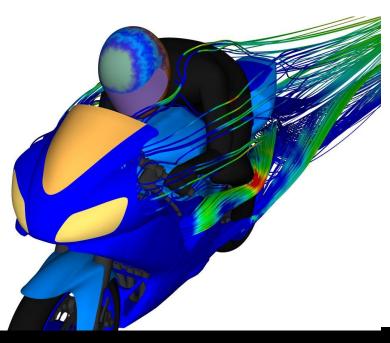
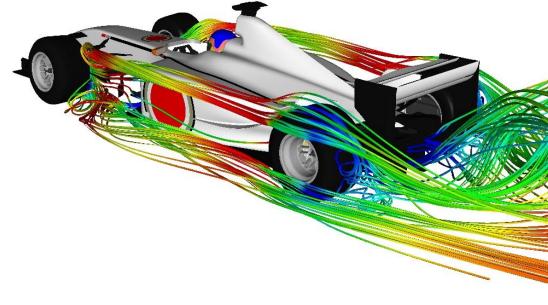
Chapter 11: Flow over bodies. Lift and drag

Objectives

- Have an intuitive understanding of the various physical phenomena such as drag, friction and pressure drag, drag reduction, and lift.
- Calculate the drag force associated with flow over common geometries.
- Understand the effects of flow regime on the drag coefficients associated with flow over cylinders and spheres
- Understand the fundamentals of flow over airfoils, and calculate the drag and lift forces acting on airfoils.

Motivation

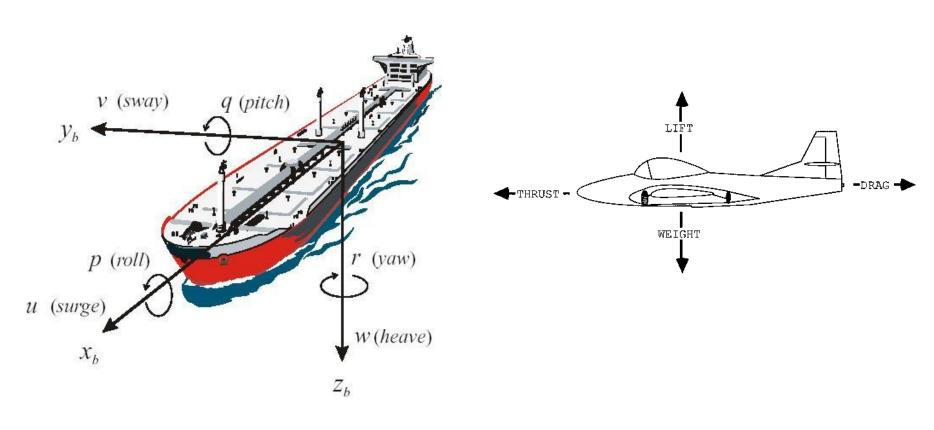




External Flow

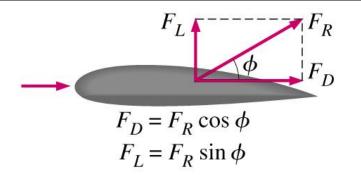
- Bodies and vehicles in motion, or with flow over them, experience fluid-dynamic forces and moments.
- Examples include: aircraft, automobiles, buildings, ships, submarines, turbomachines.
- These problems are often classified as External Flows.
- Fuel economy, speed, acceleration, maneuverability, stability, and control are directly related to the aerodynamic/hydrodynamic forces and moments.
- General 6DOF motion of vehicles is described by 6 equations for the linear (surge, sway, heave) and angular (roll, pitch, yaw) momentum.

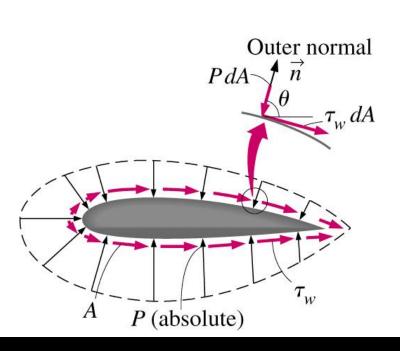
Fluid Dynamic Forces and Moments



Ships in waves present one of the most difficult 6DOF problems.

