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Microhydrodynamics

Flows in micro-devices are characterized by:
- small volumes (ul, nl ...) and sizes;

- low energy consumption;

- effects of the microdomain.

Micro-fluidics encompasses many technologies ranging
from physics, to chemistry and biotechnology

Slide 2

DICCA
B Universita di Genova




Microhydrodynamics

Recent applications of flows in micro-devices:

- Cells-on-chip

Cell imaging

Tissue organization Cell selection

Growth media o 2
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Figure 1| Tissue organization, culture and analysis in microsystems. Advanced tissue organization and culture can be performed in microsystems by
integrating homogeneous and heterogeneous cell ensembles, 3D scaffolds to guide cell growth, and microfluidic systems for transport of nutrients

and other soluble factors. Soluble factors — for example, cytokines for cell stimulation — can be presented to the cells in precisely defined spatial and
temporal patterns using integrated microfluidic systems. Microsystems technology can also fractionate heterogeneous cell populations into homogeneous
populations, including single-cell selection, so different cell types can be analysed separately. Microsystems can incorporate numerous techniques for

the analysis of the biochemical reactions in cells, including image-based analysis and techniques for gene and protein analysis of cell lysates. This makes
microtechnology an excellent tool in cell-based applications and in the fundamental study of cell biology. As indicated by the yellow arrows, the different
microfluidic components can be connected with each other to form an integrated system, realizing multiple functionalities on a single chip. However,

this integration is challenging with respect to fluidic and sample matching between the different components, not least because of the difficulty in
simultaneously packaging fluidic, optical, electronic and biological components into a single system.
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Microhydrodynamics

Recent applications of flows in micro-devices:

fromters in REVIEW ARTICLE
published: 11 October 2012
ONCOLOGY doi: 10.3389/fonc.2012.00131

- Selection of CTC

Isolation and characterization of circulating tumor cells
in prostate cancer

Elan Diamond’, Guang Yu Lee’, Naveed H. Akhtar', Brian J. Kirby'?, Paraskevi Giannakakou’,
Scott T Tagawa' and David M. Nanus'*

! Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA

Edited by: Circulating tumor cells (CTCs) are tumor cells found in the peripheral blood that putatively
Michael R. King, Comell University, originate from established sites of malignancy and likely have metastatic potential.
USA

Analysis of CTCs has demonstrated promise as a prognostic marker as well as a source

U - g’;:;”ﬁfcg,y{y, Oregon Heslth and of identifying potential targets for nqve\ therapgutics. _Isolation a_nd qhargcterizatioh of

Q Science University, USA these cells for study, however, remain challenging owing to their rarity in comparison

WhikaBito O — O Jeffrey Chalmers, The Ohio State with other cellular components of the peripheral blood. Several technigues that exploit the

Cell @ Tubulin_~ _ Merge University, USA unique biochemical properties of CTCs have been developed to facilitate their isolation.
\M O a” ﬁg@fg”v’ffscﬁ University of Positive selection of CTCs has been achieved using microfluidic surfaces coated with

a ot “c ' dence: antibodies against epithelial cell markers or tumorspecific antigens such as EpCAM

Dazgi\;éx,gnjgc;mm o or prostate-specific membrane antigen (PSMA). Following isolation, characterization of

FIGURE 2| hanced diftrential i (ceon idic device. (A) GEDI Chip (B) GEDI postanay (C) llustraton of lminar  Hematology and Medical Oncology, CTCs may help guide clinical decision making. For instance, molecular and genetic
Ton e SR s Dl e OO smd e e e Weill Cornell Medical College, 1305 characterization may shed light on the development of chemotherapy resistance and
:Icyfkégzj’“fj's'z(_’cm 741, New York, mechanisms of metastasis without the need for a tissue biopsy. This paper will review

e-mail: dnanus@med.comell. edu novel isolation techniques to capture CTCs from patients with advanced prostate cancer,

as well as efforts to characterize the CTCs. We will also review how these analyzes can
assist in clinical decision making. Conclusion: The study of CTCs provides insight into the
molecular biology of tumors of prostate origin that will eventually guide the development
of tailored therapeutics. These advances are predicated on high yield and accurate isolation
techniques that exploit the unique biochemical features of these cells.

Keywords: prostate cancer, circulating tumor cells (CTCs), prostate-specific membrane antigen (PSMA),
microfluidic device, androgen receptor (AR)
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Microhydrodynamics

Recent applications of flows in micro-devices:

Variable nano-drug inlets
(Nanofluid) -

Multiple microchannels
(Attached to wells with cells)

- Drug delivery

Surface heating

Plenum chamber

(Reservoir) Buffer fluid inlet

\
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Fig. 4. Microfabricated solid silicon microneedle arrays. Left: A section of a 20 X 20 array of microneedles. Right: Microneedle tips inserted
across epidermis (© 1998 IEEE) [28].
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Microhydrodynamics

Recent applications of flows in micro-devices:

- DNA analysis

GLASS

—GEL CHANNELS
PHOTODETECTORS
WIRE BONDS

HEATERS

TEMPERATURE
DETECTORS

FLUIDIC CHANNELS

AIR VENTS

Fig. 8. A schematic of an integrated microfluidic device for DNA analysis
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Microhydrodynamics

Other biological applications:

- Red blood cells, vesicles, capsules ...

extravasated drug particles

DICCA Slide 7
B Universita di Genova




B Universita di Genova

Microhydrodynamics

Other biological applications:

- Cilia and flagella

Hair-like projections called
cilia line the primary bronchus
to remove microbes and debris

from the interior of the lungs

Primary
bronchus

Goblet cell
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Microhydrodynamics

Other biological applications:

Outer Middle Inner
ear ear ear

- Cilia and flagella [ o

Stereocilia within the cochlea in
the inner ear sense vibrations
(sound waves) and trigger the
generation of nerve signals that
are sent to the brain.

bICCA Slide 9
B Universita di Genova




Microhydrodynamics

Other biological applications:

- Cilia and flagella
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Microhydrodynamics

For all these applications (and for many others) itis
Important to develop an understanding of low Re flows

lllllllllllll . Sinsiski and

R Microhydrodynamics Essentials of
. and Complex Fluids MICRO- AND
% NANOFLUIDICS

Sangtae Kir R A I ot | P oo 2 - s
Seppo J. Karrila ! e - 4 = bt
‘Micro- and Nanoscale P % o° 2 s %
Fluid Mechanics = - o Po & I‘g’

; 2 : with

Transport in Mictofuidic ne\«es‘f‘.i’j-“-"i
| ks X

Low Reynolds number

hydrodynamics Microhydrodynamics Statistical b
with special applications to particulate media M icroh y d r Odyn am iCS =

b 286
1" BRIAN JI KiRBY "Tlvat SO z : £ S
i t&‘ﬁ, T Fo 9 & = Applications to the Biological
L] 5= ey _._~\ and Chemical Sciences
= \ |  DominiueBartnésBiesel  |NEERSERRENCE coMMisk
3 [ N 000
> A ST 0 ol o
0 kluwer P N ey ] )2
o the language o science AN S

1965 1991 2008 2010 2012 2013

DICCA Slide 11
B Universita di Genova




Microhydrodynamics - Creeping flows

Major learning objectives:

