and for large environmental disturbances TS waves are

overruled by streaky structures, which dominate the transition
process.

Hence, it is crucial to address the receptivity phase.

Alfredsson & Matsubara, 1996

U,.,=2m/s
free stream Tu = 6%
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How can we describe the streaks?

Modern theories (1990s) say: “forget the asymptotic,
long-time growth of modal (classical) stability
analysis and focus on the short time transient
behaviour even in nominally subcritical (Re < Re|)

conditions!”

New theories take several names: transient growth
theory, optimal perturbations, nonnormal analysis,
pseudospectra, etc.

Transition to Turbulence in Shear Flows




4. Something does not work ...
back to square one! Transient
growth and the —_——
“optimal perturbations” | -z s

Shear Flows

Transition to Turbulence in Shear Flows




Eigenvectors of modal theories are not orthogonal!

transient (short-time) amplification is possible!

@, ' K Superposition of decaying
o, non-orthogonal eigenmodes
®, and @,

How do we recover the most dangerous
dynamics over short time scales?
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Optimal perturbations

To find the most destabilizing perturbations in subcritical
conditions we can resort to a constrained optimization
analysis based on adjoint equations. The advantages of
this approach are that:

. No problems with the continuous spectrum (since
we do not consider a generic disturbance as an
eigenvector expansion)

. Can use discrete adjoint (transposing the direct
equations in discrete form), avoinding lengthy
derivations of the adjoint continuous equations

. Can extend to nonlinear regime
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Sketch of the adjoint approach

DIRECT EQUATIONS

q(t =0) g =Lqg  aq(t=T)

a(t=T) —ar=1La a(t=0)

ADJOINT EQUATIONS
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Linear optimals (at the leading edge)

041

OOt g

0 2 “jld [¢ B
Optimal input: vortex Ensuing output: streak

Luchini, 2000
PROBLEM SOLVED???
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PROBLEM SOLVED?7??

Low Tu: 2D TS waves, spanwise oscillations,
A vortices, breakdown ...

High Tu: linear streaks, elongated in x (o = 0),
nonlinear amplification, secondary wavy
Instability of the streaks, turbulent spots ...
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* Emmons (1951) spots, induced by free-stream turbulence

Matsubara & Alfredsson, 2005

SUBCRITICAL (BYPASS) TRANSITION
(for ‘large’ Tu disturbance levels)

streamwise fluctuations

B

021 e a0 aio .20

Zaki & Durbin, 2005
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Limitations of linear approach

HOWEVER:
Even when we let small-amplitude input streaks evolve

nonlinearly with a DNS, they still need a very large amplitude
before they undergo a secondary instability, much larger than
that observed experimentally. Breakdown to turbulence is not

the same as observed in experiments ...
Andersson et al. 2001

Linear optimal disturbances do not tell the whole story!

The point is:
o = 0 streaks are not good at triggering transition
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5. Still having problems:
nonlinear transients ...

t=0, T=75, Re=610

e
5 EQ=0001
| I | |
Non linearity threshold
E,=0.005
=

Eo: 0-05 J
| |
Eﬂ=0.1

280 300 x 320 340 360 380 400
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Linear versus nonlinear

Apply direct-adjoint optimization technique to identify
localized nonlinear optimals, not infinitely elongated
along the streamwise direction x (o # 0).

Cherubini et al. 2010, 2011

1000 4000
a0l ° Re=300 . Re=610
Ep=0.1 3000 | E,=0.01
%ann- . %
= = 2000 *
= 400 =
L & LUl
1 L
— oo o8, 000 _
R g0 0 ° %" 7 P00
0 50 100 1'15:0 200 250 300 50 100 1:?3 200 250 300

For target time T sufficiently large nonlinear optimals
produce much larger gains
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Linear versus nonlinear

10° 10° 10°
Re=300 Re=300 Re=610
102l | T=75 102+ 102 T=75
=aeil =
0
107 10°L
10, =5 1-11/_ _ 5
10 %103 10% g, 10

For given Re and T, a threshold on E, exists above
which nonlinear effects become important
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Dependence of nonlinear optimals on E,

t=0, T=75, Re=610

280 300 x 320 340 30 400

Above the threshold the same basic building block reappears ...
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The

Optimal initial perturbation at 7" = 75, Ey = 0.01 and Re = 610 —
alternated vortices inclined in x and tilted upstream (yellow and blue), which
lay on the flanks of a region of high negative streamwise disturbance (green).

