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Microhydrodynamics 

Flows in micro-devices are characterized by: 

- small volumes (ml, nl …) and sizes; 

- low energy consumption; 

- effects of the microdomain.  

 

Micro-fluidics encompasses many technologies ranging 

from physics, to chemistry and biotechnology 
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Microhydrodynamics 

Recent applications of flows in micro-devices: 

 

- Cells-on-chip 
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Microhydrodynamics 

Recent applications of flows in micro-devices: 

 

- Selection of CTC 
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Microhydrodynamics 

Recent applications of flows in micro-devices: 

 

- Drug delivery 
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Microhydrodynamics 

Recent applications of flows in micro-devices: 

 

- DNA analysis 
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Microhydrodynamics 

Other biological applications: 

 

- Red blood cells, vesicles, capsules …  
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extravasated drug particles 



Microhydrodynamics 

Other biological applications: 

 

- Cilia and flagella      
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Microhydrodynamics 

Other biological applications: 

 

- Cilia and flagella 
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Stereocilia within the cochlea in 

the inner ear sense vibrations 

(sound waves) and trigger the 

generation of nerve signals that 

are sent to the brain.  



Microhydrodynamics 

Other biological applications: 

 

- Cilia and flagella 
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Microhydrodynamics 

        

      For all these applications (and for many others)  it is      

      important to develop an understanding of low Re flows 

 

 

 

 

 

 

    1965         1991         2008          2010         2012         2013 
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Microhydrodynamics  Creeping flows 

Major learning objectives: 
 

1. Feeling for viscous (and inviscid) flows 

2. General solution and theorems for Stokes’ flow 

3. Derive the complete solution for creeping flow 

around a sphere (water drop in air, etc.) 

4. Flow past a cylinder: Stokes paradox and the 

Oseen approximation 

5. Elementary multipolar solutions (Stokeslet …) 
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George Gabriel Stokes (1819-1903) 

• Stokes' law, in fluid dynamics 

• Stokes radius in biochemistry 

• Stokes' theorem, in differential geometry 

• Lucasian Professor of Mathematics at Cambridge University at age 30 

• Stokes line, in Raman scattering 

• Stokes relations, relating the phase of light reflected from a non-absorbing boundary 

• Stokes shift, in fluorescence 

• Navier–Stokes equations, in fluid dynamics 

• Stokes drift, in fluid dynamics 

• Stokes stream function, in fluid dynamics 

• Stokes wave in fluid dynamics 

• Stokes boundary layer, in fluid dynamics 

• Stokes phenomenon in asymptotic analysis 

• Stokes (unit), a unit of viscosity 

• Stokes parameters and Stokes vector, used to quantify the polarisation of electromagnetic waves 

• Campbell–Stokes recorder, an instrument for recording sunshine that was improved by Stokes, and still 

widely used today 

• Stokes (lunar crater) 

• Stokes (Martian crater) 
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http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_drift
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http://en.wikipedia.org/wiki/Stokes_stream_function
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http://en.wikipedia.org/wiki/Stokes_wave
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http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_phenomenon
http://en.wikipedia.org/wiki/Stokes_(unit)
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Stokes_parameters
http://en.wikipedia.org/wiki/Stokes_vector
http://en.wikipedia.org/wiki/Campbell%E2%80%93Stokes_recorder
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http://en.wikipedia.org/wiki/Stokes_(Martian_crater)
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Creeping vs inviscid flows 

Inviscid Flows 

Viscosity goes to zero (very 

large Reynolds number) 

Left hand side of the 

momentum equation is 

important. Right hand side 

of the momentum equation 

includes pressure only. 

Inertia is important; there is 

no friction. 

Creeping Flows 

Viscosity goes to  (very 

low Reynolds number) 

Left hand side of the 

momentum equation is not 

important (can be taken to 

vanish). 
 

Friction is important; there 

is no inertia. 
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Creeping vs inviscid flows 

Inviscid Flows 

 

 

 

 

           r V2 

Creeping Flows 

 

 

 

    

m V / L 

Scaling of pressure 
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Creeping vs inviscid flows 

Inviscid Flow Solutions 

Use flow potential (if motion 

can be assumed irrotational), 

complex numbers. 
 

Use “no normal velocity.” 

Use velocity potential for 

conservation of mass. 

Creeping Flow Solutions 

Use the partial differential 

equations.  Apply transform, 

similarity, or separation of 

variables solution. 

