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Introduction 
Fluid Mechanics 

Faces of Fluid Mechanics :  some of the greatest minds of history have 
tried to solve the mysteries of fluid mechanics 

Archimedes Da Vinci Newton Leibniz Euler 

Bernoulli Navier Stokes Reynolds Prandtl 



• From mid-1800’s to 1960’s, research in fluid mechanics 
focused upon 
– Analytical methods 

• Exact solution to Navier-Stokes equations (~ 80 known for simple 
problems, e.g., laminar pipe flow) 

• Approximate methods, e.g., Ideal flow, Boundary layer theory 

– Experimental methods 
• Scale models:  wind tunnels, water tunnels, towing-tanks, flumes,... 

• Measurement techniques:  pitot probes; hot-wire probes; anemometers; 
laser-doppler velocimetry; particle-image velocimetry 

• Most man-made systems (e.g., airplane) engineered using build-and-test 
iteration. 

• 1950’s – present :  rise of computational fluid dynamics (CFD) 

Introduction 
Fluid Mechanics 



Basic concepts 



What is a fluid? 

• A fluid is a substance in the gaseous or liquid form 

• Distinction between solid and fluid? 

– Solid:  can resist an applied shear by deforming.  Stress is 
proportional to strain 

– Fluid:  deforms continuously under applied shear.  Stress is 
proportional to strain rate 
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What is a fluid? 

• Stress is defined as the 
force per unit area.  

• Normal component:  
normal stress 

– In a fluid at rest, the 
normal stress is called 
pressure 

• Tangential component:  
shear stress 



What is a fluid? 

• A liquid takes the shape of 
the container it is in and 
forms a free surface in the 
presence of gravity 

• A gas expands until it 
encounters the walls of the 
container and fills the entire 
available space.  Gases cannot 
form a free surface    

• Gas and vapor are often used 
as synonymous words 

 



What is a fluid? 

           solid 
 
 
 
         strong                                                        weak 
 
                           intermolecular bonds 

liquid gas 

Pressure can be measured on 
a macroscopic scale … 



No-slip condition 

• No-slip condition:  A fluid in 
direct contact with a solid 
``sticks'‘ to the surface due to 
viscous effects 

• Responsible for generation of wall 
shear stress w, surface drag D= 
∫w dA, and the development of 
the boundary layer 

• The fluid property responsible for 
the no-slip condition is viscosity 

• Important boundary condition in 
formulating initial boundary value 
problem (IBVP) for analytical and 
computational fluid dynamics 
analysis 
 



Classification of Flows 

• We classify flows as a tool in making simplifying 
assumptions to the governing partial-differential 
equations, which are known as the Navier-Stokes 
equations (for Newtonian fluids) 

– Conservation of Mass 

 
 

– Conservation of Momentum 
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Viscous vs. Inviscid Regions of Flow 

• Regions where frictional 
effects are significant are 
called viscous regions.  They 
are usually close to solid 
surfaces. 

• Regions where frictional 
forces are small compared 
to inertial or pressure forces 
are called inviscid 



Internal vs. External Flow 

• Internal flows are 
dominated by the 
influence of viscosity 
throughout the 
flowfield 

• For external flows, 
viscous effects are 
limited to the boundary 
layer and wake. 

 



Compressible vs. Incompressible Flow 

• A flow is classified as 
incompressible if the density 
remains nearly constant. 

• Liquid flows are typically 
incompressible. 

• Gas flows are often compressible, 
especially for high speeds. 

• Mach number, Ma = V/c is a good 
indicator of whether or not 
compressibility effects are 
important. 
– Ma < 0.3 :  Incompressible 
– Ma < 1 :  Subsonic 
– Ma = 1 :  Sonic 
– Ma > 1 :  Supersonic 
– Ma >> 1 :  Hypersonic 



Laminar vs. Turbulent Flow 

• Laminar:  highly ordered 
fluid motion with smooth 
streamlines.  

• Turbulent:  highly 
disordered fluid motion 
characterized by velocity 
fluctuations and eddies. 

• Transitional:  a flow that 
contains both laminar and 
turbulent regions 

• The Reynolds number,     
Re= rUL/ is the key 
parameter in determining 
whether or not a flow is 
laminar or turbulent. 
 



Steady vs. Unsteady Flow 

• Steady implies no change at a 
point with time.  Transient terms 
in N-S equations are zero 

• Unsteady is the opposite of 
steady. 
– Transient usually describes a 

starting, or developing flow. 

– Periodic refers to a flow which 
oscillates about a mean. 

• Unsteady flows may appear 
steady if “time-averaged” 



One-, Two-, and Three-Dimensional Flows 

• N-S equations are 3D vector equations. 
• Velocity vector, U(x,y,z,t)= [Ux(x,y,z,t),Uy(x,y,z,t),Uz(x,y,z,t)] 
• Lower dimensional flows reduce complexity of analytical and 

computational solution 
• Change in coordinate system (cylindrical, spherical, etc.) may facilitate 

reduction in order. 
• Example:  for fully-developed pipe flow, velocity V(r) is a function of radius 

r and pressure p(z) is a function of distance z along the pipe.  



System and Control Volume 

• A system is defined as a 
quantity of matter or a 
region in space chosen for 
study. 

• A closed system consists of 
a fixed amount of mass.  

• An open system, or control 
volume, is a properly 
selected region in space.  

 



Dimensions and Units 
• Any physical quantity can be characterized by dimensions.  
• The magnitudes assigned to dimensions are called units. 
• Primary dimensions include:  mass m, length L, time t, and 

temperature T.  
• Secondary dimensions can be expressed in terms of primary 

dimensions and include:  velocity V, energy E, and volume V. 
• Unit systems include English system and the metric SI 

(International System).  We'll use only the SI system. 
• Dimensional homogeneity is a valuable tool in checking for 

errors.  Make sure every term in an equation has the same 
units.  



Accuracy, Precision, and Significant Digits 

Engineers must be aware of three principals that govern the proper use of 
numbers. 
 

1. Accuracy error :  Value of one reading minus the true value.  Closeness of 
the average reading to the true value. Generally associated with 
repeatable, fixed errors.  

2. Precision error :  Value of one reading minus the average of readings.  Is a 
measure of the fineness of resolution and repeatability of the instrument.  
Generally associated with random errors. 

3. Significant digits :  Digits that are relevant and meaningful.  When 
performing  calculations, the final result is only as precise as the least 
precise parameter in the problem.  When the number of significant digits 
is unknown, the accepted standard is 3.  Use 3 in all homework and 
exams.  



Example of Accuracy and Precision 

Shooter A is more precise but less 
accurate, while shooter B is more  
accurate, but less precise.   



Physical characteristics 

• Any characteristic of a system is called a property.  
– Familiar:  pressure P, temperature T, volume V, and mass m. 

– Less familiar: viscosity, thermal conductivity, modulus of elasticity, 
thermal expansion coefficient, vapor pressure, surface tension. 

• Intensive properties are independent of the mass of the 
system.  Examples:  temperature, pressure, and density.  

• Extensive properties are those whose value depends on the 
size of the system.  Examples:  Total mass, total volume, and 
total momentum. 

• Extensive properties per unit mass are called specific 
properties.  Examples include specific volume v = V/m and 
specific total energy e=E/m.  



Continuum 

• Atoms are widely spaced in the gas 
phase.   

• However, we can disregard the 
atomic nature of a substance. 