1. Feeling for viscous (and inviscid) flows
2. General solution and theorems for Stokes’ flow

3. Derive the complete solution for creeping flow
around a sphere (water drop In air, etc.)

4. Flow past a cylinder: Stokes paradox and the
Oseen approximation

5. Elementary multipolar solutions (Stokeslet ...)

DICCA Slide 12
B Universita di Genova




George Gabriel Stokes (1819-1903)

e Stokes'law, in fluid dynamics

«  Stokes radius in biochemistry

e Stokes'theorem, in differential geometry

* Lucasian Professor of Mathematics at Cambridge University at age 30

« Stokes line, in Raman scattering

«  Stokes relations, relating the phase of light reflected from a non-absorbing boundary
Stokes shift, in fluorescence

 Navier—Stokes equations, in fluid dynamics

e  Stokes drift, in fluid dynamics

e  Stokes stream function, in fluid dynamics

«  Stokes wave in fluid dynamics

«  Stokes boundary layer, in fluid dynamics

+ Stokes phenomenon in asymptotic analysis

»  Stokes (unit), a unit of viscosity

« Stokes parameters and Stokes vector, used to quantify the polarisation of electromagnetic waves

+  Campbell-Stokes recorder, an instrument for recording sunshine that was improved by Stokes, and still
widely used today

Stokes (lunar crater)
Stokes (Martian crater)
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http://en.wikipedia.org/wiki/Stokes'_law
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_radius
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Stokes'_theorem
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Lucasian_Professor_of_Mathematics
http://en.wikipedia.org/wiki/Stokes_line
http://en.wikipedia.org/wiki/Raman_scattering
http://en.wikipedia.org/wiki/Stokes_relations
http://en.wikipedia.org/wiki/Stokes_shift
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_drift
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_stream_function
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_wave
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_boundary_layer
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Stokes_phenomenon
http://en.wikipedia.org/wiki/Stokes_(unit)
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Stokes_parameters
http://en.wikipedia.org/wiki/Stokes_vector
http://en.wikipedia.org/wiki/Campbell%E2%80%93Stokes_recorder
http://en.wikipedia.org/wiki/Campbell%E2%80%93Stokes_recorder
http://en.wikipedia.org/wiki/Campbell%E2%80%93Stokes_recorder
http://en.wikipedia.org/wiki/Stokes_(lunar_crater)
http://en.wikipedia.org/wiki/Stokes_(Martian_crater)

Creeping vs inviscid flows

Creeping Flows Inviscid Flows

Viscosity goes to 00 (very Viscosity goes to zero (very

low Reynolds number) large Reynolds number)
L eft hand side of the Left hand side of the
momentum equation is not ~ MOmMeNtum equation is.
important (can be taken to Important. Right hand side
vanish). of the momentum equation
Includes pressure only.
Friction is important; there Inertia is important; there is
IS nNo Inertia. no friction.
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Creeping vs inviscid flows

Creeping Flows Inviscid Flows

Scaling of pressure

uV/L AV
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Creeping vs inviscid flows

Creeping Flow Solutions Inviscid Flow Solutions

Use the partial differential  Use flow potential (if motion
equations. Apply transform, can be assumed irrotational),

similarity, or separation of complex numbers.
variables solution.

Use no-slip condition. Use “no normal velocity.”
Use stream functions for Use velocity potential for
conservation of mass. conservation of mass.

In both cases, we will assume incompressible flow, V-v =0
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©

Incompressible Navier-Stokes equations

DV _ 1oV
Dt

=P —+(T7-V)T7 = —Vp+ pd + uV3V

Scaling parameters used to nondimensionalize the continuity and momentum
equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions
L Characteristic length {L}

1% Characteristic speed {Lt=1}

f Characteristic frequency {t-1}

Py — P, Reference pressure difference {mL~1t~?}

g Gravitational acceleration {Lt=?}
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B Universita di Genova

Slide 17



©

B Universita di Genova

B We define nondimensional variables using the scaling
parameters from the table in the previous slide

—

T S 1%

* == V= —
:)ﬁ YL %
p* = =17 V* =LV

- P-P, 9 74

B To plug the nondimensional variables into the NSE, we
need to first rearrange the equations in terms of the
dimensional variables

1 . . . 1

t:?t* T = L1 V=VV* V:EV*
P =Py + (Po— Po)P* §=99"
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B Now we substitute into the NSE to obtain

817* sz . . P, — P, uV_ oo
V*' *) V‘k:_ *P* —k * *
PV Ior + ( \Y o VIPt + pgft + VIV

W Every additive term has primary dimensions
Im'L-2t2}. To nondimensionalize, we multiply
every term by L/(pV?), which has primary
dimensions {m-1L4t%}, so that the dimensions
cancel. After rearrangement,

fL OV * S —— Py — Py * Dk gL | _, H *277*
[7 8t*+(v V) V= - | VP || 8 | g | VY
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Dimensionless numbers

Terms in [ ] are nondimensiona

!f_L} oV —f—(?*-v*)v*——[PO_POO}V*P*—f-[£]§*+[ M ]Vﬁv’*

V|| ot*

AN

Strouhal number

pV2 V2

parameters

pV L

\

Euler number || Inverse of Froude
number squared

Inverse of Reynolds
number

ov*
ot

|St]

Fr2

+(17*-v*)17*:—[Eu]V*P*+[ ! ]g‘*+[

1
Re

:| V*Q "_/'*
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Navier-Stokes equation in nondimensional form
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Nondimensionalization vs normalization

B NSE are now nondimensional, but not necessarily normalized.
What is the difference?

B Nondimensionalization concerns only the dimensions of the
equation - we can use any value of scaling parameters L, V, etc.

B Normalization is more restrictive than nondimensionalization.
To normalize the equation, we must choose scaling parameters
L,V, etc. that are appropriate for the flow being analyzed, such
that all nondimensional variables are of order of magnitude
unity, i.e., their minimum and maximum values are close to 1.0.

t*~1 FF~1 V*~l P'nNl §~l Vil

If we have properly normalized the NSE, we can compare the relative
importance of the terms in the equation by comparing the relative magnitudes of
the nondimensional parameters St, Eu, Fr, and Re.
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The Reynolds number

©

VL
pe = P2
U

In water (p = 10° kg m™3, £ = 1073 Pas), a swimming
bacterium such as E. coli with "= 10 um s™! and
L = 1-10 um has a Reynolds number Re = 107°-1074.

A human spermatozoon with V= 200 ym s™! and
L =50 um moves with Re = 1072,

The larger ciliates, such as Paramecium, have
V=1 mm s and L = 100 ym, and therefore Re = 0.1.
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The Reynolds number

VL
pe = P~
7
Low Re:
1. Re= ’;f"'fe”"“l - viscous forces dominate in the fluid
2. Re= i‘”f > fluid transport dominated by viscous diffusion

3. Foragiven fluid #= u?/p is a force, and any body acted
upon by a force # will experience a Reynolds number of
order 1 (whatever its size). Easy to see that Re = ficcous/ Z
and Re = (fi.nertiaI/ _gr')1,’2, so thatif Re=1— f\'/iscous =fi'nertial = F

A body moving at low Re therefore experiences forces smaller
than #, where / ~ 1 nN for water.
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Leading order terms

mTo simplify NSE, assume St~ 1, Fr~ 1

1 9 =
[Eu] V*P* = | — | V**V*
Re
Pressure Viscous
forces forces

mSince PP~1, V*~1

E — ~ = — > — ~ —
¢ pV?2 Re pVL Fo = Foo L

DICCA Slide 24
B Universita di Genova




General equations for creeping flows

Py— Py ~ % (cf. slide 15)

m This is important

B Very different from inertia dominated flows where
PO — Poo ~ pV2

B Density has completely dropped out of NSE. To
demonstrate this, convert back to dimensional form.

