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Microhydrodynamics

Flows in micro-devices are characterized by:
- small volumes (ul, nl ...) and sizes;

- low energy consumption;

- effects of the microdomain.

Micro-fluidics encompasses many technologies ranging
from physics, to chemistry and biotechnology
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Microhydrodynamics

Recent applications of flows in micro-devices:

- Cells-on-chip

Cell imaging
Tissue organization Cell selection -

Growth media

Stimulali{bn Cell lysis

Biochemical analysis

Figure 1| Tissue organization, culture and analysis in microsystems. Advanced tissue organization and culture can be performed in microsystems by
integrating homogeneous and heterogeneous cell ensembles, 3D scaffolds to guide cell growth, and microfluidic systems for transport of nutrients

and other soluble factors. Soluble factors — for example, cytokines for cell stimulation — can be presented to the cells in precisely defined spatial and
temporal patterns using integrated microfluidic systems. Microsystems technology can also fractionate heterogeneous cell populations into homogeneous
populations, including single-cell selection, so different cell types can be analysed separately. Microsystems can incorporate numerous techniques for

the analysis of the biochemical reactions in cells, including image-based analysis and techniques for gene and protein analysis of cell lysates. This makes
microtechnology an excellent tool in cell-based applications and in the fundamental study of cell biology. As indicated by the yellow arrows, the different
microfluidic components can be connected with each other to form an integrated system, realizing multiple functionalities on a single chip. However,

this integration is challenging with respect to fluidic and sample matching between the different components, not least because of the difficulty in
simultaneously packaging fluidic, optical, electronic and biological components into a single system.
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Microhydrodynamics

Recent applications of flows in micro-devices:

- Selection of CTC
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Circulating tumor cells (CTCs) are tumor cells found in the peripheral blood that putatively
originate from established sites of malignancy and likely have metastatic potential.
Analysis of CTCs has demonstrated promise as a prognostic marker as well as a source
of identifying potential targets for novel therapeutics. Isolation and characterization of
these cells for study, however, remain challenging owing to their rarity in comparison
with other cellular components of the peripheral blood. Several technigues that exploit the
unigue biochemical properties of CTCs have been developed to facilitate their isolation.
Positive selection of CTCs has been achieved using microfluidic surfaces coated with
antibodies against epithelial cell markers or tumorspecific antigens such as EpCAM
or prostate-specific membrane antigen (PSMA). Following isolation, characterization of
CTCs may help guide clinical decision making. For instance, molecular and genetic
characterization may shed light on the development of chemotherapy resistance and
mechanisms of metastasis without the need for a tissue biopsy. This paper will review
novel isolation techniques to capture CTCs from patients with advanced prostate cancer,
as well as efforts to characterize the CTCs. We will also review how these analyzes can
assist in clinical decision making. Conclusion: The study of CTCs provides insight into the
molecular biology of tumors of prostate origin that will eventually guide the development
of tailored therapeutics. These advances are predicated on high yield and accurate isolation
techniques that exploit the unique biochemical features of these cells.

Keywords: prostate cancer, circulating tumor cells (CTCs), prostate-specific membrane antigen (PSMA),

microfluidic device, androgen receptor (AR)

Slide 4




Microhydrodynamics

Recent applications of flows in micro-devices:

Variable nano-drug inlets
(Nanofluid) -

Multiple microchannels
(Attached to wells with cells)

- Drug delivery

Surface heating

Plenum chamber

(Reservoir) Buffer fluid inlet

\

100 um

l- AR MR e . W

Fig. 4. Microfabricated solid silicon microneedle arrays. Left: A section of a 20 X 20 array of microneedles. Right: Microneedle tips inserted
across epidermis (© 1998 IEEE) [28].
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Microhydrodynamics

Recent applications of flows in micro-devices:

- DNA analysis

GLASS
- SILICON

<~ PC BOARD
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PHOTODETECTORS
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TEMPERATURE
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FLUIDIC CHANNELS

AIR VENTS

Fig. 8. A schematic of an integrated microfluidic device for DNA analysis
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Microhydrodynamics

Other biological applications:

- Red blood cells, vesicles, capsules ...

extravasated drug particles
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Microhydrodynamics

Other biological applications:

- Cilia and flagella

Hair-like projections called
cilia line the primary bronchus
to remove microbes and debris

from the interior of the lungs

Primary
bronchus

Goblet cell
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Microhydrodynamics

Other biological applications:

Outer Middle Inner
ear ear ear

- Cilia and flagella [ o

Stereocilia within the cochlea in
the inner ear sense vibrations
(sound waves) and trigger the
generation of nerve signals that
are sent to the brain.
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Microhydrodynamics

Other biological applications:

- Cilia and flagella

e — back and forth
'"'--g___k?eating

passive part
in motion

Flagellum
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Microhydrodynamics

For all these applications (and for many others) itis
Important to develop an understanding of low Re flows
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Microhydrodynamics - Creeping Flows

Major learning objectives:

1. Feeling for viscous (and inviscid) flows
2. General solution and theorems for Stokes’ flow

3. Derive the complete solution for creeping flow
around a sphere (water drop In air, etc.)

4. Flow past a cylinder: Stokes paradox and the
Oseen approximation

5. Elementary solutions (Stokeslet, stresslet ...)
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George Gabriel Stokes (1819-1903)

e  Stokes'law, in fluid dynamics

«  Stokes radius in biochemistry

e Stokes'theorem, in differential geometry

* Lucasian Professor of Mathematics at Cambridge University at age 30

 Stokes line, in Raman scattering

«  Stokes relations, relating the phase of light reflected from a non-absorbing boundary
Stokes shift, in fluorescence

 Navier=Stokes equations, in fluid dynamics

e  Stokes drift, in fluid dynamics

«  Stokes stream function, in fluid dynamics

«  Stokes wave in fluid dynamics

«  Stokes boundary layer, in fluid dynamics

+ Stokes phenomenon in asymptotic analysis

»  Stokes (unit), a unit of viscosity

« Stokes parameters and Stokes vector, used to quantify the polarisation of electromagnetic waves