Use no-slip condition. 

Use stream functions for 

conservation of mass. 

In both cases, we will assume incompressible flow, .v = 0 
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Incompressible Navier-Stokes equations 
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Scaling 

We define nondimensional variables using the scaling 

parameters from the table in the previous slide 
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Scaling 

L/(rV2) 
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Dimensionless numbers 
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Nondimensionalization vs normalization 
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The Reynolds number 

 

 

. 
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The Reynolds number 

 

 

A body moving at low Re therefore experiences forces smaller 

than F , where F    1 nN  for water.   
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Leading order terms 

Fr St 
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General equations for creeping flows 

(cf. slide 15) 
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General equations for creeping flows 

or 

 vvv  2xx:identityvectorthegiven

 v  ζ

Taking the curl of the equation above we have:  

0 ζ2

the vorticity field                  is harmonic 

v2 mP
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General equations for creeping flows 

since 

  0vv 22 

Taking the divergence of the equation above we have:  

0 P2

                                    the pressure field  P  is harmonic   

(and the velocity field satisfies the biharmonic equation …) 

v2 mP

on account of the solenoidal velocity field v 
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General equations for creeping flows 

Laplacians appear everywhere: 

 

 

 

 
 
 

and this points to the non-locality of Stokes flows: the 

solution at any point is determined by conditions over 

the entire boundary.  Dependence on remote boundary 

points can be quantified by Green’s functions.   


m

12
v

02  P

Boundary conditions act as 

localized sources, and 

acts as a distributed source. 

P

P
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Properties of Stokes flows 

• The solutions of Stokes equation are unique 

• They can be added because of linearity 

• The solutions represent states of minimal dissipation 

• The solutions are reversible (scallop theorem) 
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Linearity and reversibility 

v 
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Linearity and reversibility 


m

12
v P + F 

If the sign of all forces changes, so does the sign of the 

velocity field v.  This can be used together with symmetry  

arguments to rule out something: 

v? v? 

v? 

F 

F 

 F 
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Unique solution 

This can be demonstrated assuming two different  

solutions for same boundary conditions and analysing 

their difference … 

 

(see, e.g. D. Barthès-Biesel, Microhydrodynamics and  

Complex Fluids, CRC Press, 2012) 
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Minimal dissipation 

rate of strain 
v v 
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Scallop theorem 

  Re > 1                            Re << 1   
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Scallop theorem 

Theorem 

Suppose that a small swimming body in an infinite 

expanse of Newtonian fluid is observed to execute a 

periodic cycle of configurations, relative to a coordinate 

system moving with constant velocity U relative to the 

fluid at infinity. Suppose that the fluid dynamics is that of 

Stokes flow. If the sequence of configurations is 

indistinguishable from the time reversed sequence, then 

U = 0 and the body does not locomote. 
 

Other formulation: 

To achieve propulsion at low Reynolds number in 

Newtonian fluids a swimmer must deform in a way that is 

not invariant under time-reversal. 
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Scallop theorem 

Re << 1, micro-organisms use  

non-reciprocal waves to move 

(no inertia  symmetry under  

time reversal); 1 DOF in the 

kinematics is not enough!  
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General solution for Stokes flows 

Assume the external force acts on a single point  r’ in the fluid: 

 

because of linearity of Stokes flow, the answer must be linear in F0: 
 

                                                                        T is the Oseen tensor 

m

 

 

v 

v 

v 

P 

P 
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General solution for Stokes flows 

Now, assume a continuously distributed force density in the fluid; 

again because of linearity/superposition: 

 

 

 

The Green’s function can be evaluated formally by Fourier          

transform (e.g. J.K.G. Dhont, An Introduction to Dynamics                 

of Colloids, Elsevier, Amsterdam 1996) and the result is: 

 

                                                
 

                                                                         

with 
m

v 

P 
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General solution for Stokes flows 

The Green’s function  T(r) of a point disturbance in a fluid is known as 

Stokeslet (or Stokes propagator since it describes how the flow field is 

propagated throughout the medium by a single localized point force acting 

on the fluid in r’  as a singularity); it is a tensor which represents the 

monopole of the multipolar expansion for Stokes flow. 

Also the pressure Green’s function (a vector) can be found analytically: 

The velocity field decays in space as r 
-1 and the pressure goes like r 

-2. 
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General solution for Stokes flows 

From the Stokeslet many other solutions can be found; the complete set 

of singularities for viscous flow can be obtained by differentiation   (A.T. 