VP = /,LVZV

B This is now a LINEAR EQUATION which can be
solved for simple geometries.
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General equations for creeping flows

VP = V°’Vv

Taking the curl of the equation above we have:

V(=0

or
VxVv=-VxVxVxv=-VxVx{=0

given the vector identity: V x V x v=—Vv+V(V-V)

> the vorticity field { =V x Vv is harmonic
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General equations for creeping flows

VP =V’v

Taking the divergence of the equation above we have:

VP=0

since
V - Vv=V*V-v)=0

on account of the solenoidal velocity field v

| > the pressure field P is harmonic

(and the velocity field satisfies the biharmonic equation ...)
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General equations for creeping flows

Laplacians appear everywhere:

a ) 1 )
Viv==—VP
Y2/ Boundary conditions act as
< VEC —( > localized sources, and VP
acts as a distributed source.
VP =0
o _/

and this points to the non-locality of Stokes flows: the
solution at any point is determined by conditions over
the entire boundary. Dependence on remote boundary
points can be quantified by Green'’s functions.
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Properties of Stokes flows

The solutions of Stokes equation are unigue

They can be added because of linearity

The solutions represent states of minimal dissipation

The solutions are reversible (scallop theorem)
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Linearity and reversibility

Let {v,(r); P{(r)} and {v,(r); P,(r)} be two solutions of
Stokes equations which satisfy respectively the conditions

vi = U;(r) andv, = U,(r) on the boundary S of the domain.
Then {a vi(r) +B v, (); a P1(r) + B P,(r)} is also a solution

with boundary condition V=a U;(r) +8 U, (r) overS.

In particulara =— 1, f = 0 is a solution (we inverse the motion
of a boundary (U becomes — U) and the fluid velocity is also
inverted (v(r) becomes — v(r)) — reversibility of Stokes eq,.
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Linearity and reversibility

viv=1VP+F

y7)
If the sign of all forces changes, so does the sign of the

velocity field v. This can be used together with symmetry

arguments to rule out something:

v F
R % % Reflect %)
F'ov? V2'F
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Unigue solution

This can be demonstrated assuming two different
solutions for same boundary conditions and analysing

their difference ...

(see, e.g. D. Barthes-Biesel, Microhydrodynamics and
Complex Fluids, CRC Press, 2012)
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Minimal dissipation

©

‘;_’t( = P*t —®, K the total kinetic energy of the flow,
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and @ the rate of energy dissipation.

In Stokes flow it is P¢*'= ®, and it is easy to

showthat ® = [ o;j€; dV , with o;j= —p §;; + 21 €;;

__1(oV; an .
€ij = 3 (axj + ax,;) rate of strain

IS minimal (when compared to another solenoidal flow with

same boundary conditions, cf. Barthés-Biesel, 2010)




Scallop theorem

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Recetved 12 June 1976)

American Journal of Physics, Vol. 45, No. 1, January 1977 Copyright© 1977 American Association of Physics Teachers
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Scallop theorem

Theorem

Suppose that a small swimming body in an infinite
expanse of Newtonian fluid is observed to execute a
periodic cycle of configurations, relative to a coordinate
system moving with constant velocity U relative to the
fluid at infinity. Suppose that the fluid dynamics is that of
Stokes flow. If the sequence of configurations is
Indistinguishable from the time reversed sequence, then
U = 0 and the body does not locomote.

Other formulation:

To achieve propulsion at low Reynolds number in
Newtonian fluids a swimmer must deform in a way that is
not invariant under time-reversal.
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Scallop theorem

Re << 1, micro-organisms use
non-reciprocal waves to move
(no inertia - symmetry under
time reversal); 1 DOF in the
kinematics is not enough!
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General solution for Stokes flows

VP (r‘f_) —/,[vzv (I‘.f.) — ff?;lff(r)

Assume the external force acts on a single point I’ in the fluid:
f@:r.t (I’) — F(:l‘ﬁ'(r — I',)

because of linearity of Stokes flow, the answer must be linear in F;

V(r) = T(r —1')-Fy T is the Oseen tensor

P(r) =g(r 1) - Fo
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General solution for Stokes flows

Now, assume a continuously distributed force density in the fluid:

again because of linearity/superposition:

vir) = /T(r —1') - f(x") d*
P(r) = fg(r —r') - f(x")d%

The Green’s function can be evaluated formally by Fourier
transform (e.g. J.K.G. Dhont, An Introduction to Dynamics

of Colloids, Elsevier, Amsterdam 1996) and the result is:

G(r) | 1. rr
T(r) = S with G(r) = ?—I + 3
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General solution for Stokes flows

The Green’s function T () of a point disturbance in a fluid is known as

Stokeslet (or Stokes propagator since it describes how the flow field is

propagated throughout the medium by a single localized point force acting

on the fluid in I’ as a singularity); it is a tensor which represents the

monopole of the multipolar expansion for Stokes flow.

Also the pressure Green’s function (a vector) can be found analytically:

1l r
A 13

The velocity field decays in space as -1 and the pressure goes like 2.

g(r)
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General solution for Stokes flows

From the Stokeslet many other solutions can be found; the complete set
of singularities for viscous flow can be obtained by differentiation (A.T.
Chwang & T.Y.T. Wu, Hydromechanics of low-Reynolds-number flow: II.
Singularity method for Stokes flows J. Fluid Mech. 67 (1975) 787-815).
One derivative leads to force dipoles, with flow fields decaying as .
Two derivatives lead to source dipoles and force quadrupoles, with

velocity decaying in space as I'-3. Higher-order singularities are easily
obtained by further differentiation.

A well-chosen distribution of such singularities can then be used to solve
exactly Stokes’ equation in a variety of geometries. For example, the
Stokes flow past a sphere is a combination of a Stokeslet and an
iIrrotational point source dipole at the center of the sphere.
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The boundary integral method

A linear superposition of singularities is also at the basis of the
boundary integral method to computationally solve for Stokes flows
using solely velocity and stress information at the boundary (e.g.

C. Pozrikidis, Boundary Integral and Singularity Methods for

Linearized Viscous Flow, Cambridge University Press, 1992)
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Stokes flow

Let’s focus on a special case which admits

a well-known analytical solution
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A specilal case: FLow AROUND A SPHERE

Creeping Flow Inviscid Flow

Larger velocity near the sphere is an inertial effect.
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Flow around a sphere

General case:

Incident velocity Is
approached far
from the sphere.

y v
A

~ —_Increased velocity
as a result of inertia
terms.