+  Campbell-Stokes recorder, an instrument for recording sunshine that was improved by Stokes, and still
widely used today

Stokes (lunar crater)
Stokes (Martian crater)

DICCA Slide 13

B Universita di Genova
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http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Stokes_parameters
http://en.wikipedia.org/wiki/Stokes_vector
http://en.wikipedia.org/wiki/Campbell%E2%80%93Stokes_recorder
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Creeping vs Inviscid Flows

Creepinqg Flows Inviscid Flows

Viscosity goes to o0 (very Viscosity goes to zero (very

low Reynolds number) large Reynolds number)
L eft hand side of the Left hand side of the
momentum equation is not ~ MOmMeNtum equation is.
important (can be taken to Important. Right hand side
vanish). of the momentum equation
Includes pressure only.
Friction is more important Inertia is more important
than inertia. than friction.
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Creeping vs Inviscid Flows

Creepinqg Flows Inviscid Flows

Scaling of pressure
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Creeping vs Inviscid Flows

Creeping Flow Solutions Inviscid Flow Solutions

Use the partial differential Use flow potential, complex
equations. Apply transform, numbers.

similarity, or separation of
variables solution.

Use no-slip condition. Use “no normal velocity.”
Use stream functions for Use velocity potential for
conservation of mass. conservation of mass.

In both cases, we will assume incompressible flow, V-v =0
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Incompressible Navier-Stokes equations

DV _ 1oV
Dt

=P —+(T7-V)T7 = —Vp+ pd + uV3V

Scaling parameters used to nondimensionalize the continuity and momentum
equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions
L Characteristic length {L}

1% Characteristic speed {Lt=1}

f Characteristic frequency {t-1}

Py — P, Reference pressure difference {mL~1t~?}

g Gravitational acceleration {Lt=?}
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B We define nondimensional variables using the scaling
parameters from the table in the previous slide

—

T S 1%

* == V= —
:)ﬁ YL %
p* = =17 V* =LV

- P-P, 9 74

B To plug the nondimensional variables into the NSE, we
need to first rearrange the equations in terms of the
dimensional variables

1 . . . 1

t:?t* T = L1 V=VV* V:EV*
P =Py + (Po— Po)P* §=99"
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B We define nondimensional variables using the scaling
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B Now we substitute into the NSE to obtain

8‘7* sz = x * e -PO_POO * Tk — /"’V *2 Y 7%
PV o+ (V -V)V = - RV 4 gt + VY

W Every additive term has primary dimensions
Im'L-2t2}. To nondimensionalize, we multiply
every term by L/(pV?), which has primary
dimensions {m-1L4t%}, so that the dimensions
cancel. After rearrangement,

fL OV * S —— Py — Py * Dk gL | _, H *277*
[7 8t*+(v V) V= - | VP || 8 | g | VY
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Dimensionless numbers

Terms in [ ] are nondimensiona

!f_L} oV —f—(?*-v*)v*——[PO_POO}V*P*—f-[£]§*+[ M ]Vﬁv’*

V|| ot*

AN

Strouhal number

pV2 V2

parameters

pV L

\

Euler number || Inverse of Froude
number squared

Inverse of Reynolds
number

ov*
ot

|St]

Fr2

+(17*-v*)17*:—[Eu]V*P*+[ ! ]g‘*+[

1
Re

:| V*Q "_/'*
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Navier-Stokes equation in nondimensional form
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Nondimensionalization vs. Normalization

B NSE are now nondimensional, but not necessarily normalized.
What is the difference?

B Nondimensionalization concerns only the dimensions of the
equation - we can use any value of scaling parameters L, V, etc.

B Normalization is more restrictive than nondimensionalization.
To normalize the equation, we must choose scaling parameters
L,V, etc. that are appropriate for the flow being analyzed, such
that all nondimensional variables are of order of magnitude
unity, i.e., their minimum and maximum values are close to 1.0.

t*~1 FF~1 V*~l P'nNl §~l Vil

If we have properly normalized the NSE, we can compare the relative
importance of the terms in the equation by comparing the relative magnitudes of
the nondimensional parameters St, Eu, Fr, and Re.
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The Reynolds number

p VL

Re = ——

U

In water (p = 103 kg m™3, 1= 1073 Pas), a swimming
bacterium such as E. coli with /"= 10 um s~! and
L = 1-10 um has a Reynolds number Re = 10™>-1074.

A human spermatozoon with = 200 um s and

L = 50 um moves with Re = 1072,

B Universita di Genova

The larger ciliates, such as Paramecium, have
V=1 mm s and L = 100 yum, and therefore Re = 0.1.
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The Reynolds number

VL
Re = pre
7
Low Re:
1. Re= ?"je’"”“‘ viscous forces dominate in the fluid
2. Re= Zdiif fluid transport dominated by viscous diffusion

3. For agiven fluid #= 1?/p is a force, and any body acted
upon by a force # will experience a Reynolds number of

order 1 (whatever its size). Easy to see that Re = fccous/ F
and Re = (ﬁnertiall ¢)1/21 so thatif Re=1— fviscous =finertial = F

A body moving at low Re therefore experiences forces smaller
than #, where /=1 nN for water.
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Leading order terms

mTo simplify NSE, assume St~ 1, Fr~ 1

1 9 =
[Eu] V*P* = | — | V**V*
Re
Pressure Viscous
forces forces

mSince PP~1, V*~1

E — ~ = — > — ~ —
¢ pV?2 Re pVL Fo = Foo L
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General equations for creeping flows

Py— Py ~ % (cf. slide 15)

m This is important

B Very different from inertia dominated flows where
PO — Poo ~ pV2

B Density has completely dropped out of NSE. To
demonstrate this, convert back to dimensional form.