Chwang & T.Y.T. Wu, Hydromechanics of low-Reynolds-number flow: II. 

Singularity method for Stokes flows J. Fluid Mech. 67 (1975) 787–815). 

One derivative leads to force dipoles, with flow fields decaying as r 
-2. 

Two derivatives lead to source dipoles and force quadrupoles, with 

velocity decaying in space as r 
-3. Higher-order singularities are easily 

obtained by further differentiation. 

A well-chosen distribution of such singularities can then be used to solve 

exactly Stokes’ equation in a variety of geometries. For example, the 

Stokes flow past a sphere is a combination of a Stokeslet and an 

irrotational  point source dipole at the center of the sphere. 
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The boundary integral method 

A linear superposition of singularities is also at the basis of the 

boundary integral method  to computationally solve for Stokes flows 

using solely velocity and stress information at the boundary (e.g.     

C. Pozrikidis, Boundary Integral and Singularity Methods for 

Linearized Viscous Flow, Cambridge University Press, 1992) 
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Stokes flow 

Let’s focus on a special case which admits  

a well-known analytical solution 

v∞ 
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A special case: FLOW AROUND A SPHERE 

Inviscid Flow Creeping Flow 

Larger velocity near the sphere is an inertial effect. 
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Flow around a sphere 

General case: 

Increased velocity 

as a result of inertia 

terms. 

Incident velocity is 

approached far 

from the sphere. 

Shear region near the 

sphere caused by 

viscosity and no-slip. 
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Stokes flow: the geometry 

3ev  v

r

Use Standard Spherical Coordinates: r, , and  

Far from the sphere (large r) the velocity is 

uniform in the rightward direction;  e3 is the 

Cartesian (rectangular) unit vector. 




 = polar angle 

0 ≤  ≤ p


 = azimuthal angle 

0 ≤  ≤ 2p
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Flow past a sphere: objectives 

1. Obtain the velocity field around the 

sphere 

2. Use this velocity field to determine 

pressure and shear stress at the sphere 

surface 

3. From the pressure and the shear stress, 

determine the drag force on the sphere 

as a function of the sphere’s velocity 

4. Analyze similar flow cases … 
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Symmetry of the geometry 

The flow will be symmetric with respect to    




r

: inclination or polar 

          0 ≤  ≤ p 

: azimut 

          0 ≤  ≤ 2p 
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Components of the incident flow 

3ev  v

r





cosv

Incident Velocity 

Component of incident velocity 

in the radial direction, 



sinv

Component of incident velocity 

in the  - direction, -     
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Reynolds number 

m

r



VLVL
 ReRe or

One can use the kinematic ( ) or the dynamic (m) 

viscosity, so that the Reynolds number may be 

In the case of creeping flow around a sphere, we use v 

for the characteristic velocity, and we use the sphere 

diameter as the characteristic length scale.  Thus, 

m

r DvRe
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Summary of equations to be solved 

0v 

      0
sin

1
sin

sin

11 2

2





















v

r
v

r
vr

rr
r

Conservation of mass 

 

takes the following form in spherical coordinates: 

    0and0when0sin
sin

11
or 2

2




















 vv

r
vr

rr
r
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Summary of equations (momentum) 








































sin

sin

11 2

2 rr
r

rr
HWhere

Because there is symmetry in , we only worry about the 

radial and circumferential components of momentum. 

In spherical coordinates: 

(incompressible, Newtonian Fluid) 

    Radial 

      Polar 0
sin

21

0cot
222

222

222










































m






m







r

vv

r
v

p

r

v
r

v

r
v

r
v

r

p

r

rr

H

H







































sin

sin

11
with

2

2

2 rr
r

rr
H

v2 mP
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Comments 

Three equations, one first order, two second order. 

Three unknowns (                     ). 

Two independent variables (             ). 

Equations are linear (there is a solution). 

, andrv v P

andr 
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Streamfunction approach 

We will use a streamfunction approach to 

solve these equations. 