Shear region near the
sphere caused by
viscosity and no-slip.
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Stokes flow: the geometry

Use Standard Spherical Coordinates: r, 8, and @

/¢
\

" Far from the sphere (large r) the velocity is
uniform in the rightward direction; e; is the
Cartesian (rectangular) unit vector.
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¢ = polar angle

0@ <n

@ = azimuthal angle

0< @<2n




Flow past a sphere: objectives

1. Obtain the velocity field around the
sphere

2. Use this velocity field to determine
pressure and shear stress at the sphere
surface

3. From the pressure and the shear stress,
determine the drag force on the sphere
as a function of the sphere’s velocity

4. Analyze similar flow cases ...
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Symmetry of the geometry

@. inclination or polar
0<6<nm

¢: azimut
0<¢g<2r

The flow will be symmetric with respect to @
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Components of the incident flow

Component of incident velocity
In the radial direction, v_ cosé

Incident Velocity V =V,€;

Component of incident velocity
In the @- direction, -v_siné
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Reynolds number

©

One can use the kinematic (v) or the dynamic ()
viscosity, so that the Reynolds number may be

Re:\i or Rezﬂ

v H

In the case of creeping flow around a sphere, we use v,

for the characteristic velocity, and we use the sphere
diameter as the characteristic length scale. Thus,

Re = VD
u

D] [{@YAY
B Universita di Genova
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Summary of equations to be solved

Conservation of mass
V-v=0

takes the following form in spherical coordinates:

) 0 : 1 o0
0 =0
r2 or (v )+ rsiné ae(vgsm ) rsiné a¢(v¢)

S (v,sin@)=0

| _2_(r2Vr)+ : when v, =0 and i=o
re or rsiné@ o6 6
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Summary of equations (momentum)

Because there is symmetry in ¢, we only worry about the
radial and circumferential components of momentum.

VP = ,Lle VvV (incompressible, Newtonian Fluid)

In spherical coordinates:

. ap 2 2ov, 2
Ry - — 2T “y cotd|=0
Radlal ar ﬂ( r r.2 r r2 ae r2 o j
1op 2 OV Vv
Polar —=— — 4 (}N +——L-—F jzo
ro0 T2 80 rPsin’e

(zaj 1 8[. 6)
r +—— sSinf@ —
r- or or r-sin@ o6 00
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Comments

Three equations, one first order, two second order.
Three unknowns (Vv , v, and P).
Two independent variables (r and 8).

Equations are linear (there is a solution).
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Streamfunction approach

We will use a streamfunction approach to
solve these equations.

The streamfunction Is a differential form that
automatically solves the conservation of
mass equation and reduces the problem
from one with 3 variables to one with two
variables.
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Streamfunction (Cartesian)

Cartesian coordinates, the two-dimensional continuity

equation is:

ou ov

+—=0

ox oy

If we define a stream function, v, such that:
oy ( X, oy (X,
Lo dvixy) o ov(xy)
oy OX

Then the two-dimensional continuity equation becomes:

ou ov_J0fdy) 90 dy :azw_@zwzo
ox oy ox\ oy ) oyl oy ) oOxoy Oyox
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Summary of the procedure

1. Use a stream function to satisfy conservation of mass.
a. Form of yis known for spherical coordinates.

b. Gives 2 equations (r and # momentum) and 2
unknowns (i and pressure).

c. Need to write B.C.s in terms of the stream function.
2. Obtain the momentum equation in terms of velocity.
3. Rewrite the momentum equation in terms of y.

4. Eliminate pressure from the two equations (gives 1
equation (momentum) and 1 unknown, y).

5. Use B.C.s to deduce a form for y (equivalently, assume
a separable solution).
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Procedure (continued)

6. Substitute the assumed form for  back into the
momentum equation to obtain ordinary differential
equations, whose solutions yield .

7. Use the definition of the stream function to obtain the
radial and tangential velocity components from .

8. Use the radial and tangential velocity components in the
momentum equation to obtain pressure.

9. Integrate the e; component of both types of forces
(pressure and viscous stresses) over the surface of the
sphere to obtain the drag force on the sphere.
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Streamfunction

Recall the following form for conservation of mass:

1 0 1 0 : .
S )e 2o wsind)=0  (slide 51)

If we define a function y (r,0) as:

V

_ 1 Oy v - -1 oy
" r’sing o0’ ’ rsin@ or

then the equation of continuity is automatically satisfied. We
have combined 2 unknowns into 1 and eliminated 1 equation.

Note that other forms work for rectangular and cylindrical
coordinates.
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Momentum eq. in terms of

1

Use v, =

B rsin@ or

2 i Vv
rsin@ o6

and conservation of mass is satisfied (procedure step 1).

Substitute these expressions into the steady flow
momentum equation (slide 52) to obtain a partial
differential equation for v from the momentum equation

(procedure step 3):

82

or? "

B Universita di Genova

sin@ o

-

siné@ 06

Slide 59



Elimination of pressure

The final equation on the last slide requires several
steps. The first is the elimination of pressure Iin the
momentum equations. The second was substitution
of the form for the stream function into the result.

How do we eliminate pressure from the momentum
equation? We have:

~VP+u V-(VVv)=0
We take the curl of this equation to obtain:

VxV-(VW)=VxV?y=0
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Exercise: elimination of pressure

Furthermore:

VxVV=-VxVxVxV=-VxVx{=0

given the vector identity: V x V x v=—Vv+V(V/V)

It can be shown (straightforward, see Appendix A...) that:

e
v=V X [ l//_‘” ]
r sing
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Momentum In terms of

Given that:

e e 2 :
C:VXVX W 4 = — ¢ 4 '72”_|_S|n;9 0 ( 1 aWJ
r sing r sing\ or r 06\ sing o

(see Appendix B)

from VxVxC=0 itfollows:

e 2
VxVxVxVx( W_ ? }=O - (EZ) =0
r sing
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Momentum In terms of

E‘w =0, where E* = 0 +sin6’ a( L 8)
’ or?  r? 00\sin@ oo )|

. 2
or r- o06\sing o6

This equation was given on slide 59.

N.B. The operator E2 is NOT the laplacian ...
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Boundary conditions In terms of

~1 Oy 1 6w
° rsin@ or " rZsin®@ 60
o an da— must be zeroforall & atr =R. Thus,
or 00 v

must be constant along the curve r = R. But since the
constant of integration is arbitrary, we can take it to be
zero at that boundary, i.e.

w=0 at r=R
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Comment

A key to understanding the previous result is that we are
talking about the surface of the sphere, where r s fixed.

> 1 v =0. And so becausea—l//:o
rsin@ o6 00

for all 8, w mustbe constantalongthat curve.

Becausev, =0,

As r changes,

however, we
y does not / move off of the
change as 6 curver=R, SO ¢
changes. can change.