VP = MVZV

B This is now a LINEAR EQUATION which can be
solved for simple geometries.
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General equations for creeping flows

VP = /V°v

Taking the curl of the equation above we have:

V(=0

or
VxVv=-VxVxVxv=-VxVx{=0

given the vector identity: V xV x v=-Vv+V(V-Vv)

> thevorticity field =V x Vv is harmonic
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General equations for creeping flows

VP = /V°V

Taking the divergence of the equation above we have:

VP=0

since
V - Vv=V*V-v)=0

on account of the solenoidal velocity field v

| > the pressure field P is harmonic

(and the velocity field satisfies the biharmonic equation ...)
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General equations for creeping flows

Laplacians appear everywhere:

a 1 N
2
Viv==-VP
e/ Boundary conditions act as
< VEC —( > localized sources, and VP
acts as a distributed source.
VP =0
- _/

and this points to the non-locality of Stokes flows: the
solution at any point is determined by conditions over
the entire boundary. Dependence on remote boundary
points can be quantified by Green’s functions.
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Properties of Stokes’ flows

The solutions of Stokes’ equation are unique

They can be added because of linearity

The solutions represent states of minimal dissipation

The solutions are reversible (scallop theorem)
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Linearity and reversibility

Let {v,(r); P;(r)} and {v,(r); P,(r)} be two solutions of
Stokes equations which satisfy respectively the conditions

v; = U;(r) and v, = U,(r) on the boundary S of the domain.
Then {av;(r) +B8 v, (t);a P;(r) + B P,(r)} is also a solution

with boundary condition u = a U;(r) + U, (r) overS.

In particular « =— 1, f = 0 is a solution (we inverse the motion
of a boundary (U becomes — U) and the fluid velocity is also
iInverted (v(r) becomes — v(r)) — reversibility of Stokes eq.
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Linearity and reversibility

Viv=1VP+F

u

If the sign of all forces F changes so does the sign of the
velocity field v. This can be used together with symmetry

arguments to rule out something:

F
u?
_Reverse Reflect
Forces —_—
u?
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Unigue solution

This can be demonstrated assuming two different
solutions for same boundary conditions and analysing

their difference ...

(see, e.g. D. Barthes-Biesel, Microhydrodynamics and
Complex Fluids, CRC Press, 2012)
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Minimal dissipation

Z_’z = pext _ @, K the total kinetic energy of the flow,

and @ the rate of energy dissipation.

In Stokes flow it is P¢**= @, and it is easy to

show that ® = [ o;;€;;dV , with o;j= —p 6;; + 2u€;;

1 (0u; auj .
€ij = 3 ( ox; + axl-) rate of strain

IS minimal (when compared to another solenoidal flow with

same boundary conditions, cf. Barthes-Biesel, 2010)
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Scallop theorem

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Recetved 12 June 1976)

American Journal of Physics, Vol. 45, No. 1, January 1977 Copyright© 1977 American Association of Physics Teachers
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Scallop theorem

Theorem

Suppose that a small swimming body in an infinite
expanse of Newtonian fluid is observed to execute a
periodic cycle of configurations, relative to a coordinate
system moving with constant velocity U relative to the
fluid at infinity. Suppose that the fluid dynamics is that of
Stokes flow. If the sequence of configurations is
Indistinguishable from the time reversed sequence, then
U = 0 and the body does not locomote.

Other formulation:

To achieve propulsion at low Reynolds number in
Newtonian fluids a swimmer must deform in a way that is
not invariant under time-reversal.
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Scallop theorem

Re << 1, micro-organisms use
non-reciprocal waves to move
(no inertia - symmetry under
time reversal); 1 DOF in the
kinematics is not enough!
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General solution for Stokes’ flows

Vp(r.t) —uVu(r,t) = fou(r)
Veu(r,t) = 0

Assume the external force acts on a single point I ’in the fluid:
f@:r.t (I’) — F(:l‘ﬁ'(r — I',)

because of linearity of Stokes flow, the answer must be linear in F;

u(r) =T(r —1’) - Fy T is the Oseen tensor

p(r)=gr—r") - Fy
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General solution for Stokes’ flows

Now, assume a continuously distributed force density in the fluid;

again because of linearity/superposition:

u(r) = /T(r —1') - f(x") d*
p(r) = fg(r —r') - f(x")d%

The Green’s function can be evaluated formally by Fourier

transform (e.g. J.K.G. Dhont, An Introduction to Dynamics

of Colloids, Elsevier, Amsterdam 1996) and the result is:

G(r) | 1. rr
T(r) = S with G(r) = ?—I + 3
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General solution for Stokes’ flows

The Green’s function G(r) of a point disturbance in a fluid is known as

Stokeslet (or Stokes propagator since it describes how the flow field is

propagated throughout the medium by a single localized point force acting

on the fluid in r” as a singularity); it is a tensor.

Also the pressure Green’s function (a vector) can be found analytically:

1 r
ATt ..;.3

The velocity field decays in space as -1 and the pressure goes like 2.

g(r)
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General solution for Stokes’ flows

From the Stokeslet many other solutions can be obtained the complete
set of singularities for viscous flow can be obtained by differentiation
(A.T. Chwang & T.Y.T. Wu, Hydromechanics of low-Reynolds-number
flow: Il. Singularity method for Stokes flows J. Fluid Mech. 67 (1975)
787-815). One derivative leads to force dipoles, with flow fields decaying

as I''2. Two derivatives lead to source dipoles and force quadrupoles, with

velocity decaying in space as I'3. Higher-order singularities are easily
obtained by further differentiation.

A well-chosen distribution of such singularities can then be used to solve
exactly Stokes’ equation in a variety of geometries. For example, the
Stokes flow past a sphere is a combination of a Stokeslet and an
irrotational (!) point source dipole at the center of the sphere.
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The boundary integral method

A linear superposition of singularities is also at the basis of the
boundary integral method to computationally solve for Stokes flows
using solely velocity and stress information at the boundary (e.g.
C. Pozrikidis, Boundary Integral and Singularity Methods for

Linearized Viscous Flow, Cambridge University Press, 1992)
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Stokes’ flow

Let’'s focus on a special case which admits

a well-known analytical solution
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A special case: FLow AROUND A SPHERE

Creeping Flow Inviscid Flow

Larger velocity near the sphere is an inertial effect.
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Flow around a Sphere

General case:

Incident velocity is
approached far
from the sphere.

y Vv
A

” —_Increased velocity
as a result of inertia
terms.