 

The streamfunction is a differential form that 

automatically solves the conservation of 

mass equation and reduces the problem 

from one with 3 variables to one with two 

variables. 
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Streamfunction (Cartesian) 

Cartesian coordinates, the two-dimensional continuity 

equation is: 

0
u v

x y

 
 

 

If we define a stream function, y, such that: 

   , ,
, 0

x y x y
u v

y x

y y 
   

 

Then the two-dimensional continuity equation becomes: 

2 2

0
u v

x y x y y y x y y x

y y y y          
         

            
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Summary of the procedure 

1. Use a stream function to satisfy conservation of mass. 

a. Form of y is known for spherical coordinates. 

b. Gives 2 equations (r and  momentum) and 2 

unknowns (y and pressure). 

c. Need to write B.C.s in terms of the stream function. 

2. Obtain the momentum equation in terms of velocity. 

3. Rewrite the momentum equation in terms of y. 

4. Eliminate pressure from the two equations (gives 1 

equation (momentum) and 1 unknown, y). 

5. Use B.C.s to deduce a form for y (equivalently, assume 

a separable solution). 
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Procedure (continued) 

6. Substitute the assumed form for y  back into the  

momentum equation to obtain ordinary differential 

equations, whose solutions yield y. 

7. Use the definition of the stream function to obtain the 

radial and tangential velocity components from y. 

8. Use the radial and tangential velocity components in the 

momentum equation to obtain pressure.  

9. Integrate the e3 component of both types of forces 

(pressure and viscous stresses) over the surface of the 

sphere to obtain the drag force on the sphere. 

 



DICCA 

Università di Genova 
Slide 58 

Streamfunction 

Recall the following form for conservation of mass: 

rr
v

r
vr











y



y




sin

1
,

sin

1
2

If we define a function y (r, )  as: 

then the equation of continuity is automatically satisfied.  We 

have combined 2 unknowns into 1 and eliminated 1 equation. 

Note that other forms work for rectangular and cylindrical 

coordinates.   

- 

    0sin
sin

11 2

2













v

r
vr

rr
r (slide 51) 
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Momentum eq. in terms of y 

Use 
rr

v
r

vr










y



y




sin

1
,

sin

1
2

Substitute these expressions into the steady flow 

momentum equation (slide 52) to obtain a partial 

differential equation for y  from the momentum equation 

(procedure step 3): 

0
sin

1sin
2

22

2






























y





rr

and conservation of mass is satisfied (procedure step 1). 

-  
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Elimination of pressure 

  0 vmP

The final equation on the last slide requires several 

steps.  The first is the elimination of pressure in the 

momentum equations.  The second was substitution 

of the form for the stream function into the result.   

How do we eliminate pressure from the momentum 

equation?  We have: 

We take the curl of this equation to obtain: 

  0  vv  2
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Exercise: elimination of pressure 

Furthermore: 

 vvv  2xx:identityvectorthegiven

It can be shown (straightforward, see Appendix A…) that: 













y 

r sin

e
v x

0v-  v  ζ2
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Momentum in terms of y

Given that: 

















































y



y



y 

sinr

sin

rsinrsinr

1
22

2ee
  ζ

0 ζfrom                         it follows: 

(see Appendix B) 

  00 













 y



y 
2

2E
sinr

e
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Momentum in terms of y 

This equation was given on slide 59. 

 

N.B.  The operator E 
2  is NOT the laplacian … 

.0
1

Thus

.
1

where,0

2

22

22

24






























































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Boundary conditions in terms of y 

From 

Rr  at0y

Rr
r

vr 



 at0

sin

1
2 

y





yy








and

r
                     must  be zero for all    at r = R.  Thus, y 

must be constant along the curve r = R.  But since the 

constant of integration is arbitrary, we can take it to be 

zero at that boundary, i.e. 

,0
sin

1
Rr

rr
v 




 at

y



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Comment 

y  does not 

change as  

changes. 

As r changes, 

however, we 

move off of the 

curve r = R, so y 

can change. 

A key to understanding the previous result is that we are 

talking about the surface of the sphere, where r  is fixed.  

curve.thatalongconstantbemust

becausesoAndBecause

y



y



y



,

0.0
sin

1
,0

2

allfor

r
vr 










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Boundary conditions in terms of y 

From 


y



y


sin,

sin

1 2

2
rv

r
v rr 










In contrast to the surface of the sphere, y  will change 

with   far from the sphere. 