DICCA Slide 65
B Universita di Genova




Boundary conditions In terms of

1 Jy ow
r’sin@ 00 ' 00

From V, = =V r’sing

Atr—>o, v. >V _cosé (slide 48)

Thus, as r — o, Z—"g—>(vwc036?)rzsin6?=vwrzcos€ sin@

In contrast to the surface of the sphere,  will change
with @ far from the sphere.
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@

Boundary conditions Iin terms of

1 Jy ow
r’sin@ 00 ' 00

From V, = =V r’sing

w| = :nge j':vrrzsined<9=rzj'oe(vwcosé’)sinede

= lrszsinzé’
2

which suggests the 6-dependence of the solution.

w = f(r) v, sin’@
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Comment on separability

For a separable solution we assume that the function
IS the product of one function that depends only on r and
another one that depends only on 6, i.e.

y(r,0)=x(r)e()

Whenever the boundary conditions can be written In
this form, it is advisable to search for a solution written
In this form. Since the equations are linear, the solution
will be unigue.
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Comment on separability

In our case, the boundary condition at r=R is:
v(R,0)=x(R)O(0)=0
and the boundary condition at r»w«is:
v (0,0) :%voorzsin2 0
Both of these forms can be written as a function of r times a
function of 6. (For r=R we take ® (R)=0). The conclusion
that the & dependence like sin?@is reached because these

two boundary conditions must hold for all 8. A similar
statement about the r-dependence cannot be reached.
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Momentum equation

©

The momentum equation:

VP =u Vv

IS 2 equations with 3 unknowns (P, v, and v,). We have
used the stream function (i.e. the fact that v is solenoidal)

to get 2 equations and 2 unknowns (P and y). We then
used these two equations to eliminate P (step 4 on slide 56).
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Substitute back into momentum eaq.

with = f(r) v_sin’6

re

(r
{az sing o (

) - |
sin@ &9)} V= (slide 63) becomes:

d*f 4 d2f 8 df 8f|
_|_

dar* r¢dr* r*dr r*

sin‘@ =0

(cf. calculations in Appendix C)
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Substitute back into momentum eaq.

The resulting ODE is an equidimensional equation for which:
d*f df df
GRS

f(r)=ar"

Substitution of this form back into the equation yields:

f(r)=% [ 2 r3_3 R r2+R3] (details in Appendix D)
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Solution for velocity components and vorticity

From the definition of streamfunction and vorticity we have:

_ 3V, Rsing
2 1’

D] [{@YAY
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(cf. slides 59 & 62)
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Solution for streamfunction and vorticity

O

Streamlines and contour lines of the vorticity
(dashed/solid lines indicate opposite signs of ).

Notice the symmetry!
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Dragging slowly the sphere from right to left ...

l.e. adding a uniform velocity v

the streamfunction becomes:

WV = f(r) vy sin?d
with

1
f(;a): 4— [ 2/ =3 R »* +R3] upstream-downstream symmetry is
-

the result of the neglect of non-
linearities
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Multipolar solutions

Stokes flow past a sphere is comprised by three terms:

3
Yo _ —1+§E+1 R siné
v 4r 4

The terms relate to the multipolar solutions arising from the solution of Laplace
equation in spherical coordinates. The constant term refers to the uniform free-

stream velocity v_; this is the flow that would be observed if the sphere were
absent. The term proportional to R / r is the Stokeslet term; it corresponds to the
response of the flow caused by a point force of F .. = 6 T R x V., applied to the
fluid at the center of the sphere. The term proportional to R3/r3 is a source dipole.
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Stokeslet

The Stokeslet term describes

T LN ___________ the viscous response of the
s .~~~ Aluid to the no-slip condition
. ..~ ------° at the particle surface, and
SN e e this term contains all of the
- . ... vorticity caused by the

O s .4 ws o s 1 1s 2 Viscous action of the particle.

r/asin 3

The Stokeslet component of Stokes flow around
a sphere moving from right to left along the x-axis.
The velocity magnitude along the horizontal axis
(right to left) is:

FStokes

1 2
8 Tt (1+ cos“0)

U, =— V,C0S @+ V,sin @ =%V, RIr(1+cos?0) =

D] [{@YAY
B Universita di Genova

Slide 77



Potential dipole

The source dipole Is not
related to the viscous force of
the sphere (it Is an
%!E% %% irrotational term), and s
caused by the finite size of the
sphere. It satisfies Stokes

equation with P constant.

The point source dipole component of Stokes flow
around a sphere moving from right to left along
the x-axis. Note, in comparison to the previous
figure, how quickly the velocities decay as the
distance from the surface increases.
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Multipolar solutions

Since the source dipole term decays proportional to r-3 while
the Stokeslet term decays proportional to r-1, the primary
long-range effect of the particle is induced by the Stokeslet.
Thus, the net force on the fluid induced by the sphere is
required to prescribe the flow far from a sphere, rather than
the particle size or velocity alone.

Far from a sphere moving in a Stokes flow, the flow does not
distinguish between the effects of one particle that has
velocity v and radius 2 R and another that has velocity 2 v_,
and radius R, since these two spheres have the same drag
force. Close to these spheres, of course, the two flows are
different, as distinguished by the different dipole terms.

DICCA Slide 79

B Universita di Genova




Effective pressure

To obtain the effective pressure, we go back to the momentum

VP =1V?vVv

Once v, and v, are known, they are replaced into the equation

equation:

above to yield:

@_&N 50080 || P _3 sin¢
or o 00 2" r
Integration yields: P=p, —Ey\/ R COSZH
2" 7

with p, constant of integration. Decay as r- relatedto Stokeslet.

D] [{@YAY
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Effective pressure

CFD
solution
forRe=0.1

Contours of the effective pressure P —p,

(solid-dashed lines correspond to opposite signs of P —p,)
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To obtain the drag force on the sphere (r = R),
we must remember that it is caused by both the
pressure and the viscous stress:

F.e, = RZjOz”dgb jo”[a”(R,e aa(R,Q))] sing dg =

=2 7 R’ _"Oﬂ[arr(R,e) cosd'sind— o, (R,H) sinze] do

9 Orr

e, Is the direction the sphere
IS moving relative to the fluid.
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The surface element on a sphere
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©

The radial and tangential components of the force
per unit area exerted on the sphere by the fluid are:

O-rr(R1H):(_p+2%(/rrj :—p(R,H):_pO+3,UVOO cos ¢
r=R

2 R
lov, ov, Vv 3uv, sind
RO)=pu ——L+—2--° = = — =
%o (R.0) ﬂ(r 06 or r er o 2 R
Integration gives the fluid force on
J the sphere along e; to be equal to
6 7R uv,| which is the celebrated
Stokes formula.
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Pressure and viscous drag

It can be easily found that the drag force can be split as

2 7R uv, contribution due to pressure forces

4 7R uv, contribution due to viscous forces (skin friction

drag)
10° — T T ]
10'| \\ | - o
.. : LN |
The drag coefficient is Cp, = 24/Re | 2= |
10 — . Sph;r?ﬁ
(Re — 2 VooR / V) ?ir ' Roughness |

0! 100 o’ 107 107 10¢ 10° 108
Re
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Vertical force

Oy /
In the vertical balance equation one should I Orr
also account for the buoyancy force due to 2

the weight of the fluid displaced by the sphere!

F-ezzgﬂ' p g R
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Potential flow

No vorticity -2 a velocity potential ¢ can be defined

©

The continuity equation:

V.-v=0
becomes:

V-Vg=V°¢4=0

Therefore potential flow reduces to finding solutions to
Laplace’s equation.

DICCA
B Universita di Genova
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Potential flow

Streamlines are similar, iIsobars are not.