Shear region near the
sphere caused by
viscosity and no-slip.
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Stokes Flow: The Geometry

Use Standard Spherical Coordinates: r, 8, and @

/¢
\

" Far from the sphere (large r) the velocity is
uniform in the rightward direction; e; is the
Cartesian (rectangular) unit vector. It does
not correspond to the spherical unit vectors.
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¢ = azimuthal angle

0< @<2n




Flow past a sphere: objectives

1. Obtain the velocity field around the
sphere

2. Use this velocity field to determine
pressure and shear stress at the sphere
surface

3. From the pressure and the shear stress,
determine the drag force on the sphere
as a function of the sphere’s velocity

4. Analyze similar flow cases ...
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Symmetry of the Geometry

6. inclination or polar
0<O<m

¢: azimut
0<¢<2n

The flow will be symmetric with respect to @
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Components of the Incident Flow

Component of incident velocity
In the radial direction, v_ cosé

Incident Velocity V=V, €;

Component of incident velocity
In the @- direction, -v_siné
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Reynolds Number

)

One can use the kinematic (v) or the dynamic ()
viscosity, so that the Reynolds number may be

Re:\i or Re:%

4 H

In the case of creeping flow around a sphere, we use v,

for the characteristic velocity, and we use the sphere
diameter as the characteristic length scale. Thus,

Re = VoD
u

D] [{@YAY
B Universita di Genova

Slide 50




Summary of Equations to be Solved

Conservation of mass
V-v=0

takes the following form in spherical coordinates:

% (v sin ) +|—— (o, )= 0

— a (,OI’ZVr)+ - -
rsiné 06 rsiné o¢

r2 or

10 . 1 0 ) 0
or |——\or<v. )+ sin@d)=0 |whenv, =0and —=0
r? or (’0 r) rsiné 69('0\/‘9 ) ’ O
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Summary of Equations (Momentum)

Because there is symmetry in ¢, we only worry about the
radial and circumferential components of momentum.

-V P +V 1 =10 (incompressible, Newtonian Fluid)

In spherical coordinates:

. op 2 26y, 2
By — S~ ST 2y ot |=0
Radlal or /J( r r2 r r2 00 r2 0 J
. 1 0p 2 oV V
Azimuthal o (m L j=0
ro0 T 2 50 T rZsin2e

with }[Elz 8(rzaj+ 21_ 8(sine i)
r- or or r<siné 0@ 00
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Comments

Three equations, one first order, two second order.
Three unknowns (v, v, and P).
Two independent variables (r and &).

Equations are linear (there is a solution).
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Stream Function Approach

We will use a stream function approach to
solve these equations.

The stream function is a differential form
that automatically solves the conservation
of mass equation and reduces the problem
from one with 3 variables to one with two
variables.
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Stream Function (Cartesian)

Cartesian coordinates, the two-dimensional continuity

equation is:

ou ov

+—=0

ox oy

If we define a stream function, v, such that:
oy (X, oy (X,
G ovxy) o ov(xy)
oy OX

Then the two-dimensional continuity equation becomes:

au+6v:5 oy +Q oy :azw_gzl/ij
ox oy ox\oy) oyl oy ) oxoy oyex
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Summary of the Procedure

1. Use a stream function to satisfy conservation of mass.
a. Form of wis known for spherical coordinates.

b. Gives 2 equations (r and # momentum) and 2
unknowns (i and pressure).

c. Need to write B.C.s in terms of the stream function.
2. Obtain the momentum equation in terms of velocity.
3. Rewrite the momentum equation in terms of .

4. Eliminate pressure from the two equations (gives 1
equation (momentum) and 1 unknown, v).

5. Use B.C.s to deduce a form for y (equivalently, assume
a separable solution).
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Procedure (Continued)

6. Substitute the assumed form for  back into the
momentum equation to obtain ordinary differential
equations, whose solutions yield .

7. Use the definition of the stream function to obtain the
radial and tangential velocity components from .

8. Use the radial and tangential velocity components in the
momentum equation to obtain pressure.

9. Integrate the e; component of both types of forces
(pressure and viscous stresses) over the surface of the
sphere to obtain the drag force on the sphere.
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Streamfunction

Recall the following form for conservation of mass:

106/, 1 a8, -
Bl -0 Slide 52
(rov, )+ — a(g(vé,sm 6)

If we define a function y (r,0) as:

V

_ 1 OJw v - -1 oy
" r’sin@ o0’ ’ rsin@ or

then the equation of continuity is automatically satisfied. We
have combined 2 unknowns into 1 and eliminated 1 equation.

Note that other forms work for rectangular and cylindrical
coordinates.
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Momentum Eq. In Terms of

1

Use v, =

B rsin@ or

2 i Vv
r<sin@ o0

and conservation of mass is satisfied (procedure step 1).

Substitute these expressions into the steady flow
momentum equation (slide 53) to obtain a partial
differential equation for  from the momentum equation

(procedure step 3):

82

or? "

B Universita di Genova

sin@ o

-

sin@ 06
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Elimination of Pressure

The final equation on the last slide requires several
steps. The first is the elimination of pressure in the
momentum equations. The second was substitution
of the form for the stream function into the result.