(slide 48) cosvvr r  ,At

  


y
sincosrvsinrcosvr 22

 



 ,asThus,
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Boundary conditions in terms of y 

From 


y



y


sin,

sin

1 2

2
rv

r
v rr 










which suggests the  -dependence of the solution. 

  y 2sinvrf 

 






y
y

 

22

0 0

2

0

2

2

1
sinvr

dsincosvrdsinrvd rr











  



DICCA 

Università di Genova 

 

Slide 68 

Comment on separability 

For a separable solution we assume that the function y  

is the product of one function that depends only on r and 

another one that depends only on , i.e. 

     y  rr R,

Whenever the boundary conditions can be written in 

this form, it is advisable to search for a solution written 

in this form.  Since the equations are linear, the solution 

will be unique.   
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Comment on separability 

      0,  y RR R

In our case, the boundary condition at r=R is:  

Both of these forms can be written as a function of r times a 
function of .  (For r=R we take R (R)=0).  The conclusion 

that the  dependence like sin2 is reached because these 

two boundary conditions must hold for all .  A similar 

statement about the r-dependence cannot be reached.  

  2 21
, sin

2
v ry   

and the boundary condition at r is:  



DICCA 

Università di Genova 
Slide 70 

Momentum equation 

The momentum equation: 

is 2 equations with 3 unknowns (P, vr and v).  We have 

used the stream function (i.e. the fact that v is solenoidal)  

to get 2 equations and 2 unknowns (P and y).  We then 

used these two equations to eliminate P (step 4 on slide 56). 

v
2 mP
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Substitute back into momentum eq. 

With 

(slide 63) becomes: 

  y 2sinvrf 

0
sin

1sin
2

22

2






























y





rr

0
884

432

2

24

4
2 










r

f

dr

df

rdr

fd

rdr

fd
sin 

(cf. calculations in Appendix C) 
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Substitute back into momentum eq. 

The resulting ODE is an equidimensional equation for which: 

0884
2

2
2

4

4
4  f

dr

df
r

dr

fd
r

dr

fd
r

  narrf 

Substitution of this form back into the equation yields: 

(details in Appendix D)    323 32
4

1
RrRr

r
rf 
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Solution for velocity components and vorticity 

From the definition of streamfunction and vorticity we have: 

(cf. slides 59 & 62) 
2

3

3

2

3

4

1

4

3
1

2

1

2

3
1

r

sinRv

sin
r

R

r

R

v

v

cos
r

R

r

R

v

vr



























































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Solution for streamfunction and vorticity 

Streamlines and contour lines of the vorticity 

(dashed/solid lines indicate opposite signs of ). 

Notice the symmetry!  
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    Dragging slowly the sphere from right to left … 

i.e. adding a uniform velocity v∞ 

the streamfunction becomes: 

y

upstream-downstream symmetry is 

the result of the neglect of non-

linearities 

- v∞ 
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Multipolar solutions 

Stokes flow past a sphere is comprised by three terms: 





 sin
r

R

r

R

v

v

cos
r

R

r

R

v

vr















































3

3

4

1

4

3
1

2

1

2

3
1

The terms relate to the multipolar solutions arising from the solution of Laplace 

equation in spherical coordinates. The constant term refers to the uniform free-

stream velocity v∞; this is the flow that would be observed if the sphere were 

absent. The term proportional to R ∕ r is the Stokeslet term; it corresponds to the 

response of the flow caused by a point force of FStokes = 6 p R mv∞ applied to the 

fluid at the center of the sphere. The term proportional to R3 ∕ r3 is a source dipole. 
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Stokeslet 

The Stokeslet component  of  Stokes flow  around  

a sphere moving from right to left along the x-axis.   

The  velocity  magnitude along the horizontal axis  

(right to left) is: 
 

uh  = –  vr cos  + v sin   = ¾ v∞ R/r (1 + cos2) =     

The Stokeslet term describes 

the viscous response of the 

fluid to the no-slip condition 

at the particle surface, and 

this term contains all of the 

vorticity caused by the 

viscous action of the particle. 
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Potential dipole 

The point source dipole component of Stokes flow 

around a sphere moving from right to left along 

the x-axis. Note, in comparison to the previous 

figure, how quickly the velocities decay as the 

distance from the surface increases. 

The source dipole is not  

related to the viscous force of 

the sphere (it is an 

irrotational term), and is 

caused by the finite size of the 

sphere. It satisfies Stokes 

equation with P constant. 
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Multipolar solutions 

Since the source dipole term decays proportional to r 
-3 while 

the Stokeslet term decays proportional to r 
-1, the primary 

long-range effect of the particle is induced by the Stokeslet. 