• View it as a continuous, 
homogeneous matter with no holes, 
that is, a continuum. 

• This allows us to treat properties as 
smoothly varying quantities. 

• Continuum is valid as long as size of 
the system is large in comparison to 
distance between molecules. 



Density and Specific Gravity 

• Density is defined as the mass per unit volume r = m/V.  
Density has units of kg/m3 

• Specific volume is defined as v = 1/r = V/m. 

• For a gas, density depends on temperature and pressure. 

• Specific gravity, or relative density is defined as the ratio of 
the density of a substance to the density of some standard 
substance at a specified temperature (usually water at 4°C), 
i.e.,  SG=r/rH20.  SG is a dimensionless quantity. 

• The specific weight is defined as the weight per unit volume,  
i.e., gs = rg where g is the gravitational acceleration. gs has 
units of N/m3. 



Density of Ideal Gases 

• Equation of State: equation for the relationship 
between pressure,  temperature, and density.  

• The simplest and best-known equation of state is the 
ideal-gas equation. 
 
              P v = R T        or         P = r R T 
 

• Ideal-gas equation holds for most gases. 
• However, dense gases such as water vapor and 

refrigerant vapor should not be treated as ideal 
gases.   



Vapor Pressure and Cavitation 

• Vapor Pressure Pv of a pure 
substance is defined as the 
pressure exerted by its vapor in 
phase equilibrium with its liquid 
at a given temperature 

• If P drops below Pv, liquid is 
locally vaporized, creating 
cavities of vapor.   

• Vapor cavities collapse when 
local P rises above Pv. 

• Collapse of cavities is a violent 
process which can damage 
machinery. 

• Cavitation is noisy, and can cause 
structural vibrations. 



Energy and Specific Heats 

• Total energy E is comprised of numerous forms:  thermal, 
mechanical, kinetic, potential, electrical, magnetic, chemical, 
and nuclear. 

• Units of energy are joule (J) or British thermal unit (BTU). 
• Microscopic energy  

– Internal energy u  is for a non-flowing fluid and is due to molecular 
activity. 

– Enthalpy h=u+Pv is for a flowing fluid and includes flow energy (Pv). 

• Macroscopic energy  
– Kinetic energy ke=V2/2 
– Potential energy pe=gz 

• In the absence of electrical, magnetic, chemical, and nuclear 
energy, the total energy is eflowing=h+V2/2+gz. 



Coefficient of Compressibility 

• How does fluid volume change with P and T? 

• Fluids expand as T ↑ or P ↓ ; fluids contract as T ↓ or P ↑ 

• Need fluid properties that relate volume changes to changes in P and T. 

– Coefficient of compressibility or bulk modulus of elasticity  
 

 

  

                  = 1/K = coefficient of isothermal compressibility 

– Coefficient of volume expansion 
 

 

• Combined effects of P and T can be written as 
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Viscosity 

• Viscosity is a property 
that represents the 
internal resistance of a 
fluid to motion.  

• The force a flowing fluid 
exerts on a body in the 
flow direction is called 
the drag force, and the 
magnitude of this force 
depends, in part, on 
viscosity.  



Viscosity 

• To obtain a relation for viscosity, 
consider a fluid layer between two 
very large parallel plates separated by 
a distance ℓ 

• Definition of shear stress is  = F/A. 
• Using the no-slip condition,  

u(0) = 0 and u(ℓ) = V, the velocity 
profile and gradient are u(y)= Vy/ℓ 
and du/dy=V/ℓ 

• Shear stress for Newtonian fluid:          
       =  du/dy 
•  is the dynamic viscosity and has  
      units of kg/m·s, Pa·s, or poise              
      (1 poise = 0.1 Pa S). 
• The viscosity of water at 20°C is 1 cP 
      (cP = centiPoise) 
• The kinematic viscosity of water at  
      20°C is 1 cSt (cSt = centiStoke)  
      (1 St = 1 cm2/s) 



Viscometry 

• How is viscosity measured?  A rotating 
viscometer. 
– Two concentric cylinders with a fluid in 

the small gap ℓ. 
– Inner cylinder is rotating, outer one is 

fixed. 

• Use definition of shear force: 
 
 
 

• If ℓ/R << 1, then cylinders can be modeled 
as flat plates. 

• Torque T = FR, and tangential velocity 
V=wR 

• Wetted surface area A=2pRL. 
• Measure T and w to compute  

du
F A A

dy
  



Surface Tension 

• Liquid droplets behave like small 
spherical balloons filled with liquid, 
and the surface of the liquid acts 
like a stretched elastic membrane 
under tension. 

• The pulling force that causes this is  
– due to the attractive forces 

between molecules  

– called surface tension ss. 

• Attractive force on surface molecule 
is not symmetric. 

• Repulsive forces from interior 
molecules causes the liquid to 
minimize its surface area and attain 
a spherical shape. 



Capillary Effect 

• Capillary effect is the rise or 
fall of a liquid in a small-
diameter tube. 

• The curved free surface in the 
tube is call the meniscus. 

• Water meniscus curves up 
because water is a wetting 
fluid. 

• Mercury meniscus curves 
down because mercury is a 
nonwetting fluid. 

• Force balance can describe 
magnitude of capillary rise. 



Fluids Kinematics 



Overview 

• Fluid Kinematics deals with the motion of fluids 
without considering the forces and moments which 
create the motion. 

• Items discussed here:  
– Material derivative and its relationship to Lagrangian and 

Eulerian descriptions of fluid flow. 

– Flow visualization. 

– Plotting flow data. 

– Fundamental kinematic properties of fluid motion and 
deformation. 

– Reynolds Transport Theorem 



Lagrangian Description 

• Lagrangian description of fluid flow tracks the 
position and velocity of individual particles. 

• Based upon Newton's laws of motion.  
• Difficult to use for practical flow analysis. 

– Fluids are composed of billions of molecules. 
– Interaction between molecules hard to describe/model.  

• However, useful for specialized applications 
– Sprays, particles, bubble dynamics, rarefied gases. 
– Coupled Eulerian-Lagrangian methods. 

• Named after Italian mathematician Joseph Louis 
Lagrange (1736-1813). 



Eulerian Description 

• Eulerian description of fluid flow: a flow domain or control volume is 
defined by which fluid flows in and out. 

• We define field variables which are functions of space and time. 
– Pressure field, P=P(x,y,z,t) 

– Velocity field, 

 

 

– Acceleration field, 

 

 

– These (and other) field variables define the flow field. 

• Well suited for formulation of initial boundary-value problems (PDE's). 

• Named after Swiss mathematician Leonhard Euler (1707-1783). 
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Acceleration Field 

• Consider a fluid particle and Newton's second law,  

 

 

• The acceleration of the particle is the time derivative of the 
particle's velocity. 

  

• However, particle velocity at a point is the same as the fluid 
velocity, 

• To take the time derivative of, chain rule must be used. 
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Acceleration Field  

• Since 

 

 

 

• In vector form, the acceleration can be written as 

 

 

 

• First term is called the local acceleration and is nonzero only for unsteady 
flows. 

• Second term is called the advective acceleration and accounts for the 
effect of the fluid particle moving to a new location in the flow, where the 
velocity is different. 
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Material Derivative 

• The total derivative operator d/dt is call the material derivative 
and is often given special notation, D/Dt. 

 

 

 

• Advective acceleration is nonlinear:  source of many 
phenomenon and primary challenge in solving fluid flow 
problems. 