Cp = 0 - D’Alembert paradox
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Stokes vs potential flow

B T e - | —
i ——
— I e .
i R i — —
e N —
— — _ —
-— - m—— T — . o
J— I R — .
R ——— e ———— - —
i " I — - —_—
R — e ——
T e ] e ———
i — — T - —
e e —— —_
- T ——— —
— _ — —— T —
e | ———
" —
— ——

In fact, streamlines are not so similar! In creeping flows
even distant streamlines are displaced, an effect of the

non-locality of Stokes equation.
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Back to Stokes flow past a sphere

Vertical forze balance over a vertically falling sphere with

Re << 1 yields:
F,=Mg (with M the mass of the sphere of density p)

so that the terminal velocity of the sphere is:

N

|:B A |:Stokes

_ 2 pgR? p
0= g 1 — =
9o 4 ( p) <
and the sphere move downwards when p > p

(i.e., when itis denser than the fluid) Mg
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Stokes flow past a sphere

The Reynolds number of the fluid in the vicinity of the sphere is:

2P0 VooR _
U

_ =29R 1 _
Re = =557 11

© DI

with v=u /p the fluid’'s kinematic viscosity.

Example: grain of sand falling through water

at 20°C, we have p/p=~2and v=1.0 x 107° m?/s.
Hence, Re= (R/6 x 1075)3, where R is
measured in meters. For Re= 1 this yields

a radius R of the sand grain of about 60 um

and the corresponding velocity is v, = 8 x 107> m/s.
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Stokes flow past a sphere

©

Another example: droplet of water falling through air at
20°C and atmospheric pressure, we have p/p ~ 780
and v=1.5x 105 m?/s. Hence, Re = (R/4 x 1075)3,
where R is measured in meters. For Re = 1 this yields

a radius R of the water droplet of about 40 um and the
corresponding velocity is v,, = 0.2 m/s.

Microparticles achieve equilibrium quickly. Q

V

\ o0

DICCA
B Universita di Genova
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Stokes flow past a sphere

Given a system with small but finite Reynolds number, the instantaneity
of the particle response can be quantified by calculating the Stokes
number Sk, which is the ratio of the particle lag time to the characteristic
time over which the flow changes. The characteristic flow time can come
from the characteristic time of an unsteady boundary condition, or from
the ratio v/l of the characteristic velocity and length scale from a steady
boundary condition in a nonuniform flow. Choosing the latter, we have

2
Sk = Ty — 2R Ppls
l/Veo oul

Particles with Stokes number Sk « 1 can be assumed to be always in
steady-state with a local velocity field given by the idealized solution
derived earlier.

Exercise: estimate z, (Appendix E)
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Stokes flow past a sphere

But what happens when we are far from the body,
l.e.r/R—> o ?
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Stokes flow past a sphere

©

Sufficiently far from the sphere the Stokeslet dominate:

3
Yo —{1—§E+%j }cos&’
V. 2T r

Hence:

DICCA
B Universita di Genova
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Stokes flow past a sphere

The viscous term scales like:

9%,
T

Hence:

POV, par _

~o

(1 V2v), U

and even if Re<< 1, inertia inevitably dominates viscosity

Re% as r »> x

r
at sufficiently large = and the Stokes approx breaks down.
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Oseen approximation

The remark above has first been made by Carl Wilhelm Oseen;
he suggested to look at the flow as a uniform component plus a
small disturbance  V =V_I + &’ (valid far from body ...)

The linearized momentum equation becomes:

P Voo Zf =—Vp+puV?U  Oseen’s eq.

For a moving sphere the boundary conditions are:
u=v=w-=»0 at infinity,
u'=-v,_, v'=w’=(0 atthe surface,

and Oseen was able to find an analytical solution (1910).
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Oseen approximation

C —24 1+3R
D_Re 16e

-7 1000

Chester & Breach (1969 :
Shanks 16-term

- 100

Proudman & Pearson (1957)

AY
T TTH

Lo

Goldstein (1929)

e 10

Oseen (1910)

L
T
R

—— I b - Q Van Dyke (1970)
! ) | & =9 stokes(1851) -
\ E —4— Oseen (1910) = e e E
A = =+— Chester & Breach (1969) -
\\ [~ = Goldstein (1929) -
~ () I = —#— Proudman & Pearson (1957) Shanks 6-term =
~ E —#=— Van Dyke (1970) E
~ [~ =+ Liso (2002) R -
~ - [ - Shanks 6-term Stokes (1851) Liao $2002) B
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Roos & Willmarth (1971)

!
T
R

Chow (1979)

0.001

!
[

4

10" 10" 107 10° 10

-~
<
~
-~

Y
9

Oseen asymmetric solution
for a moving sphere
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Axisymmetric Stokes flow in and

around a fluid sphere (i.e. a drop)

Suppose a drop moves at constant speed V in a surrounding
fluid, and suppose the two fluids are immiscible. Transform to
a frame of reference in which the drop is stationary and centred
at the origin; further, assume that Re both immediately outside
and inside the drop are much less than unity (= Stokes flow).

Same analysis as before yields:

U(r, 0) = sin” 9(1 +Br+Cr*+ Dﬁ) outside the drop
»

, 4 - =, =
W(r, 0) = sin’ H(T +Br+Cr’+ Dr4] inside the drop
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Axisymmetric Stokes flow in and

around a fluid sphere (i.e. a drop)

The velocity components (both inside and outside the drop)

Have the same form, I.e.

v = —— (%) =2c0s60 (443 + B/r+ C+Dr)

r sinf@ 00 \r

1 0 .
vg = -~ (=) =~ sin@ (- 443+ B/r+2C+4.Dr)
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Axisymmetric Stokes flow in and

around a fluid sphere (i.e. a drop)

Boundary conditions (Appendix F) yield:

7} p) 7\ 5 \2
I O T
u+pulr u+u | a a

1 .
U(r, 0) = y Va?® sin® 6

=

U(r,0) =

2
V a* sinzﬁ( a _) (i)
U+ \a

(the drop radius is a)
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Axisymmetric Stokes flow in and
around a fluid sphere (i.e. a drop)
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Axisymmetric Stokes flow In

and around a fluid sphere

If the drop Is falling under the effect of gravity the discontinuity

In radial stress across the drop boundary is:

Vip+Q@/Du

om(ay,0)—op(a-.0) =py—po+(—p)ga costd —3 u— — cost
a o+ U
l.e.
— 2y .
Po —Po = — y . surface tension
ptp

. —
a~ ¢ )
po9Y (1_ﬂ_)
3V e,
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Axisymmetric Stokes flow In

and around a fluid sphere

- —_—
a~ ¢ )
o9 (1_ﬁ_)
3v Je

Limiting cases:

U+ p
u+@G/2)u

> U -— % *’5?2_9’ | — E l.e. the drop acts like a
9 v 0 solid sphere
<y and D <p =49 i.e. the drop behaves like

3v an air bubble rising
through a liquid
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Axisymmetric Stokes

flow In

and around a fluid s

Computation of the drag force gives:

phere

H+ [

FD=2T[ﬂaV(2‘u+3ﬁ)

Limiting cases:

E}}J“ FD=61TﬂaV

E{{ﬂ FD=4T[1U(1V

DICCA

l.e. the drop acts like a
solid sphere

l.e. the drop behaves like
an air bubble rising
through a liquid
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Exercise: the rotating sphere

Stokes flow past a sphere rotating with angular velocity Q.