Thus, the net force on the fluid induced by the sphere is 

required to prescribe the flow far from a sphere, rather than 

the particle size or velocity alone.  
 

Far from a sphere moving in a Stokes flow, the flow does not 

distinguish between the effects of one particle that has 

velocity v∞ and radius 2 R and another that has velocity 2 v∞ 

and radius R, since these two spheres have the same drag 

force. Close to these spheres, of course, the two flows are 

different, as distinguished by the different dipole terms.  
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Effective pressure 

To obtain the effective pressure, we go back to the momentum 

equation: 

Once vr and v  are known, they are replaced into the equation 

above to yield: 

23

sin

2

3cos
3

r
Rv

P

r
Rv

r

P 
m




m  










 Integration yields: 
 

 

 

 

  with p0 constant of integration. Decay as r 
-2 related to Stokeslet. 

v2 mP

20
2

3

r

cos
RvpP


m 
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Effective pressure 

               Contours of the effective pressure P – p0  

(solid-dashed lines correspond to opposite signs of P – p0) 

CFD   

solution 

for Re = 0.1 
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Drag force 

To obtain the drag force on the sphere (r = R), 
we must remember that it is caused by both the 
pressure and the viscous stress: 

e3 is the direction the sphere 

is moving relative to the fluid. 

g 

  

  p





p



pp

dsinRsincosRR

dsinsinRcosRdR

rrr

rrr

2

0

2

0

2

0

2

3

2 ),(),(

),(),(eF









used to get the e3 component 

 
rr 

 

r 
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The surface element on a sphere 

R sin

R 

e3  
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Drag force 

The radial and tangential components of the force 
per unit area exerted on the sphere by the fluid are: 

e3 

g rr 

 

r 

 

R

sinv

r

v

r

vv

r
R

R

cosv
pRp

r

v
pR

Rr

r
r

Rr

r
rr

2

31
),(

2

3
),(2),( 0

m
m


m

m
m














































Integration gives the fluid force on 

the sphere along e3 to be equal to 

6 pR m v∞      which is the celebrated 

                    Stokes formula. 
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Pressure and viscous drag 

It can be easily found that the drag force can be split as 

 

2 pR m v∞       contribution due to pressure forces 

4 pR m v∞       contribution due to viscous forces (skin friction  

                                                                                      drag) 

 

The drag coefficient is CD = 24/Re 
 

(Re = 2 v∞R / ) 
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Vertical force 

 

In the vertical balance equation one should  
also account for the buoyancy force due to  
the weight of the fluid displaced by the sphere! 

 
 
 
  

3

2
3

4
RgrpeF

r 

 
rr 

 
e2 

g = – g e2 

  



DICCA 

Università di Genova 
Slide 87 

Potential flow (for comparison) 

0 v

No vorticity     a velocity potential   can be defined 

The continuity equation: 

02  

becomes: 

Therefore potential flow reduces to finding solutions to 

Laplace’s equation. 
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Potential flow (for comparison) 

Streamlines are similar, isobars are not. 
 

CD = 0  D’Alembert paradox   
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Stokes vs potential flow 

In fact, streamlines are not so similar!  In creeping flows  

even distant streamlines are displaced, an effect of the  

non-locality of Stokes equation.   
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Back to Stokes flow past a sphere 

M g 

 FB FStokes 
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Stokes flow past a sphere 

v∞ 

Re 

Re 
Re 
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Stokes flow past a sphere 

v∞ 

Re 

Re 
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Stokes flow past a sphere 

 

 

Exercise: estimate tp                 (Appendix E)  
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Stokes flow past a sphere 

 

 

 

But what happens when we are far from the body,  

i.e. r / R  ∞ ? 
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Stokes flow past a sphere 

Sufficiently far from the sphere the Stokeslet dominate: 

 

 

 

 

 

Hence: 
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Stokes flow past a sphere 

Re 

Re 



v = v∞i + u’ 
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Oseen approximation 

u’ = v’ = w’ = 0                at infinity, 

u’ = – v∞,   v’ = w’ = 0      at the surface, 

(valid far from body …) 

The remark above has first been made by Carl Wilhelm Oseen; 

he suggested to look at the flow as a uniform component plus a 

small disturbance 

The linearized momentum equation becomes: 

For a moving sphere the boundary conditions are: 

 

and Oseen was able to find an analytical solution (1910). 
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Oseen approximation 

  

 

Oseen asymmetric solution              

for a moving sphere 

Re 
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Axisymmetric Stokes flow in and                    

around a fluid sphere (i.e. a drop) 

Suppose a drop moves at constant speed  V  in a surrounding 

fluid, and suppose the two fluids are immiscible.  Transform to 

a frame of reference in which the drop is stationary and centred 

at the origin; further, assume that Re both immediately outside 

and inside the drop are much less than unity ( Stokes flow).  