• Provides ``transformation'' between Lagrangian and Eulerian 
frames. 

• Other names for the material derivative include:  total, particle, 
Lagrangian, Eulerian, and substantial derivative.  
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Flow Visualization 

• Flow visualization is the visual examination of flow-
field features. 

• Important for both physical experiments and 
numerical (CFD) solutions. 

• Numerous methods 
– Streamlines and streamtubes 
– Pathlines 
– Streaklines 
– Timelines 
– Refractive techniques 
– Surface flow techniques 



Streamlines 
• A Streamline is a curve that is 

everywhere tangent to the 
instantaneous local velocity 
vector. 

• Consider an arc length  

 

 

•      must be parallel to the local 
velocity vector  

 

 

• Geometric arguments results in 
the equation for a streamline 

dr dxi dyj dzk  
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Streamlines 
NASCAR surface pressure contours and 
streamlines 

Airplane surface pressure contours, 
volume streamlines, and surface 
streamlines  



Pathlines 

• A Pathline is the actual path 
traveled by an individual fluid 
particle over some time period. 

• Same as the fluid particle's 
material position vector  

 
 
• Particle location at time t:  

 
 

 
• Particle Image Velocimetry (PIV) 

is a modern experimental 
technique to measure velocity 
field over a plane in the flow 
field. 
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Streaklines 

• A Streakline is the locus 
of fluid particles that 
have passed 
sequentially through a 
prescribed point in the 
flow. 

• Easy to generate in 
experiments:  dye in a 
water flow, or smoke in 
an airflow. 



Comparisons 

• For steady flow, streamlines, pathlines, and 
streaklines are identical.  

• For unsteady flow, they can be very different.  

– Streamlines are an instantaneous picture of the flow field 

– Pathlines and Streaklines are flow patterns that have a 
time history associated with them.  

– Streakline:  instantaneous snapshot of a time-integrated 
flow pattern. 

– Pathline:  time-exposed flow path of an individual particle. 



Timelines 

• A Timeline is the locus 
of fluid particles that 
have passed 
sequentially through a 
prescribed point in the 
flow. 

• Timelines can be 
generated using a 
hydrogen bubble wire. 



Plots of Data 

• A Profile plot indicates how the value of a 
scalar property varies along some desired 
direction in the flow field. 

• A Vector plot is an array of arrows indicating 
the magnitude and direction of a vector 
property at an instant in time. 

• A Contour plot shows curves of constant 
values of a scalar property for magnitude of a 
vector property at an instant in time. 



Kinematic Description 

• In fluid mechanics, an element 
may undergo four fundamental 
types of motion.  
a) Translation 
b) Rotation 
c) Linear strain 
d) Shear strain 

• Because fluids are in constant 
motion, motion and deformation 
is best described in terms of rates  
a) velocity: rate of translation 
b) angular velocity: rate of rotation 
c) linear strain rate: rate of linear 

strain 
d) shear strain rate:  rate of shear 

strain 



Rate of Translation and Rotation 

• To be useful, these rates must be expressed in terms of velocity 
and derivatives of velocity 

• The rate of translation vector is described as the velocity 
vector.  In Cartesian coordinates: 

 

 

• Rate of rotation at a point is defined as the average rotation 
rate of two initially perpendicular lines that intersect at that 
point. The rate of rotation vector in Cartesian coordinates: 
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Linear Strain Rate 

• Linear Strain Rate is defined as the rate of increase in length per unit length. 

• In Cartesian coordinates 

 

  

• Volumetric strain rate in Cartesian coordinates 

 

 

 

• Since the volume of a fluid element is constant for an incompressible flow, 
the volumetric strain rate must be zero. 
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Shear Strain Rate 

• Shear Strain Rate at a point is defined as half of the 
rate of decrease of the angle between two initially 
perpendicular lines that intersect at a point. 

• Shear strain rate can be expressed in Cartesian 
coordinates as:  
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Shear Strain Rate 

We can combine linear strain rate and shear strain rate 
into one symmetric second-order tensor called the 
strain-rate tensor. 
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Shear Strain Rate 

• Purpose of our discussion of fluid element 
kinematics:   
– Better appreciation of the inherent complexity of fluid 

dynamics  

– Mathematical sophistication required to fully describe fluid 
motion 

• Strain-rate tensor is important for numerous reasons.  
For example, 
– Develop relationships between fluid stress and strain rate.  

– Feature extraction and flow visualization in CFD 
simulations. 



Shear Strain Rate 
Example:  Visualization of trailing-edge turbulent eddies  

for a hydrofoil with a beveled trailing edge 

Feature extraction method is based upon eigen-analysis of the strain-rate tensor. 



Vorticity and Rotationality 

• The vorticity vector is defined as the curl of the velocity vector 

• Vorticity is equal to twice the angular velocity of a fluid 
particle.  
Cartesian coordinates 
 

 
Cylindrical coordinates 

 

 

• In regions where z = 0, the flow is called irrotational. 

• Elsewhere, the flow is called rotational. 
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Vorticity and Rotationality 



Comparison of Two Circular Flows 
Special case:  consider two flows with circular streamlines 

   2

0,

1 1
0 2

r

r
z z z

u u r

rru u
e e e

r r r r





w

w
z w



 

   
      
      

   

0,

1 1
0 0

r

r
z z z

K
u u

r

ru Ku
e e e

r r r r



z


 

    
       

    



Reynolds—Transport Theorem (RTT) 

• A system is a quantity of matter of fixed identity. No mass can 
cross a system boundary. 

• A control volume is a region in space chosen for study. Mass 
can cross a control surface. 

• The fundamental conservation laws (conservation of mass, 
energy, and momentum) apply directly to systems. 

• However, in most fluid mechanics problems, control volume 
analysis is preferred over system analysis (for the same reason 
that the Eulerian description is usually preferred over the 
Lagrangian description). 

• Therefore, we need to transform the conservation laws from a 
system to a control volume. This is accomplished with the 
Reynolds transport theorem (RTT). 



Reynolds—Transport Theorem (RTT) 

 

There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis using 
infinitesimally small fluid elements) and the transformation from 
systems to control volumes (for integral analysis using large, 
finite flow fields). 



Reynolds—Transport Theorem (RTT) 

• Material derivative (differential analysis): 
 

 
 
• General RTT, nonfixed CV (integral analysis): 

 
 

 
 
 
 
 
 
 
 

• Typically, RTT is applied to conservation of mass, energy, linear momentum and 
angular momentum. 
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Reynolds—Transport Theorem (RTT) 

• Interpretation of the RTT: 

– Time rate of change of the property B of the 
system is equal to (Term 1) + (Term 2) 

– Term 1:  the time rate of change of B of the 
control volume 

– Term 2:  the net flux of B out of the control 
volume by mass crossing the control surface 

 sys

CV CS

dB
b dV bV ndA

dt t
r r


 

  . 



RTT Special Cases 

For moving and/or deforming control volumes,  

 

 

 

• Where the absolute velocity V in the second term is 
replaced by the relative velocity  
Vr = V -VCS 

• Vr is the fluid velocity expressed relative to a 
coordinate system moving with the control volume. 
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Balance equations in differential form 



Conservation of Mass 

• From Reynolds Transport Theorem (RTT) 

 

 

• We’ll examine two methods to derive 
differential form of conservation of mass 

– Divergence (Gauss) Theorem 

– Differential CV and Taylor series expansions 



Conservation of Mass 
Divergence Theorem 

• Divergence theorem allows us to transform a 
volume integral of the divergence of a vector 
into an area integral over the surface that 
defines the volume. 