I

@)
Rsing

\

Because of symmetry we expect only the azimuthal

component of the velocity V,to be non-zero; further, we

expect it to depend only on r and the polar angle 6.

k DICCA .
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Exercise: the rotating sphere

Also pressure is expected to be independent of ¢. The

¢- component of the momentum equation reads “simply”:

1 &° 1 0%, cot@dv,  V,
———\r v, )+ + — =0
”( (rv,) 2 002 2 00 risin’o

Ansatz: V (r,d) = 1(r) sin @; this leads to

d’f 2df 2

— f =0
dr? +rdr r?
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Exercise: the rotating sphere

The solution has the form f (r) = r¢, and it is easy to find

o= -2 acceptable solution as r —

a=1 not acceptable

Thus: V(r,0) =Ar=sin ¢

with A = Q R8 to satisfy the boundary condition at the wall.
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Exercise: the rotating sphere

Resisting torque

oV, V, _
T5 =M — =—3u Q singd for r=R
or r

T=|r,R sing ds = 27szrRsm AE

T

T 3
=— 67 uQ R?’jsin?’e d0=—6 7 u QO R‘{COZ e—cosﬁ} =
0

0

=—87 uRQ
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Stokes flow past a cylinder:

In theory, low Re flow around a circular cylinder (imagined
to be infinitely long in the direction of its axis so that a
two-dimensional problem can be set up) can be dealt with
In the same way as for a sphere. This yields however
what is known as Stokes paradox:

No solutions can be found for Stokes equation
past a 2D cylinder, satisfying boundary conditions

on the cylinder surface and far away from it!
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Stokes flow past a cylinder:

We already know that V*C =0 (slide 26)

and this leads to the biharmonic equation in 2D:

Vi =0

since it is easy to see that the (only) component of the

vorticity is ¢ =—-V?y .
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Stokes flow past a cylinder:

We know that in cylindrical coordinates, using only I and &

10( oy 10w
vy == 2 r Y|, .
v ( 8rj 2 067

Ansatz for the streamfunction: = f(r) sing,

and the biharmonic equation yields:

- -2
d> 1d 1

222 2 f=0
_dr2+rdr re
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Stokes flow past a cylinder:

By quadrature the most general solution is:

D
f(N=Ar’+Br Inr+C r+—
r
The continuity equation is:
10 1 ov
Viv==—(rv)+=—2=0
r or r 060
so that
10
Vr :__W and VH__é_W
r 06 or
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Stokes flow past a cylinder:

4 , D
Vi=——7"—=|Ar°+B Inr+C+—-| cosé&
r o \ r

v,=—Y _| _3ar’—B (Inr+1)—C+E sin @
? or r

The condition at infinity requires A=B =0
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Stokes flow past a cylinder:

.
Vrzla_W: r2+B/nr+C+22j cos &
r o \ r
v, =Y _ —3%2—B%r+1)—0+22} sin @
or | r

The no-slip conditions at r = R give:

C+DR2=0 and - C+DR2=0 — C=D=0!
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Stokes flow past a cylinder:

The point is that Stokes equation is only valid in a

neighborhood of the cylinder, not far away from it.

Suppose we are at a distance L from the cylinder

centerline, and suppose that the velocity disturbance
is ( there (Q << V_). Then, the inertial force p(v V)V
scales like pVv_q /L, whereas the viscous term

1 V2V scales like uq/L2
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Stokes flow past a cylinder:

The two estimates are comparable when

i.e. when Relis of order L/R advection is important

and Stokes equation is not applicable.
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Stokes flow past a cylinder:

The correct way of dealing with the problem is via
matched asymptotic expansions (see, e.g., M. Van Dyke,

Perturbation Methods in Fluid Mechanics, 1975, Parabolic

Press).
UsL i J— s
qp:m(qpo-f—mwl—i—...) Y =UpL(7sinf + LogRez/)1+...)
Voo
—_—
i O(L/Re)

— ~ow

< > <€ >
— «Stokes» 2nd problem «Oseeny |st problem

< > € >

«Navier Stokes» «Euler»
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again Oseen ...

©

By accounting for inertia and modifying the Stokes
equation with a linearized advective term, a solution
(invalid near the cylinder surface!) can be found
(after much pain ...) that eventually leads to a drag

force per unit length approximately equal to

4 7 uv,,
1/2—y—In(Re/8)

112

|:D

with y the Euler constant (¥ = 0.577)
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again Oseen ...

MAE results from Van Dyke (1975)

Conclusions: in 3D (sphere)
the Stokes equation works fine,
whereas in 2D (cylinder) the
distant effect of a cylinder must
be determined from Oseen’s
model.
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So far we have just started to scratch

the surface of micro-hydrodynamics...

Why?

Let’s take a look at the table of contents of Kirby’s book ...

“ Micro- and Nanoéééle
. Fluid Mechanics

B Transport in Microfluidic Devices |
E% | BRIAN J. KIRBY 24

"4

, //""-A‘~-\" > A

( 5 'M\l — 000
. ;L/ \ o0od
_
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So far we have just started to scratch the surface ...
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ontents 24 Supplementary reading 51
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1.1 Fluid stati 6 . . . . - -
12 Kinematics of a fluid velocity field 7 4  Passive Scalar Transport: Dispersion, Patterning, and Mixing . .. .............. 79
121 Important geome ¢ definitions 7 41  Passive scalar transport equation 80
1.2.2  Strain rate and rotation rate tensors I 411 alar fluxes and constitutive properties 80
1.3 Governing equations for incompressible flow 13 412 alar conservation equation 80
1.3.1  Conservation of mass: continuity equation 13 42 Physics of mixing 82
1.2 Conservation of momentum: the Navier-Stokes equations 14 43 Measuring and quantifying mixing and related parameters 84
1.4 Constitutive relations 17 44 The low-Reynolds-number, high-Peclet-number limit 87
N . _ 4 he _Paclet a1 limi 37
141  Relation between strain rate and stress 17 441 lth high-Peclel-number |'mf' 57
142 Non-Newtonian fluids 19 442 The low-Reynolds-number limit &
15  Surface tension 2 45  Laminar flow patterning in microdevices 88
151  Definition of surface tension and interfacial energy A j? i“&"‘”"-""”-‘ dispersion
- . . 4 g ary
152 Young-Laplace equation 2 - _ummarr )
153 Contact anele 2 48  Supplementary reading
) - o . 49  Exercises 2
1 Capillary height n
LS Dynamic contact angle 24 5 Electrostatics and Electrodynamics . . .. ... .......cootiiiitarainat.n o7
Jelocity and stress A - crfaces 2 ) i -
1.6 Velocity and stress boundary conditions at interfaces 24 51  Flectrostatics in matter a7

1.6.1  Kinematic boundary condition for continuity of normal velocity

5.1.1  Electrical potential and electric field
1 Dynamic boundary condition for continuity of tangential velocity 5.12  Coulomb’s law, Gauss's law for electricity in a material, curl
1.6 Dynamic boundary conditions for stresses of electric field ) 98
1.6.4  The physics of the tangential velocity boundary condition 5.1.3  Polarization of matter and electric permittivity 100
1.7 Solving the governing equations 5.1.4 Material, frequency, and electric-field dependence of clectrical
1.8 Flow regimes
1.9 A word on terminology and the microfluidics literature 5 on and Laplace equations