Same analysis as before yields: 

outside the drop 
 

 
 

 

inside the drop 
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Axisymmetric Stokes flow in and                    

around a fluid sphere (i.e. a drop) 

The velocity components (both inside and outside the drop) 

Have the same form, i.e. 

  

r 
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Axisymmetric Stokes flow in and                    

around a fluid sphere (i.e. a drop) 

Boundary conditions (Appendix F) yield: 

(the drop radius is a) 
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Axisymmetric Stokes flow in and                    

around a fluid sphere (i.e. a drop) 
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Axisymmetric Stokes flow in                     

and around a fluid sphere 

If the drop is falling under the effect of gravity the discontinuity 

in radial stress across the drop boundary is: 

 

 

i.e. 

 g : surface tension 
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Axisymmetric Stokes flow in                     

and around a fluid sphere 

 

Limiting cases: 

 

 
i.e. the drop acts like a 

solid sphere 

and  i.e. the drop behaves  like 

an air bubble rising 

through a liquid 
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Axisymmetric Stokes flow in                     

and around a fluid sphere 

 

Limiting cases: 

 

 
i.e. the drop acts like a 

solid sphere 

i.e. the drop behaves  like 

an air bubble rising 

through a liquid 

 

 

 

 

Computation of the drag force gives: 
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Exercise: the rotating sphere 

Stokes flow past a sphere rotating with angular velocity W.

 r 
W

Because of symmetry we expect only the azimuthal  

component of the velocity v to be non-zero; further, we 

expect it to depend only on r and the polar angle.  

 
R sin 
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Exercise: the rotating sphere 

Also pressure is expected to be independent of .  The 

- component of the momentum equation reads “simply”: 

 

 
 

Ansatz:  v(r,) = f(r) sin  ; this leads to 

 

  0
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Exercise: the rotating sphere 

The solution has the form  f (r ) = ra, and it is easy to find 

 

a =  - 2   acceptable solution as r  ∞ 

a = 1   not acceptable 

 

Thus:                     v(r,) = A r 
-2 sin   

 

with  A = WR3 to satisfy the boundary condition at the wall. 
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Exercise: the rotating sphere 

mmt


 sin3 W
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Stokes flow past a cylinder:                       

the Stokes paradox 

In theory, low Re flow around a circular cylinder (imagined 

to be infinitely long in the direction of its axis so that a 

two-dimensional problem can be set up) can be dealt with 

in the same way as for a sphere.  This yields however 

what is known as Stokes paradox: 

       No solutions can be found for Stokes equation  

       past a 2D cylinder, satisfying boundary conditions  

       on the cylinder surface and far away from it! 
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Stokes flow past a cylinder:                       

the Stokes paradox 

We already know that                          (slide 26) 

and this leads to the biharmonic equation in 2D:  

 

 

since it is easy to see that the (only) component of the 

vorticity is       

0 ζ2

04  y

y 2

 

 

. 
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Stokes flow past a cylinder:                       

the Stokes paradox 

2

2

2

2 11



yy
y




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rr
r

rr

We know that in cylindrical coordinates, using only r and :  

Ansatz for the streamfunction: y = f(r) sin ,

and the biharmonic equation yields: 
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Stokes flow past a cylinder:                       

the Stokes paradox 

By quadrature the most general solution is: 

 

 

The continuity equation is: 

 

 

so that  
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Stokes flow past a cylinder:                       

the Stokes paradox 

  
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The condition at infinity requires  A = B = 0 
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Stokes flow past a cylinder:                       

the Stokes paradox 

  
y




y

 sin1ln3

cosln
1

2

2

2

2































r

D
CrBrA

r
v

r

D
CrBrA

r
vr

The no-slip conditions at  r = R  give:  

C + D R-2 = 0   and   – C + D R-2 = 0             C = D = 0 ! 
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Stokes flow past a cylinder:                       

the Stokes paradox 

The point is that Stokes equation is only valid in a  

neighborhood of the cylinder, not far away from it. 