Conservation of Mass 
Divergence Theorem 

• Rewrite conservation of mass 

 

 

• Using divergence theorem, replace area integral with 
volume integral and collect terms 

 

 

• Integral holds for ANY CV, therefore: 



Conservation of Mass 
Differential CV and Taylor series 

• First, define an infinitesimal 
control volume dx dy dz around 
a central point P 

• Next, we approximate the mass 
flow rate into or out of each of 
the 6 faces  using Taylor series 
expansions around the center 
point, e.g., at the right face 

Ignore terms higher than order dx 

P 



Conservation of Mass 
Differential CV and Taylor series 

Infinitesimal control volume 
of dimensions dx, dy, dz 

Area of right 
face = dy dz 

Mass flow rate through 
the right face of the  
control volume 



Conservation of Mass 
Differential CV and Taylor series 

• Now, sum up the mass flow rates into and out of the 
6 faces of the CV 

 

 

 

 

 

• Plug into integral conservation of mass equation 

Net mass flow rate into CV: 

Net mass flow rate out of CV: 



Conservation of Mass 
Differential CV and Taylor series 

• After substitution, 

 

• Dividing through by volume dxdydz 

Or, if we apply the definition of the divergence of a vector 



Conservation of Mass 
Alternative form 

• Use product rule on divergence term 



Conservation of Mass 
Cylindrical coordinates 

• There are many problems which are simpler to solve if the 
equations are written in cylindrical-polar coordinates 

• Easiest way to convert from Cartesian is to use vector form 
and definition of divergence operator in cylindrical 
coordinates 



Conservation of Mass 
Cylindrical coordinates 



Conservation of Mass 
Special Cases 

• Steady compressible flow 

Cartesian 

Cylindrical 



Conservation of Mass 
Special Cases 

• Incompressible flow 

Cartesian 

Cylindrical 

and r = constant  



Conservation of Mass 

• In general, continuity equation cannot be 
used by itself to solve for flow field, however 
it can be used to  

 

1. Determine if velocity field is incompressible 

2. Find missing velocity component 



The Stream Function 

• Consider the continuity equation for  an 
incompressible 2D flow 

 

 

• Substituting the clever transformation 

 

 

• Gives This is true for any smooth 
function (x,y) 



The Stream Function 

• Why do this? 

– Single variable   replaces (u,v).  Once   is 
known, (u,v) can be computed. 

– Physical significance 

1. Curves of constant  are streamlines of the flow 

2. Difference in  between streamlines is equal to 
volume flow rate between streamlines 



The Stream Function 
Physical Significance 

Recall that along a streamline 

 Change in  along 

streamline is zero 



The Stream Function 
Physical Significance 

Difference in  between 
streamlines is equal to 
volume flow rate between 
streamlines 

(by definition, no flow can cross a  
streamline) 



Newton’s Laws 

• Newton’s laws are relations between motions of bodies 

and the forces acting on them. 

– First law: a body at rest remains at rest, and a body in motion 

remains in motion at the same velocity in a straight path when 

the net force acting on it is zero. 

– Second law: the acceleration of a body is proportional to the net 

force acting on it and is inversely proportional to its mass. 

 

 

 

– Third law: when a body exerts a force on a second body, the second 
body exerts an equal and opposite force on the first. 



Forces Acting on a CV 
• Forces acting on CV consist of body forces that act 

throughout the entire body of the CV (such as gravity, 

electric, and magnetic forces) and surface forces that 

act on the control surface (such as pressure and viscous 

forces, and reaction forces at points of contact). 

• Body forces act on each 

volumetric portion dV of the CV. 

• Surface forces act on each 

portion dA of the CS. 
 



Body Forces 

• The most common body force is 
gravity, which exerts a downward 
force on every differential 
element of the CV 

• The different body force 

  

• Typical convention is that 
acts in the negative z-direction, 
 

• Total body force acting on CV 



Surface Forces 

• Surface forces are not as simple to analyze 
since they include both normal and 
tangential components 

• Diagonal components sxx, syy szz are called 
normal stresses and are due to pressure 
and viscous stresses 

• Off-diagonal components sxy, sxz etc., are 
called shear stresses and are due solely to 
viscous stresses 

• Total surface force acting on CS   



Conservation of Linear Momentum 
• Recall CV form from Chap. 6 

 

 

 

 

• Using the divergence theorem to convert area 
integrals 

Body 
Force 

Surface 
Force 

sij = stress tensor 



Conservation of Linear Momentum 

• Substituting volume integrals gives, 

 

 

• Recognizing that this holds for any CV, the 
integral may be dropped 

 
This is Cauchy’s Equation 

Can also be derived using infinitesimal CV and Newton’s 2nd law 



Conservation of Linear Momentum 

• Alternate form of the Cauchy Equation can be 
derived by introducing 

 

 

 

• Inserting these into Cauchy Equation and rearranging 
gives 

(Chain Rule) 



Conservation of Linear Momentum 

• Unfortunately, this equation is not very useful 

– 10 unknowns 

• Stress tensor, sij : 6 independent components 

• Density r 

• Velocity, V : 3 independent components 

– 4 equations (continuity + momentum) 

– 6 more equations required to close problem! 



Navier-Stokes Equation 
• First step is to separate sij into pressure and 

viscous stresses 

 

 

 

 

• Situation not yet improved 
– 6 unknowns in sij    6 unknowns in ij + 1 in P, 

which means that we’ve added 1! 
 
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Viscous (Deviatoric)  
Stress Tensor 



Navier-Stokes Equation 

(toothpaste) 

(paint) 

(quicksand) 

• Reduction in the   
number of variables is 
achieved by relating 
shear stress to          
strain-rate tensor. 

• For Newtonian fluid    
with constant properties 
(with                     ) 

Newtonian fluid includes most common 
fluids:  air, other gases, water, gasoline 

Newtonian closure is analogous 
to Hooke’s Law for elastic solids 



An excursus in rheology 

(toothpaste) 

(paint) 

(quicksand) 

“Rheology is the study of the flow of 
materials that behave in an interesting or 
unusual manner. Oil and water flow in 
familiar, normal ways, whereas mayonnaise, 
peanut butter, chocolate, bread dough, and 
silly putty flow in complex and unusual 
ways. In rheology, we study the flows of 
unusual materials.” 
 
“… all normal or Newtonian fluids (air, water, 
oil, honey) follow the same scientific laws. 
On the other hand, there are also fluids that 
do not follow the Newtonian flow laws. 
These non-Newtonian fluids, for example 
mayo, paint, molten plastics, foams, clays, 
and many other fluids, behave in a wide 
variety of ways. The science of studying 
these types of unusual materials is called 
rheology” 

Faith Morrison, “The News and Information Publication of The Society of Rheology”, Vol 73(1) Jan 2004, pp 8-10 



Examples of Complex Fluids 
• Foods 

– Emulsions (mayonaisse, ice cream) 
– Foams (ice cream, whipped cream)  
– Suspensions (mustard, chocolate) 
– Gels (cheese) 

• Biofluids 
– Suspension (blood) 
– Gel (mucin) 
– Solutions (spittle) 

• Personal Care Products 
– Suspensions (nail polish, face scrubs) 
– Solutions/Gels (shampoos, conditioners) 
– Foams (shaving cream) 

• Electronic and Optical  Materials 
– Liquid Crystals (Monitor displays) 
– Melts (soldering paste) 

• Pharmaceuticals 
– Gels (creams, particle precursors) 
– Emulsions (creams) 
– Aerosols (nasal sprays) 

• Polymers 



Rheology’s Goals 

1. Establishing the relationship between applied 
forces and geometrical effects induced by these 
forces at a point (in a fluid). 