How do we eliminate pressure from the momentum
equation? We have:

—VP +uV-(Vv)=0
We take the curl of this equation to obtain:

VxV-(VW)=VxV?y=0
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Exercise: Elimination of Pressure

Furthermore:

VxVV=-VxVxVxv=-VxVx{=0

given the vector identity: V x V x v=-V*v+V(V/V)

It can be shown (straightforward, see Appendix A...) that:

e
v=V X [ l//_ ¢ ]
r sing
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Exercise: Elimination of Pressure

Furthermore:

VxVV=-VxVxVxv=-VxVx{=0

given the vector identity: V x V x v=-V*v+V(V/V)

It can be shown (straightforward, see Appendix A...) that:

e
v=V X [ l//_ ¢ ]
r sing

DICCA Slide 63
B Universita di Genova




Momentum In Terms of y

Given that:

5 .
I=VxVx z//-e¢ __ e-¢ agzy_l_snga _1 aw)
r sing r sing\ or r< o6\ sing o9

(see Appendix B)

from VxVxC=0 it follows:

e 2
VxVxVxVx[ '7”_ ? J=O - (EZ) =0
r sing
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Momentum In Terms of y

E‘w =0, where E° = 0 +sin6?a 1 0
| or  r? 860\ sin6oo )|

. 2
Thus 62 + szg 0 _1 0 v = 0.
or r- 06\ sing oo

This equation was given on slide 60.

N.B. The operator E? is NOT the laplacian ...
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Boundary Conditions in Terms of y

-1 oy 1 aw
° rsin@ or r?sing 06
oy oy
p» andg must be zero forall & atr=R. Thus,

must be constant along the curve r = R. But since the
constant of integration is arbitrary, we can take it to be
zero at that boundary, I.e.

w=0 at r=R
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Question

Consider the following curves. Along which of these curves
must velocity change with position?
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Comment

A key to understanding the previous result is that we are
talking about the surface of the sphere, where r is fixed.

> 1 v =0. And so becausea—"”:o
r-sinéd o6 00

for all 8, w mustbe constantalong that curve.

Becausev, =0,

As r changes,

however, we
w does not / move off of the
change as ¢ curve r =R, SO
changes. can change.
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Boundary Conditions In Terms of y

1 oy oy
r’sin@ 00 06

From Vr — :Vrr2 SII’]H

At r—>o, v. >V _cosé (see slide 49)

Thus, as r — o, Z—g—>(vwc05¢9)r25in0=vwrzcosﬁ siné

In contrast to the surface of the sphere, y will change
with @ far from the sphere.
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Boundary Conditions In Terms of y

1 oy oy
r’sin@ 00 06

From Vr — :Vrr2 SII’\H

v, = :nge Iogvrrzsin9d<9=rzjog(vwcose)sinede

= Erszsinzé’
2

which suggests the 6-dependence of the solution.

w = f(r) v sin’0
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Comment on Separabillity

For a separable solution we assume that the function
IS the product of one function that depends only on r and
another one that depends only on 6, I.e.

y(r,0)=x(r)o(0)

Whenever the boundary conditions can be written In
this form, it is advisable to search for a solution written
In this form. Since the equations are linear, the solution
will be unigue.
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Comment on Separabillity

In our case, the boundary condition at r=R is:
w(R.0)=®(R)(0)=0
and the boundary condition at r—»wis:
y (0, 0) =%voor25in2 0
Both of these forms can be written as a function of r times a
function of 6. (For r=R we take ® (R)=0). The conclusion

that the & dependence like sin?@is reached because these

two boundary conditions must hold for all 8. A similar
statement about the r-dependence cannot be reached.
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Momentum Equation

The momentum equation:
VP = 1V?v

IS 2 equations with 3 unknowns (P, v, and v,). We have
used the stream function (i.e. the fact that v is solenoidal)

to get 2 equations and 2 unknowns (P and y). We then
used these two equations to eliminate P (step 4 on slide 57).
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Substitute back into momentum eaq.

with = f(r) v,_sin’d

r

(r
{az sing o (

-0 - |
sin @ aeﬂ V= (slide 65) becomes:

d*f 4 d?f 8 df 8f|
+

ar* rédr® r*dr r?

sin‘g =0

(cf. calculations in Appendix C)
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Substitute back into momentum eaq.

The resulting ODE is an equidimensional equation for which:
d*f def df
GRS T

f(r)=ar"

Substitution of this form back into the equation yields:

f(r)=% [ 2 r°=3Rr°+ R3] (details in Appendix D)
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Solution for Velocity Components and Vorticity

From the definition of streamfunction and vorticity we have:

_3v, Rsing
2 1’

D] [{@YAY
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(cf. slides 64, 66)
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Solution for Streamfunction and Vorticity

O

Streamlines and contour lines of the vorticity
(dashed/solid lines indicate opposite signs of ).

Notice the symmetry!
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Dragging slowly the sphere from right to left ...

l.e. adding a uniform velocity v

the streamfunction becomes:

WV = f(r) vy sin?d
with

1
f(;a): 4— [ 2/ =3 R r* + Rj] upstream-downstream symmetry is
-

the result of the neglect of non-
linearities
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Multipolar solutions

Stokes flow past a sphere is comprised by three terms:

<
N
q

3
Yo _ —1+§B+1 R siné
v, 4r 4

The terms relate to the multipolar solutions arising from the solution of Laplace
equation in spherical coordinates. The constant term refers to the uniform free-

stream velocity v_; this is the flow that would be observed if the sphere were
absent. The term proportional to R /r is the Stokeslet term; it corresponds to the
response of the flow caused by a point force of F,.. =6 © R 1 Vv,, applied to the
fluid at the center of the sphere. The term proportional to R3/r3 is a stresslet.
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Stokeslet

2

o< < <<c-—eeo.......... The Stokeslet term describes
o ...~ """ the viscous response of the
ciieeeeeeeo-- fluid to the no-slip condition
g, osteeee.......... at the particle surface, and
L - ““777"% this term contains all of the
f,’j_ﬁ o ~---~-~7  vorticity caused by the
oz~ s ------<  VISCOUS action of1the particle.