Suppose we are at a distance L from the cylinder 

centerline, and suppose that the velocity disturbance  

is q there (q << v∞).  Then, the inertial force r (v  
.

 ) v 

scales like  r v∞ q / L , whereas the viscous term       

m 2 v   scales  like  m q / L2. 
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Stokes flow past a cylinder:                       

the Stokes paradox 

The two estimates are comparable when 

 

 

 
 

i.e.  when Re 
-1 is of order L/R  advection is important 

and Stokes equation is not applicable. 
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Stokes flow past a cylinder:                       

the Stokes paradox 

The correct way of dealing with the problem is via 

matched asymptotic expansions (see, e.g., M. Van Dyke, 

Perturbation Methods in Fluid Mechanics, 1975, Parabolic 

Press). 

v∞ 
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again Oseen … 

By accounting for inertia and modifying the Stokes 

equation with a linearized advective term, a solution  

(invalid near the cylinder surface!) can be found 

(after much pain …) that eventually leads to a drag  

force per unit length approximately equal to 

 

 
 

with g  the Euler constant (g   0.577) 
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again Oseen … 

 

 

 

CD 

Re 

MAE results from Van Dyke (1975) 

 

 

Conclusions: in 3D (sphere) 

the Stokes equation works fine,  

whereas in 2D (cylinder) the  

distant effect of a cylinder must  

be determined from Oseen’s 

model. 
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So far we have just started to scratch  

  the surface of micro-hydrodynamics… 

Why? 

Let’s take a look at the table of contents of Kirby’s book … 
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So far we have just started to scratch the surface … 
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So far we have just started to scratch the surface … 
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So far we have just started to scratch the surface … 
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So far we have just started to scratch the surface … 
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So far we have just started to scratch the surface … 
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… and lots of applications can be envisioned … 
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Appendix A (cf. slide 61) 
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Appendix B (cf. slide 62) 

only component of the vorticity vector:   











































































rsinr

sin

rsinr

rsinrsinrr sin
r

y



y



y



y



y







11

11

22

2

2

e

ee
e

v xxxx



DICCA 

Università di Genova 
Slide 130 

Appendix C (cf. slide 71) 
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The operator is applied a first time … 
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Appendix C (cf. slide 71) 
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… and then a second time … 
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Appendix D (cf. slide 72) 

The details of the solution of the equidimensional equation are: 

and there are 4 possible values for n which turn out to be     

   -1, 1, 2 and 4. 
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Appendix D (cf. slide 72) 

Thus: 

 

 

 

 

(cf. slide 69) 
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Appendix E (cf. slide 93) 
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Appendix E (cf. slide 93) 

A micro-organism (length scale R ≈ 1 mm) moving in water at a 

characteristic speed of 30 mm/s will coast for a time of order 

  tp = 0.2 ms 

over a coasting distance of order V0tp, i.e. 

            0.07 Å 

Purcell (1977) states that “if you are at very low Reynolds number, 

what you are doing at the moment is entirely determined by the 

forces that are exerted on you at the moment, and by nothing in the 

past.”   

In a footnote he adds that “in that world, Aristotle’s mechanics is 

correct!” 
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Appendix F (cf. slide 101) 

Boundary conditions for the undeformable “drop”: 
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Appendix F (cf. slide 101) 
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Further readings 

Beyond the textbooks shown on slide 11, and the few references 

given throughout the slides, other material of interest includes: 
 

• E. Lauga & T.R. Powers, The hydrodynamics of swimming 

microorganisms, Rep. Prog. Phys. 72 (2009) 096601 

• http://www.math.nyu.edu/faculty/childres/chpseven.PDF 

• http://www.mit.edu/~zulissi/courses/slow_viscous_flows.pdf  

• http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidi

csnanofluidics.html 

• P. Tabeling, Introduction to Microfluidics, Oxford U. Press (2005) 

• Dongquing Li, Encyclopedia of Microfluidics and Nanofluidics, 

Springer (2008) 

• Microfluidics and Nanofluidics, Springer   

• Lab on a Chip, Royal Soc. of Chemistry 
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Further documentation 

Absolutely “can’t-miss”: 

National Committee for Fluid Fluid Mechanics Films 

http://web.mit.edu/hml/ncfmf.html 

 