 

– The mathematical form of this relationship is called the 
rheological equation of state, or the constitutive 
equation. 

– The constitutive equations are used to solve 
macroscopic problems related to continuum mechanics 
of these materials. 

– Any equation is just a model of physical reality. 



Rheology’s Goals 

1. Establishing the relationship between rheological 
properties of material and its molecular structure 
(composition).  

 
– Related to: 

• Estimating quality of materials 

• Understanding laws of molecular movements 

• Intermolecular interactions 

– Interested in what happens inside a point during 
deformation of the medium.  

 

What happens inside a point? 



(Material) Structure 

• More or less well-organized and regularly spaced shapes 
 

• Arrangements, organization or intermolecular interactions 
 

• Structured Materials – properties change due to the influence of 
applied of applied forces on the structure of matter  
 

• Rheology sometimes is referred to as mechanical spectroscopy. 

• “Structure Mechanisms” are usually proposed, analogous to reaction 

mechanisms in reaction kinetics 

• Structural probes are used to support rheological studies and 

proposed mechanisms. 

Do Newtonian fluids suffer structural changes? 



Rheological analysis is based on the use 
of continuum theories 

 

meaning that: 
– There is no discontinuity in transition from one geometrical point 

to another, and the mathematical analysis of infinitesimal 
quantities can be used; discontinuities appear only at boundaries 

 

– Properties of materials may change in space (due to gradients) but 
such changes occur gradually 

• changes are reflected in space dependencies of material properties 
entering equations of continuum theories 

 

– Continuity theories may include an idea of anisotropy of properties 
of material along different directions.  



Rheology as an Interdisciplinary 
Science 

Rheology 

(of Liquids) 

Physics Chemistry 

Mechanics  

of 

Continuum 

Technology/ 

Engineering 



Common Non-Newtonian Behavior 

• shear thinning (pseudoplastic) 

• shear thickening (dilatant) 

• yield stress 

• viscoelastic effects 

– Weissenberg effect 

– Fluid memory 

– Die swell 



Shear Thinning 

• shear thinning – tendency of some materials to decrease in viscosity 
when driven to flow at high shear rates, such as by higher pressure 
drops 

Increasing shear rate 



Shear Thickening 

• shear thickening – tendency of some materials to 
increase in viscosity when driven to flow at high shear 
rates 



Phenomenological Modeling of Shear 
Thinning and Thickening 

• Generalized Newtonian Equation: 

• Power Law Model: 

 

 

– m =  ;  n = 1 Newtonian 

– m   n > 1 shear thickening, dilatant 

– m  n < 1 shear thinning, pseudoplastic 

 

• Advantages: simple, success at predicting Q vs DP 

• Disadvantages: does not describe Newtonian Plateau at small shear 
rates 

gg )(

1 nmg 

. 



Modeling of Shear Thinning and Thickening 

• Carreau-Yasuda Model 

 

 

 

 

a – affects the shape of the transition region 

l – time constant determines where it changes from constant to power law 

n – describes the slope of the power law 

0, ∞ - describe plateau viscosities 

 

• Advantages: fits most data 

• Disadvantages: contains 5 parameters, do not give molecular insight 
into polymer behavior 
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Yield Stress 

• Tendency of a material to flow only when stresses are above a 
threshold stress 

 

• Bingham Model: 

 

 

 

 

 

y  =  yield stress, always positive 

0 = viscosity at higher shear rates 
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Elastic and Viscoelastic Effects 
• Weissenberg Effect (rod climbing effect) 

– does not flow outward when stirred at high speeds 

 

 



Elastic and Viscoelastic Effects 

• Fluid Memory 

– Conserve their shape over time periods or seconds or minutes 

– Elastic like rubber 

– Can bounce or partially retract 

– Example: clay (plastilina) 
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Elastic and Viscoelastic Effects 

• Viscoelastic fluids subjected to a stress deform 

– when the stress is removed, it does not instantly vanish 

– internal structure of material can sustain stress for some time 

– this time is known as the relaxation time, varies with materials 

– due to the internal stress, the fluid will deform on its own, even 
when external stresses are removed 

– important for processing of polymer melts, casting, etc..  



Elastic and Viscoelastic Effects – Die Swell  

– as a polymer exits a die, the diameter of liquid stream increases 
by up to an order of magnitude 

– caused by relaxation of extended polymer coils, as stress is 
reduced from high flow producing stresses present within the die 
to low stresses, associated with the extruded stream moving 
through ambient air  

 

 



BACK TO GOOD OLD ‘‘SIMPLE’’ 
NEWTONIAN FLUIDS, IN THE 

INCOMPRESSIBLE FLOW LIMIT 



Navier-Stokes Equation 

• Substituting Newtonian closure into stress 
tensor gives 

 

 

• Using the definition of ij 

 = 



Navier-Stokes Equation 

• Substituting sij into Cauchy’s equation gives the 
Navier-Stokes equations  

 

 

 

 

• This results in a closed system of equations! 

– 4 equations (continuity and momentum equations) 

– 4 unknowns (U, V, W, p) 

Incompressible NSE 
written in vector form 



Navier-Stokes Equation 

• In addition to vector form, incompressible N-S 
equation can be written in several other forms 

– Cartesian coordinates 

– Cylindrical coordinates 

– Tensor notation 

 



Navier-Stokes Equation 
Cartesian Coordinates 

Continuity 

X-momentum 

Y-momentum 

Z-momentum 



Navier-Stokes Equation 
Tensor and Vector Notation 

Continuity 

Conservation of Momentum 
Tensor notation Vector notation 

Vector notation Tensor notation 

Tensor and Vector notation offer a more compact form of the equations.  

Repeated indices are summed over j  
(x1 = x, x2 = y, x3 = z, U1 = U, U2 = V, U3 = W) 



Differential Analysis of Fluid Flow Problems 

• Now that we have a set of governing partial 
differential equations, there are 2 problems 
we can solve 

1. Calculate pressure (P) for a known velocity field   

2. Calculate velocity (U, V, W) and pressure (P) for 
known geometry, boundary conditions (BC), and 
initial conditions (IC) 



Exact Solutions of the NSE 

• Solutions can also be 
classified by type or 
geometry 
1. Couette shear flows 

2. Steady duct/pipe flows 

3. Unsteady duct/pipe flows 

4. Flows with moving 
boundaries 

5. Similarity solutions 

6. Asymptotic suction flows 

7. Wind-driven Ekman flows 

• There are about 80 
known exact solutions 
to the NSE 

• The can be classified as: 

– Linear solutions where 
the convective       
               term is zero 

 

– Nonlinear solutions 
where convective term is 
not zero 



Boundary conditions 

• Boundary conditions are critical to exact, 
approximate, and computational solutions. 

– BC’s used in analytical solutions are discussed here 
• No-slip boundary condition 

• Interface boundary condition 

– These are used in CFD as well, plus there are some BC’s 
which arise due to specific issues in CFD modeling.   