The Stokeslet component of Stokes flow around
a sphere moving from right to left along the x-axis.
The velocity magnitude along the horizontal axis
(right to left) is:

F 0% X
_SoKeS (1 + cos26)

U, =— Vv, C0S 8+ Vysin @ =%v,_R/r(1+cos?@) = 3
TUr

D] [{@YAY
B Universita di Genova
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Stresslet

1.6
1.4+

..........

EE T IR
0.8+ “(V‘ ,‘\‘A
06r | o \

' -
Ol » vz ¥ 3
¥
L

Qg * » = i

T EEERE LR B IS e Bk ‘

\ X {
\ 5 1

The stresslet term Is not
related to the viscous force of
the sphere (it is an
irrotational term), and is
caused by the finite size of the
sphere. It satisfies Stokes

equation with P constant.

N

The stresslet (or point source dipole) component
of Stokes flow around a sphere moving from right &)
to left along the x-axis. Note, in comparison to the &

previous figure, how quickly the velocities decay

as the distance from the surface increases.

DICCA
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Multipolar solutions

Since the stresslet term decays proportional to r-3 while the
Stokeslet term decays proportional to r-, the primary long-
range effect of the particle is induced by the Stokeslet. Thus,
the net force on the fluid induced by the sphere is required to
prescribe the flow far from a sphere, rather than the particle
size or velocity alone.

Far from a sphere moving in a Stokes flow, the flow does not
distinguish between the effects of one particle that has
velocity v and radius 2 R and another that has velocity 2 v_,
and radius R, since these two spheres have the same drag
force. Close to these spheres, of course, the two flows are
different, as distinguished by the different stresslet terms.
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Effective Pressure

To obtain the effective pressure, we go back to the momentum

VP =uV?°V

Once v, and v, are known, they are replaced into the equation

equation:

above to yield:

@—Sy\/ RcosH oP 3 sin@
or oo 00 2° " r
Integration yields: P=p,— gluv R Coie
2° "

with p, constant of integration. Decay as r- relatedto Stokeslet.

D] [{@YAY
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Effective Pressure

(@ CFD
- solution

forRe=0.1

Contours of the effective pressure P —p,

(solid-dashed lines correspond to opposite signs of P —p,)
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To obtain the drag force on the sphere (r = R),
we must remember that it is caused by both the
pressure and the viscous stress:

F.e, = RZjoz”dgb jo”[a”(R,e a&(R,H))] sing d@ =

=2 7 R [ [0, (R.6) cos6 sing- o, (R.6) sin’6] do

9 Orr

e, IS the direction the sphere
IS moving relative to the fluid.
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dS = 2m (R sin6) (R d6)
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The radial and tangential components of the force
per unit area exerted on the sphere by the fluid are:

Grr(R1‘9):(—p+27/€§;rj :—p(R’H):_pO+3ﬂvoo cos &
r=R

2 R
lov. ov, Vv 3 uv, sing
RO) =y ——"~+—2--"L| = =— =
7 (R.0) ﬂ(r 06  or r)rR “e 2 R
Integration gives the fluid force on
J the sphere along e; to be equal to
6 7R uv.| which is the celebrated
Stokes formula.
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Drag Force

It can be easily found that the drag force can be split as

2 7R uv, contribution due to pressure forces

4 7R uv, contribution due to viscous forces (skin friction

drag)
\m: B | —— — S— |
131! \\\\ | o
! !
The drag coefficient is C,, = 24/Re | w2 |
(Re =2 V.R/v) Bl

107 100 ik 107 10° 10¢ 10° 108
Re
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Vertical force

also account for the buoyancy force due to

In the vertical balance equation one should O /
o,
the weight of the fluid displaced by the sphere! e, "

F°€2=g72',0g R l =-ge,
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Potential flow

No vorticity -2 a velocity potential ¢ can be defined

)

The continuity equation:

V.-v=0
becomes:

V-Vg=V°¢=0

Therefore potential flow reduces to finding solutions to
Laplace’s equation.

DICCA
B Universita di Genova
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Potential flow

Streamlines are similar, iIsobars are not.

Cp = 0 = D’Alembert paradox
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Stokes vs potential flow

B T e - | o
—
B J— e —
e . — —— —_—
e N —
— — _ —
-— - —— T —— -
J— I R — .
R ——— e ———— - —
B - i e - —_—
P — e ——
T e ] e ———
i — — T - —
e . —— —_
- — - _ _—
— _ — —— T —
e — ——
" —
— ——

In fact, streamlines are not so similar! In creeping flows
even distant streamlines are significantly displaced, an

effect of the non-locality of Stokes equation.
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Back to Stokes flow past a sphere

Vertical forze balance over a vertically falling sphere with

Re << 1 yields:

F,=Mg (with M the mass of the sphere of density p)

so that the terminal velocity of the sphere is:

00]

_ 2 pgR* p
= 1 — £
5 5 ( p)

and the sphere move downwards when p > p

(i.e., when it is denser than the fluid)

D] [{@YAY
B Universita di Genova
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4

|:Stokes

Mg
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Stokes flow past a sphere

The Reynolds number of the fluid in the vicinity of the sphere is:

2P0 VooR _
U

_ =29R 1 _
Re = =557 11

© DI

with v=u/p the fluid’s kinematic viscosity.

Example: grain of sand falling through water
at 20°C, we have p/jp=~2and v=1.0 x 107 m?/s.

Hence, Re = (R/6 x 107°)3, where R is

measured in meters. For Re = 1 this yields Q
a radius R of the sand grain of about 60 um

and the corresponding velocity is v, = 8 x 107° m/s.

V

0
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Stokes flow past a sphere

)

Another example: droplet of water falling through air at
20°C and atmospheric pressure, we have p/p =~ 780
and v=1.5x 10 m?s. Hence, Re = (R/4 x 107°)3,
where R is measured in meters. For Re = 1 this yields

a radius R of the water droplet of about 40 um and the
corresponding velocity is v, = 0.2 m/s.