O Large differences w.r.t. the linear optimal:
@ it is localized in x and z

. @ vortices are streamwise-inclined

7 N
@ u’ is the largest component
(J1tan]| = 0.018)
0 @ regions with high negative u’ are
210 230 250 associated with high positive v’
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What happens at the target time T?

t=T=75, Re=610

<
E,:0.001
o - 3

Non-linearity threshold

E0:0.005 %

Eo=0.05

340 360 380 400

Beyond the non-linearity threshold A-vortices appear;
their interactions lead the flow to turbulence when
several minimal seeds are present in the initial field
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Path to turbulence of the minimal seed
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T x - L ﬁ i B
\ R <, 70
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The disturbance regeneration cycle

Minimal seed

: \!

5
=
= 4
S /
e / 1
2 |
2
3 Orr
2\ Breakdown to . s = )
5 \ N Train of hairpins mechanism
i smaller scale structures = .
. >
= 1 .
g ‘:. g ) 53
- | / \
Edge state Hairpin vortex i1 . Downstream tilting
i
\‘,. >. H\s 2
Turbulence “

i
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y — \ i
P | [
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o ea 1
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A vortices
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6. And if we reversed the
problem? Using chaos theory ...

homoclinic cycle \_

E, = fixed

4 i .
aminar fixed point N = = = trajectory to turbulence starting from

dicturbance amplitude the optimal disturbance, E; = fixed Henrl POIﬂC&fé (1854'1912)
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Recurrent patterns

Current wisdom holds that a “small” set of recurrent patterns are sufficient
to develop a predictive tool for non-equilibrium turbulent flows.

This idea has roots in the prehistory of chaos theory!

Lorenz attractor
(J. Atmos. Sci. 1963)

No steady states
No limit cycles
Sensitive dependence on IC

v

Local unpredictability
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Hopf theory of chaos

If turbulence can be interpreted as the wandering of the flow system’s
trajectory in phase space among mutually repelling states (Cvitanovic
refers to this as Hopf theory of chaos) it may be possible to

1. identify the set of recurrent patterns pertinent to each flow
configuration and Reynolds number, &

2. Compute sensible global averages ( ===) global predictability)
possibly retaining only the more meaningful patterns (i.e. the
least unstable ones?) -

Both tasks are difficult ...
(Lan & Cvitanovi¢, Phys. Rev E 2003, had some J: 5] T
success with the 1D Kuramoto-Sivashinsky equation) Heinz Hopf (1894-1971)
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Repellors = saddle points

/] Y |II
II".II I|II -
.IIIIIII 1I’I| :.:-
~ \[ ]
\’-:a._h_ — I"-II ! :______Fd_,,--ﬁ"'f -
e : .ﬁp..% _
)
::! l!!II".III
¥ IIIIlI III".,_ .

In some relevant phase (hyper-)space ...
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Continuation technique

Looking for unstable TW solutions

Why???
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Unstable structures in the boundary layer

Typical nonlinear, unstable flow structures in a boundary layer are
TW which, in the cross-flow plane, are constituted by two pairs of
spanwise periodic vortices

Wedin et al. 2013
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Chaos and the edge state

What about ECS, saddles, edge states, etc.?

Sketch in some edge surface

phase space ...

laminar fixed point ®
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The laminar-turbulent (edge) boundary
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FIG. 1. (Color online) Streamwise disturbance velocity peaks versus time
for DNSs initialized by the linear (thin gray lines, red online) and the nonlin-
ear optimal perturbation (black thick lines) for different values of the initial

Cherubini et al. 2011
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The laminar-turbulent (edge) boundary

1000

FIG. 2. (Color online) Snapshots of the streamwise component of the pertur-
bation (darker surfaces, blue online, for u = —0.13) and of the Q-criterion
(lighter surfaces, green online) at r = 300 and ¢ = 700 (top and bottom,
respectively) obtained by the DNS initialized with the nonlinear optimal per-
turbation with Ey = 0.004444275.

Cherubini et al. 2011
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Current research goal

Attack transition to turbulence in shear flows
from two sides:

the laminar side

looking at how disturbances to some
organized/laminar base state disrupt it

and the turbulent side
progressively reducing the amplitude of
Initial disturbances in a shear flow until the
state sits — for as long as possible —onto an

unstable, laminar-turbulent (edge) boundary.
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