• Inflow and outflow boundary conditions 

• Symmetry and periodic boundary conditions 



No-slip boundary condition 

• For a fluid in contact 
with a solid wall, the 
velocity of the fluid 
must equal that of the 
wall 



Interface boundary condition 

• When two fluids meet at an 
interface, the velocity and 
shear stress must be the 
same on both sides 

 

 

• If surface tension effects are 
negligible and the surface is 
nearly flat 



Interface boundary condition 

• Degenerate case of the interface BC occurs at the free surface 
of a liquid. 

• Same conditions hold 

 

 

 

 
Since air << water,  

 

 

 

As with general interfaces, if surface 
tension effects are negligible and the 
surface is nearly flat  Pwater = Pair 

 

 

 



Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

• For the given geometry and BC’s, calculate the velocity and 
pressure fields, and estimate the shear force per unit area 
acting on the bottom plate 

 

• Step 1:  Geometry, dimensions, and properties 



Example exact solution  
Fully Developed Couette Flow 

• Step 2:  Assumptions and BC’s 
– Assumptions 

1. Plates are infinite in x and z 

2. Flow is steady, /t = 0 

3. Parallel flow, V=0 

4. Incompressible, Newtonian, laminar, constant properties 

5. No pressure gradient 

6. 2D, W=0, /z = 0 

7. Gravity acts in the -z direction,  

– Boundary conditions 
1. Bottom plate (y=0) : u=0, v=0, w=0 

2. Top plate (y=h) : u=V, v=0, w=0 



Example exact solution  
Fully Developed Couette Flow 

• Step 3:  Simplify 3 6 

Note:  these numbers refer 
to the assumptions on the  
previous slide 

This means the flow is “fully developed” 
or not changing in the direction of flow 

Continuity 

X-momentum 

2 Cont. 3 6 5 7 Cont. 6 



Example exact solution  
Fully Developed Couette Flow 

• Step 3:  Simplify, cont. 
Y-momentum 

2,3 3 3 3,6 7 3 3 3 

Z-momentum 

2,6 6 6 6 7 6 6 6 



Example exact solution  
Fully Developed Couette Flow 

• Step 4:  Integrate 

Z-momentum 

X-momentum 

integrate integrate 

integrate 



Example exact solution  
Fully Developed Couette Flow 

• Step 5:  Apply BC’s 

– y=0, u=0=C1(0) + C2    C2 = 0 

– y=h, u=V=C1h    C1 = V/h 

– This gives 

 

 

– For pressure, no explicit BC, therefore C3 can remain an 
arbitrary constant (recall only P appears in NSE). 

• Let p = p0 at z = 0 (C3 renamed p0) 

1. Hydrostatic pressure 

2. Pressure acts independently of flow 



Example exact solution  
Fully Developed Couette Flow 

• Step 6:  Verify solution by back-substituting into 
differential equations 

– Given the solution (u,v,w)=(Vy/h, 0, 0) 

 

 

– Continuity is satisfied 
 0 + 0 + 0 = 0 

– X-momentum is satisfied 



Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

• Finally, calculate shear force on bottom plate 

Shear force per unit area acting on the wall  

Note that w is equal and opposite to the  
shear stress acting on the fluid yx  
(Newton’s third law).  



Adimensionalization of equations  
and boundary conditions 

[appearance of (at least 52!) dimensionless numbers] 



s 

K K 

s 



The compressible equations 













Reynolds equations (turbulence) 



A crash introduction to turbulence modeling in OpenFOAM®   

• The majority of natural and engineering 

flows are turbulent, hence the 

necessity of modeling turbulence. 



Buoyant plume of smoke rising from a stick of incense 
Photo credit: https://www.flickr.com/photos/jlhopgood/  



A crash introduction to turbulence modeling in OpenFOAM®   

Buoyant plume of smoke rising from a stick of incense 
Photo credit: M. Rosic 



A crash introduction to turbulence modeling in OpenFOAM®   

Tugboat riding on the turbulent wake of a ship 
Photo credit: https://www.flickr.com/photos/oneeighteen/ 
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Turbulent waters 
Photo credit: https://www.flickr.com/photos/thepaegan 



A crash introduction to turbulence modeling in OpenFOAM®   

Spring vortex in turbulent waters 
Photo credit: https://www.flickr.com/photos/kenii/ 



A crash introduction to turbulence modeling in OpenFOAM®   

Wake turbulence behind individual wind turbines 
Photo credit: NREL's wind energy research group. 



A crash introduction to turbulence modeling in OpenFOAM®   

Von Karman vortices created when prevailing winds sweeping east across the northern Pacific Ocean 

encounters Alaska's Aleutian Islands 
Photo credit: USGS EROS Data Center Satellite Systems Branch. 



A crash introduction to turbulence modeling in OpenFOAM®   

Von Karman Vortex Streets in the northern Pacific Photographed from the International Space Station  
Photo credit: NASA 
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Trailing vortices 
Photo credit: Steve Morris. AirTeamImages. 



A crash introduction to turbulence modeling in OpenFOAM®   

Vortices on a 1/48-scale model of an F/A-18 aircraft inside a Water Tunnel 
Photo credit: NASA Dryden Flow Visualization Facility. http://www.nasa.gov/centers/armstrong/multimedia/imagegallery/FVF 



A crash introduction to turbulence modeling in OpenFOAM®   

Wind Tunnel Test of New Tennis Ball  
Photo credit: NASA http://tennisclub.gsfc.nasa.gov/tennis.windtunnelballs.html 



A crash introduction to turbulence modeling in OpenFOAM®   

Bullet at Mach 1.5 
Photo credit: Andrew Davidhazy. Rochester Institute of Technology. 



A crash introduction to turbulence modeling in OpenFOAM®   

Flow visualization over a spinning spheroid 
Photo credit: Y. Kohama.  



A crash introduction to turbulence modeling in OpenFOAM®   

Flow around an airfoil with a leading-edge slat 
Photo credit: S. Makiya et al.  



A crash introduction to turbulence modeling in OpenFOAM®   

• Modeling turbulence is not an easy task.   

 

• There is no universal turbulence model, hence you need to 

know the capabilities and limitations of the turbulence models. 

 

• Turbulence can be wall bounded or free shear.  Depending of 

what you want to simulate, you will need to choose an 

appropriate turbulence model and simulation techniques. 

 

• Simulating turbulent flows in any CFD solver requires selecting 

a turbulence model, providing initial conditions and boundary 

conditions for the closure equations of the turbulent model, and 

selecting a near-wall modeling.  

 

• You also need to choose the discretization scheme of the 

turbulent equations. 



“Essentially, all models are wrong,      

 but some are useful”  

 

              G.E.P Box 

• Equations cannot be derived from fundamental principles. 

• All turbulence models contain some sort of empiricism.    

• Some calibration to observed physical solutions is contained in 

the turbulence models. 

• Also, some intelligent guessing is used. 

• A lot of uncertainty is involved! 

 
 

A crash introduction to turbulence modeling in OpenFOAM®   



Turbulence near the wall - Law of the wall 

A crash introduction to turbulence modeling in OpenFOAM®   



Energy spectrum for a turbulent flow – log-log scales 

A crash introduction to turbulence modeling in OpenFOAM®   



Turbulence near the wall 

A crash introduction to turbulence modeling in OpenFOAM®   



Turbulence near the wall 

A crash introduction to turbulence modeling in OpenFOAM®   



Turbulence near the wall 

A crash introduction to turbulence modeling in OpenFOAM®   



Overview of turbulence modeling approaches 

RANS 
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A crash introduction to turbulence modeling in OpenFOAM®   



A crash introduction to turbulence modeling in OpenFOAM®   

RANS/URANS DES/LES DNS 

• Solves the time-averaged NSE. 