Microparticles achieve equilibrium quickly. Q

V

0

DICCA
B Universita di Genova
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Stokes flow past a sphere

Given a system with small but finite Reynolds number, the instantaneity
of the particle response can be quantified by calculating the Stokes
number Sk, which is the ratio of the particle lag time to the characteristic
time over which the flow changes. The characteristic flow time can come
from the characteristic time of an unsteady boundary condition, or from
the ratio v,./1 of the characteristic velocity and length scale from a steady
boundary condition in a nonuniform flow. Choosing the latter, we have

2
Sk = Tp =2Rppvoo
l/Voo oul

Particles with Stokes number Sk « 1 can be assumed to be always in
steady-state with a local velocity field given by the idealized solution
derived earlier.

Exercise: estimate z, (Appendix E)
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Stokes flow past a sphere

But what happens when we are far from the body,
.e.r/R—> o ?
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Stokes flow for a moving

sphere In quiescent fluid

Sufficiently far from the sphere the Stokeslet dominate:

v, [ 3 R %]3}
—=|———+4+—-)—| [c0os{H
v 2T r
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Stokes flow for a moving

sphere In quiescent fluid

The viscous term scales like:

Hence:

[o(V-V)V], P UT

~/

(1 V2v), U

~ Re% as r —>

and even if Re << 1, inertia inevitably dominates viscosity

r
at sufficiently large o and the Stokes approx breaks down.
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Oseen approximation

The remark above has first been made by Carl Wilhelm Oseen;

he suggested to look at the flow as a uniform component plus a

small disturbance: (u=v_ i+ u’ (valid far from body ...)

The linearized momentum equation becomes:

P Voo %l;’ =—Vp+uV?U  Oseen’seq.

For a moving sphere the boundary conditions are
u=v=w=>0 at infinity,
u'=-v, v'=w’=(0 atthe surface,

and Oseen was able to find an analytical solution (1910).
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Oseen approximation

C —24 1+3R
D_Re 16e

-7 1000

Chester & Breach (1969 :
Shanks 16-term

- 100

Proudman & Pearson (1957)

AY
T TTH

Lo

Goldstein (1929)

e 10

Oseen (1910)

L
T
R

- ! 1 a Van Dyke (1970)
J 9 ] |- =9 Stokes (1851) =
\ E —4— Oseen (1910) . w © aPBE, E
L) = =+— Chester & Breach (1969) —
\\_ [~ = Goldstein (1929) 7
. () I E_ =#— Proudman & Pearson (1957) Shanks 6-term —E
~ = —%— Van Dyke (1970) =
™~ [~ =% Liao (2002) e =l
~ " B == Shanks 6-term Stokes (1851) Liao (2002) B

()0 I =&~ Shanks 16-term

Roos & Willmarth (1971)

!
T
Ll

Chow (1979)

0.001

!
[

4

10° 10" 10° 10

o~
f—
~
<~

Y
9

Oseen asymmetric solution
for a moving sphere
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Axisymmetric Stokes flow Iin and

around a fluid sphere (i.e. a drop)

Suppose a drop moves at constant speed V in a surrounding
fluid, and suppose the two fluids are immiscible. Transform to
a frame of reference in which the drop is stationary and centred
at the origin; further, assume that Re both immediately outside
and inside the drop are much less than unity (= Stokes flow).

Same analysis as before yields:

. £ .\ .
W (r, 0) = sin? H(— +Br+Cr*+Dr? outside the drop
I /

o (A4 = = =)
U(r,0) = sin’ H(— +Br+Cr?+Dr* inside the drop
I )
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ﬁ Universita di Genova Slide 102




)

B Universita di Genova

Axisymmetric Stokes flow Iin and

around a fluid sphere (i.e. a drop)

The velocity components (both inside and outside the drop)

Have the same form, I.e.

__1 90 /(Y\_ 3 ’
U, = rsin@@@(f) = 2cos@ (A/r°+ B/r + C+ Dr?)

1 0 .
Vg =~ o (Sizjg) =—sin@ (— A/’ +B/r+2C+4 Dr?)
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Axisymmetric Stokes flow Iin and

around a fluid sphere (i.e. a drop)

Boundary conditions (Appendix F) yield:

7} p) 7\ 5 \2
I O T
u+pulr u+u | a a

1 .
U(r, 0) = y Va?® sin® 6

=

U(r,0) =

2
V a* sinzﬁ( a _) (i)
U+ \a

(the drop radius is a)
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Axisymmetric Stokes flow Iin and
around a fluid sphere (i.e. a drop)
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Axisymmetric Stokes flow In

and around a fluid sphere

If the drop Is falling under the effect of gravity the discontinuity

In radial stress across the drop boundary is:

Vip+Q@/Du

om(ay,0)—op(a-.0) =py—po+(—p)ga costd —3 u— — cost
a o+ U
l.e.
— 2y .
Po —Po = — y. surface tension
ptp

. —
a~ ¢ )
po9Y (1_ﬂ_)
3V e,
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Axisymmetric Stokes flow In

and around a fluid sphere

- —_—
a~ ¢ )
o9 (1_ﬁ_)
3v Je

Limiting cases:

U+ p
u+@G/2)u

> U -— % *’5?2_9’ | — E l.e. the drop acts like a
9 v 0 solid sphere
I<p and D <p =49 i.e. the drop behaves like

3v an air bubble rising
through a liquid
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Axisymmetric Stokes flow In

and around a fluid sphere

Computation of the drag force gives:

Fp =2 V(Z‘” +i“_‘)
p = emHAY v

Limiting cases:

— l.e. the drop acts like a
o> U Fp=6mtuaV solid sphere

l.e. the drop behaves like
an air bubble rising
through a liquid

E{{ﬂ FD=4T[1U(1V

k DICCA .
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Stokes flow past a cylinder:

In theory, low Re flow around a circular cylinder can be

approached in the same way as for a sphere:
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So far we have just started to scratch the surface ...