LI0 Summary E 5. sification of material types
1.11 Supplementary reading 36 5. Electrostatic boundary conditions
1.12  Exercises 36 5. Solution of electrostatic equations
- 5.1.9 Maxwell stress tensor
2 Unidirectional Flow . ... .. ... ... .. ... ... . ... .. H . . .
1.10  Effects of electrostatic fields on multipoles
2.1  Steady pressure- and boundary-driven flow through long channels 41 5.2  Electrodynamics 109
211 Couette low 41 2.1 Charge conservation equation 110
212 Poiseuille flow 46 522  Electrodynamic boundary conditions 110
5.2.3  Field lines at substrate walls 112

DICCA Slide 122

Universita di Genova




So far we have just started to scratch the surf
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So far we have just started to scratch the surface ...
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... and lots of applications can be envisioned ...

Figure 8 Patients that have spinal cord lesions can
now be healed effectively thanks to the injection of
a product into the cereberospinal fluid. The efficacy
of this mode of injection is far greater than by oral
means. The company Medtronic has commercialized
these injection pumps, which are generally
implanted below the abdomen and connected to
the zone to be treated using a 500 pwm diameter
catheter, which the neurosurgeon must manipulate
with great dexterity. There are also implanted
pumps for the injection of insulin into the liver for
the treatment of diabetes. BT Fv—.
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(cf. slide 61)

In spherical coordinates:

1 %, : 0q
\" =e sing)——2 |+
*A=E sin@[@S(q‘” ) a¢]

11 1 o9, ©
- ——(rqg,)|+
"o sing 8¢ 6r( q¢)]

l-a(l’ qg)_aqrj|
rp or 00

e _
from which: v=V x [ ¢ |=e, L oy e, = oy
r sing r sin@ or

Vg

r’sind 66
Vv

r
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(cf. slide 62)

. i
VXVv=VXVX l//.¢ =V X er 2]- aw —eg 1 aw =
rsing \r’sing 00 r sing or

-1 azy/+ sind 6 ( 1 Oy
rsing| or°  r* 04\sing or

€

only component of the vorticity vector: ¢
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(cf. slide 71)

The operator is applied a first time ...

0° sing o 1 0 _
f 20
Lﬁr” r’ ae(sineaeﬂ( (r)v..sin®6)

I azf r i - 2
or r’2 80\sind o0

I O*f (r : -
~v_|sin?@ g )+f(r)sm20 0 Zsm_HcosH
or r’ 00 sing

- 2 |
_y |sinzg? ! (r)+2f (r)smé’ acose}

OO_ 8r2 r2 00
[ %f(r) _sin2@
=v_|sin*@ g )_2 : f(r)}

or r
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(cf. slide 71)

... and then a second time ...

2 - =2
a_2+ smze 0 _1 o v.| sin%0 f.._23|n2¢9]c _
or r< o9\sin@ or r

V,, sin“d f""—za(—2f3+f2)]+vw Smga%[Z cosd f"—4 cosd é]:

2

I or r’ r r r
PN P A A
V., S|n26?_f _4r2+8r3_8r4]
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(cf. slide 72)

The detalls of the solution of the equidimensional equation are:

4 n 2 n n
. d az _ap? d ag L ar dar

dr dr dr

r*(n)n-1)n-2)n-3)ar"* —4r?(n)n—21)ar"* +8r(n)ar"* —8ar"

divide by ar"

(nn-1)n-2)n-3)-4(n)n-1)+8n-8=0

Thisis a 4" order polynomialwhichcan also be written as:

n (n-1)-2J(n-2)(n-3)-2]=0

and there are 4 possible values for n which turn out to be

-1,1, 2 and 4.

—8ar" =0
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(cf. slide 72)

Thus:

f(r)= A Br+Cr?+Dr* which means that

I

w(r,0)=v_sin’g [é+ Br+Cr®+Dr"
r

the boundary conditions statethat

f(R) = 0, f'(R)=0, f(0) = % r?
from which :

A:%R?’, B=—§R, C:E, D=0

DICCA
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(cf. slide 93)

How much does a spherical particle coast after removing thrust?

From Stokes flow solution, the force on the particle F=6 7 u V a tends
to decelerate it,i.e. MdV/dt=6 7 u V R, with M and P, the particle’s
mass and density, yielding:

dV/V=§ £_dt

ppR2

This leads to an exponential solution: V(t) = V,exp(t/z,) with

_ EﬂpRZ

P 9 U
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(cf. slide 93)

A micro-organism (length scale R = 1 #m) moving in water at a
characteristic speed of 30 £m/s will coast for a time of order

‘ =02 418 ‘

over a coasting distance of order V,z, i.e.

‘ 007 4 ‘

Purcell (1977) states that “if you are at very low Reynolds number,
what you are doing at the moment is entirely determined by the
forces that are exerted on you at the moment, and by nothing in the
past.”

In a footnote he adds that “in that world, Aristotle’s mechanics is
correct!”
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(cf. slide 101)

Boundary conditions for the undeformable “drop™:

1. Inside the bubble we have

. A= B =0 sothatv, and v,are finiteat »=0

. at » = a the radial velocity is zero, so that
C+ Da*?=0

2. Qutside the bubble we have:

. D =0, C = V/2 (see previous problem)

. at » = a the radial velocity vanishes, so that

A/a’ + B/a = -V/2
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(cf. slide 101)

3. At the interface:

« The circumferential velocities inside and outside the

sphere must be the same, v, =v,, at r = a, leading to:
20=2-2_y
a a
« The circumferential shear stresses at the interface inside
and outside must be equal in magnitude and in opposite

directions. Since v. = 0 on the interface, this condition is

avg 'Ug . —_ 6179 179
u(5e-2) =-p(Ze-%)
r T /outside r T/ inside

leading to

6CH =u(4Aa®—2Bla-V)
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Beyond the textbooks shown on slide 11, and the few references
given throughout the slides, other material of interest includes:

E. Lauga & T.R. Powers, The hydrodynamics of swimming
microorganisms, Rep. Prog. Phys. 72 (2009) 096601

http://www.math.nyu.edu/faculty/childres/chpseven.PDF
http://www.mit.edu/~zulissi/courses/slow_viscous_flows.pdf

http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidi
csnanofluidics.html

P. Tabeling, Introduction to Microfluidics, Oxford U. Press (2005)

Dongquing Li, Encyclopedia of Microfluidics and Nanofluidics,
Springer (2008)

Microfluidics and Nanofluidics, Springer
Lab on a Chip, Royal Soc. of Chemistry
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Absolutely “can’t-miss”:
National Committee for Fluid Fluid Mechanics Films

http://web.mit.edu/hmi/ncfmf.html

Massachusetts institute of Technology
MIT Video Course

Fluid Dynamics

Learn the conceplts, principles
-+ and practical applications
fromAscher H. Shapiro

39 studio-produced COLOR videocassettes with
3 Video Course Manuals and
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