• All turbulent spatial scales are 

modeled. 

• Many models are available.  One 

equation models, two equation 

models, Reynolds stress models, 

transition models, and so on. 

• This is the most widely approach for 

industrial flows. 

• Unsteady RANS (URANS), use the 

same equations as the RANS but 

with the transient term retained. 

• It can be used in 2D and 3D cases. 

• Solves the filtered unsteady NSE. 

• SGS scales are modeled, GS are 

resolved. 

• Resolves the temporal scales, hence 

requires small time-steps. 

• For most industrial applications, it is 

computational expensive. However, 

thanks to the current advances in 

parallel and scientific computing it is 

becoming affordable. 

• Many models are available. 

• It is intrinsically 3D and asymmetric. 

• Solves the unsteady laminar NSE. 

• Solves all spatial and temporal 

scales; hence, requires extremely 

fine meshes and small time-steps. 

• No modeling is required. 

• It is extremely computational 

expensive. 

• Not practical for industrial flows. 

• It is intrinsically 3D and asymmetric. 
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Short description of some of the turbulence models             

available in commercial CFD codes 

Model Short description 

Spalart-Allmaras 
Suitable for external aerodynamics, tubomachinery and high speed flows. Good for mildly 

complex external/internal flows and boundary layer flows under pressure gradient. Performs 

poorly for free shear flows and flows with strong separation.   

Standard k–epsilon 
Robust. Widely used despite the known limitations of the model. Performs poorly for complex 

flows involving severe pressure gradient, separation, strong streamline curvature. Suitable for 

initial iterations, initial screening of alternative designs, and parametric studies.   

Realizable k–epsilon 

Suitable for complex shear flows involving rapid strain, moderate swirl, vortices, and locally 

transitional flows (e.g. boundary layer separation, massive separation, and vortex shedding 

behind bluff bodies, stall in wide-angle diffusers, room ventilation).  It overcome the limitations of 

the standard k-epsilon model. 

Standard k–omega 
Superior performance for wall-bounded boundary layer, free shear, and low Reynolds number 

flows compared to models from the k-epsilon family. Suitable for complex boundary layer flows 

under adverse pressure gradient and separation (external aerodynamics and turbomachinery).  

SST k–omega 
Offers similar benefits as standard k–omega. Not overly sensitive to inlet boundary conditions 

like the standard k–omega. Provides more accurate prediction of flow separation than other 

RANS models.   
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Turbulence models available in commercial CFD software  
 

• If you have absolutely no idea of what model to use, I highly recommend you             

the                   family models or the realizable 

• Remember, when a turbulent flow enters a domain, turbulent boundary conditions  

and initial conditions must be specified.  

• Also, if you are dealing with wall bounded turbulence you will need to choose the 

near-wall treatment.  You can choose to solve the viscous sub-layer or use wall 

functions. 

• You will need to give the appropriate boundary conditions to the near-wall treatment. 
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Near-wall treatment and wall functions 



• Generally speaking, wall functions is the approach to use if you are more interested in 

the mixing in the outer region, rather than the forces on the wall. 

• By the way, wall functions should never be used if                   .  What is        ? We are 

going to talk about this later on.  

• If accurate prediction of forces or heat transfer on the wall are key to your simulation 

(aerodynamic drag, turbomachinery blade performance, heat transfer) you might not 

want to use wall functions.  

No wall-functions Wall-functions 

Near-wall treatment and wall functions 
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Near-wall treatment and wall functions 
 

• If the first node normal to the wall is in the viscous sub-layer region, you do not use 

wall functions.  This approach is computationally expensive. 

• Instead, if the first node normal to the wall is in the log-law layer, you need to use wall 

functions. 

• When positioning the first node normal to the wall, try to avoid as much as possible 

the buffer layer, this is the transition region and things are not very clear there. 
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                  Turbulence model overview 



                  Turbulence model overview 
 

• It is called                 because it solves two additional equations for modeling the 

turbulence, namely, the turbulent kinetic energy      and the specific kinetic energy      

. 
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                  Turbulence model overview 
 

• At the end of the day, we want to determine the turbulent eddy viscosity 

 

 

 

• The turbulent eddy viscosity is used to compute the Reynolds stress tensor, 

 

 

 

 

 

• The Reynolds stress tensor is derived from the Boussinesq Approximation. 
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Incompressible RANS equations 
 

• The following equations are the incompressible Reynolds-Averaged Navier-Stokes 

equations (RANS).  These are the equations we want to solve. 

 

 

 

 

 

 

     where          is the Reynolds stress tensor and is given by, 
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• To arrive to these equations, we used Reynolds averaging. 
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                  Turbulence model free-stream boundary conditions 
 

• The initial value for the turbulent kinetic energy       can be found as follows 

 

 

 

• The initial value for the specific kinetic energy        can be found as follows  

 

 

 

 

• Where            is the viscosity ratio and                    is the turbulence intensity.   
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                  Turbulence model free-stream boundary conditions 
 

• If you are totally lost, you can use these reference values.  They work most of the 

times, but it is a good idea to have some experimental data or initial estimate. 

 

 

 

 

 

 

 

 

 

• By the way, use these guidelines for external aerodynamics only. 

 

Low Medium High 

1.0 % 5.0 % 10.0 % 

1 10 100 
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             Turbulence model wall functions 



                  Turbulence model wall functions 
 

• Follow these guidelines if you are struggling to find the boundary conditions for the 

near-wall treatment.  

• I highly recommend you to read the source code and find the references used to 

implement the model. 

• As for the free-stream boundary conditions, you need to give the boundary conditions 

for the near-wall treatment. 

• When it comes to near-wall treatment, you have three options: 

• Use wall functions: 

 

• Use scalable wall functions, this only applies with the                family models: 

 

• Resolve the boundary layer (no wall functions): 
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 wall distance units 



 wall distance units 
 

• To compute the wall distance units      ,                

use the following equation 

 

 

 

• Where      is the distance to the first cell            

center normal to the wall, and         is                  

the friction velocity and is equal to 

 

 

 

where        is the wall shear stresses. 
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 wall distance units 
 

• We never know a priori the        value. 

• What we usually do is to run the simulation for a few time-steps or iterations, and then 

we get an estimate of the        value. 

• After determining where we are in the boundary layer (viscous sub-layer, buffer layer 

or log-law layer), we take the mesh as a good one or we modify it if is deemed 

necessary. 

• It is an iterative process and it can be very time consuming. 

• Have in mind that it is quite difficult to get uniform        values at the walls.  This does 

not mean that what you have done is wrong, use common sense. 

• To get an initial estimate of the distance from the wall to the first cell center    ,  you 

can proceed as follows, 
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 Estimating normal wall distance 
 

• To estimate the distance from the wall to the first cell center      you can proceed as 

follows, 

1. 2. 

3. 4. 

5. 

Skin friction coefficient of a flat plate 
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Turbulence modeling guidelines and tips 



Turbulence modeling guidelines and tips 
 

• Compute Reynolds number and determine whether the flow is turbulent. 

 

• Estimate      before generating the mesh. 