Figure 8 Patients that have spinal cord lesions can
now be healed effectively thanks to the injection of
a product into the cereberospinal fluid. The efficacy
of this mode of injection is far greater than by oral
means. The company Medtronic has commercialized
these injection pumps, which are generally
implanted below the abdomen and connected to
the zone to be treated using a 500 pwm diameter
catheter, which the neurosurgeon must manipulate
with great dexterity. There are also implanted
pumps for the injection of insulin into the liver for
the treatment of diabetes. SIS Famnis i

DICCA
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(cf. slide 63)

In spherical coordinates:

1 o : og
\' =e sing)——2 [+
*A=E sin@[as (q¢ ) 8¢]

11 1 o0q 0
"t | sing 8¢ or (r q¢)]+
_ 1falr qg)_aqr}

rl or 00

e _
from which: v=V x( i ):er( L a‘//)+e9( 1 6w)

r sing r’sin@ 06 r sind or

V, Vy
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(cf. slide 64)

. _
Vx v=VxVx| 2t |=vxle 21_ v —e, . W
rsing |\ r’sing 60 r sing or

-1 azw+ sind 0 ( 1 Oy
r sind| or’ r’ 04\ sind or

€,

only component of the vorticity vector: ¢
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(cf. slide 49)

The operator is applied a first time ...

o° sing o 1 0o _
f 26
Lrﬁ r’ a@(sineaeﬂ( (r)v..sin”6)

I OXf (r i . 2
=V, Sin2(9 g )+ f (r)sng o 1 osIin® @
or r’ 66\ sind 00

o’ f(r i -
~v_|sin?@ g )+f(r)sm2<9 0 Zsm_ecose
or r> 06 sind

- 2 |
v, sin2 g2 fgr)+2f(r)5m20 80030}
or r 00

2 .2
=V SinZQG fgr)_23|n29f(r):|

or r
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(cf. slide 74)

... and then a second time ...

2 - =2
a_2+ stH 0 _1 o v.| sin? 1E.._25|n2<9f _
or r< o9\sin@ or r

v, sin’0 f""—2a(—22+f2ﬂ+vw e %[2 cosd "4 coso iz]=

2

or r’ r r r
PN IV T S
V., smzé’_f —4r2+8r3—8r4}
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(cf. slide 52)

The detalls of the solution of the equidimensional equation are:

4 n 2 n n
r4d a: —4r2d ag +8rdar
dr dr dr

r*(nn-1)fn-2)n-3)ar"* —4r*(n)n—1)ar" 2 +8r(n)ar"* —8ar"
divide by ar”

(n(n-1)n-2)n-3)-4(n)n-1)+8n-8=0

Thisis a 4" order polynomialwhichcan alsobe written as:

h (n-1)-2[(n-2)(n-3)-2]=0
and there are 4 possible values for n which turn out to be
-1, 1, 2 and 4.
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(cf. slide 75)

Thus:

f(r)= A Br+Cr2+Dr* whichmeansthat
r

w(r,0)=v, sin’0 {éqt Br+Cr? + Drﬂ ;
r

the boundary conditions state that
1

f(R) = 0, f(0) = 5 re (cf. slide 72)
from which:
A:ER3, B:—ER,C:E, D=0

4 4 2
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(cf. slide 96)

How much does a spherical particle coast after removing thrust?

From Stokes flow solution, the force on the particle F =6 7V a tends

to decelerate it, i.e. M dV/dt=6 7 p V R, with M and p, the particle’s
mass and density, yielding:

dV/V=2-£_qt.

2 ppR?

This leads to an exponential solution: V(?) = V,exp(t/z,) with

_ 2 ppRz

L= 5
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(cf. slide 96)

A micro-organism (length scale R = 1 xzm) moving in water at a
characteristic speed of 30 #m/s will coast for a time equal to

‘ =02 413 ‘

over a coasting distance V,7, equal to

‘ 007 4 ‘

Purcell (1977) states that “if you are at very low Reynolds number,
what you are doing at the moment is entirely determined by the
forces that are exerted on you at the moment, and by nothing in the
past.”

In a footnote he adds that “in that world, Aristotle’s mechanics is
correct!”
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(cf. slide 104)

)

Boundary conditions for the “drop” case:

1. Inside the bubble we have

. A= B =0 sothatv, andv,are finiteat »=0

. at r = a the radial velocity is zero, so that
C+ Da? =

2. Outside the bubble we have:

. D =0, C = V/2 (see previous problem)

. at » = a the radial velocity vanishes, so that

A/a’ + B/a =-V/2
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(cf. slide 104)

3. At the interface:

* The circumferential velocities inside and outside the

sphere must be the same, v,, =v,, at r = q, leading to:
20=2-2_y
a a
« The circumferential shear stresses at the interface inside
and outside must be equal in magnitude and in opposite

directions. Since v, = 0 on the interface, this condition is
(6179 _ Ug) - - (avg _ UQ)
ar T Joutside ar '/ inside

leading to

6CH =u(4Aa®—2Bla-V)
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Beyond the textbooks shown on slide 11, and the few references
given throughout the slides, other material of interest include:

 E.Lauga & T.R. Powers, The hydrodynamics of swimming
microorganisms, Rep. Prog. Phys. 72 (2009) 096601

* http://www.math.nyu.edu/faculty/childres/chpseven.PDF

* http://www.mit.edu/~zulissi/courses/slow_viscous_flows.pdf

« P. Tabeling, Introduction to Microfluidics, Oxford U. Press (2005)

« Dongquing Li, Encyclopedia of Microfluidics and Nanofluidics,
Springer (2008) '

* Micro and NanoFluidics, Springer

« Lab on a Chip, Royal Soc. of Chemistry -

L
e R

-
o
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Absolutely “can’t-miss”:
National Committee for Fluid Fluid Mechanics Films

http://web.mit.edu/hmi/ncfmf.html

MIT \ndeo Course

Fluid Dynamics

Learn the conceplts, principles
-+ and practical applications
from Ascher H. Shapiro

39 studio-prox d dCOLOR ideo
3 Video Coul and
2 textbooks
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