 

• Run the simulation for a few time steps and get a better prediction of          and 

correct your initial prediction of     .  

 

• The realizable                or                         models are good choices for general 

applications. 

 

• If you are interesting in modeling the smallest eddies, DES or LES is the right choice.   

 

• If you do not have any restriction in the near wall treatment method, use wall 

functions. 

 

• Choose your near-wall modeling strategy ahead of time and check          and          

values to make sure the near-wall mesh is suitable. 

A crash introduction to turbulence modeling in OpenFOAM®   



A few applications 



LES simulation 

Iso-surfaces of Q criterion.  Walls colored by instantaneous pressure. 
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LES simulation 

Cut plane with instantaneous velocity magnitude.  Walls colored by             

instantaneous pressure. 
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LES simulation 

Instantaneous velocity magnitude. Instantaneous vorticity magnitude. 
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LES simulation 

Mesh and instantaneous velocity magnitude. 

A crash introduction to turbulence modeling in OpenFOAM®   



LES simulation 

Energy spectrum and -5/3 slope. 
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LES simulation vs. RANS simulation  

LES RANS LES RANS 

• LES simulations are colored by instantaneous values. 

• RANS simulations are colored by mean values. 
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LES simulation vs. RANS simulation  

LES (instantaneous velocity) RANS 
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LES simulation vs. RANS simulation  

LES (instantaneous velocity) RANS 
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LES simulation vs. RANS simulation  

LES (Mean velocity) RANS 
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DES simulation 

Iso-surfaces of Q criterion.  
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SAS simulation 

Iso-surfaces of vorticity magnitude.  
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URANS simulation 

Iso surfaces of Q criteron.  
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Iso-surfaces of Q criterion.  



Computational Fluid Dynamics (CFD) 



Introduction 

• Practice of engineering and science has been 
dramatically altered by the development of 
– Scientific computing 
– Mathematics of numerical analysis 
– The Internet 
 

• Computational Fluid Dynamics is based upon the 
logic of applied mathematics 
– provides tools to unlock previously unsolved problems 
– is used in nearly all fields of science and engineering 

• Aerodynamics, acoustics, bio-systems, cosmology, geology, heat 
transfer, hydrodynamics, river hydraulics, etc… 



Introduction 

• We are in the midst of a new Scientific Revolution as 
significant as that of the 16th and 17th centuries 
when Galilean methods of systematic experiments 
and observation supplanted the logic-based methods 
of Aristotelian physics 

 

• Modern tools, i.e.,  computational mechanics, are 
enabling scientists and engineers to return to logic-
based methods for discovery and invention, research 
and development, and analysis and design 



Introduction 
History of computing 

• Mastodons of computing, 1945-1960 
– Early computer engineers thought that only a few dozen computers required 

worldwide 
– Applications:  cryptography (code breaking), fluid dynamics, artillery firing 

tables, atomic weapons 
– ENIAC, or Electronic Numerical Integrator Analyzor and Computer, was 

developed by the Ballistics Research Laboratory in Maryland and was built at 
the University of Pennsylvania's Moore School of Electrical Engineering and 
completed in November 1945 



Introduction 
High-performance computing 

• Top 500 computers in the world compiled:  www.top500.org 

• Computers located at major centers connected to researchers via 
Internet 



Outline 

• CFD Process 

 
– Model Equations 

– Discretization 

– Grid Generation 

– Boundary Conditions 

– Solve 

– Post-Processing 

– Uncertainty Assessment 



Model Equations 

• Most commercial CFD codes solve the continuity, 
Navier-Stokes, and energy equations 

• Coupled, non-linear, partial differential equations 

• For example, incompressible form 
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Discretization 
Grid Generation 

• Flow field must be treated as a discrete set of points 
(or volumes) where the governing equations are 
solved. 

• Many types of grid generation:  type is usually 
related to capability of flow solver. 

– Structured grids 

– Unstructured grids 

– Hybrid grids:  some portions of flow field are structured 
(viscous regions) and others are unstructured 

– Overset (Chimera) grids 



Structured Grids 



Structured Overset Grids 
Submarine 

Moving Control Surfaces Artificial Heart Chamber 

Surface Ship Appendages 



Unstructured Grids 

Branches in Human Lung 
Structured-Unstructured Nozzle Grid 



Discretization 
Algebraic equations 

• To solve NSE, we must convert governing PDE’s to algebraic equations 
– Finite difference methods (FDM) 

• Each term in NSE approximated using Taylor series, e.g.,  

 
 
 
 
 
 

– Finite volume methods (FVM) 
• Use CV form of NSE equations on each grid cell !   
• Most popular approach, especially for commercial codes 

 

– Finite element methods (FEM) 
• Solve PDE’s by replacing continuous functions by piecewise approximations defined 

on polygons, which are referred to as elements.  
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Boundary Conditions 
• Typical conditions 

– Wall 
• No-slip (u = v = w = 0) 

• Slip (tangential stress = 0, normal velocity = 0) 

• With specified suction or blowing 

• With specified temperature or heat flux 

– Inflow 

– Outflow 

– Interface Condition, e.g., Air-water free surface 

– Symmetry and Periodicity 

• Usually set through the use of a graphical user 
interface (GUI) – click & set 



Solve 
• Run CFD code on computer 

– 2D and small 3D simulations can 
be run on desktop computers 
(e.g., FlowLab) 

– Unsteady 3D simulations still 
require large parallel computers 

• Monitor Residuals 
– Defined two ways 

• Change in flow variables 
between iterations 

• Error in discrete algebraic 
equation 

R 



Uncertainty Assessment 

• Process of estimating errors due to numerics and 
modeling 

– Numerical errors  
• Iterative non-convergence:  monitor residuals 

• Spatial errors:  grid studies and Richardson extrapolation 

• Temporal errors:  time-step studies and Richardson extrapolation 

– Modeling errors (turbulence modeling, multi-phase 
physics, closure of viscous stress tensor for non-Newtonian 
fluids) 

• Only way to assess is through comparison with benchmark data 
which includes EFD uncertainty assessment. 



Conclusions 
• Capabilities of Current Technology 

 
– Complex real-world problems solved using Scientific Computing 

– Commercial software available for certain problems 

– Simulation-based design (i.e., logic-based) is being realized. 

– Ability to study problems that are either expensive, too small, too 
large, or too dangerous to study in laboratory 

• Very small:  nano- and micro-fluidics 

• Very large:   cosmology (study of the origin, current state, and future of 
our Universe) 

• Expensive:   engineering prototypes (ships, aircraft) 

• Dangerous:  explosions, response to weapons of mass destruction 



Conclusions 

• Limitations of Current Technology  

– For fluid mechanics, many problems not adequately 
described by Navier-Stokes equations or are beyond 
current generation computers. 

• Turbulence 

• Multi-phase physics:  solid-gas (pollution, soot), liquid-gas 
(bubbles, cavitation); solid-liquid (sediment transport) 

• Combustion and chemical reactions 

• Non-Newtonian fluids (blood; polymers) 

– Similar modeling challenges in other branches of 
engineering and the sciences 



Conclusions 

• Because of limitations, need for experimental 
research is great 

• However, focus has changed 
– From  

• Research based solely upon experimental observations 

• Build and test (although this is still done) 

– To 
• High-fidelity measurements in support of validation and building 

new computational models. 

• Currently, the best approach to solving engineering 
problems often uses simulation and experimentation 

 



Thank you for your attention 