Airplane in level steady flight: drag = thrust and lift = weight.



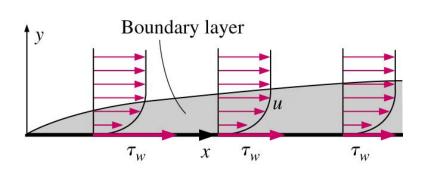


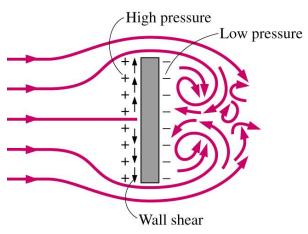
- Fluid dynamic forces are due to pressure and viscous forces acting on the body surface.
- Drag: component parallel to flow direction.
- Lift: component normal to flow direction.

Lift and drag forces can be found by integrating pressure and wall-shear stress.

$$F_D = \int_A dF_D = \int_A \left(-P\cos\theta + \tau_w \sin\theta \right) dA$$

$$F_L = \int_A dF_L = -\int_A \left(Psin\theta + \tau_w cos\theta\right) dA$$





- In addition to geometry, lift F_L and drag F_D forces are a function of density ρ and velocity V.
- Dimensional analysis gives 2 dimensionless parameters: lift and drag coefficients.

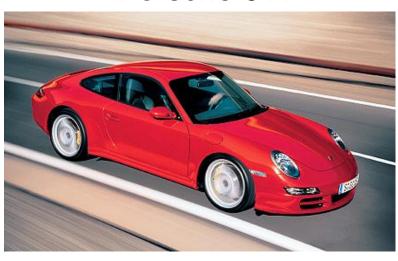
$$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A} \qquad C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$$

Area A can be frontal area (drag applications), planform area (wing aerodynamics), or wettedsurface area (ship hydrodynamics).

Example: Automobile Drag

Scion XB

Porsche 911



$$C_D = 1.0$$
, $A = 25 \, \text{ft}^2$, $C_D A = 25 \, \text{ft}^2$

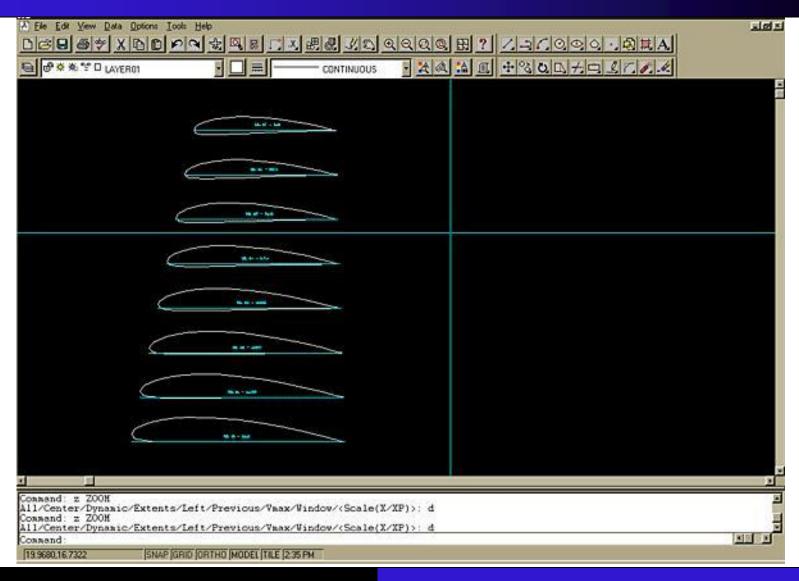
$$C_D = 1.0, A = 25 \text{ ft}^2, C_D A = 25 \text{ ft}^2$$
 $C_D = 0.28, A = 10 \text{ ft}^2, C_D A = 2.8 \text{ ft}^2$

- Drag force $F_D = 1/2\rho V^2(C_D A)$ will be ~ 10 times larger for Scion XB
- Source is large C_D and large projected area
- Power consumption $P = F_D V = 1/2 \rho V^3 (C_D A)$ for both scales with V^3 !

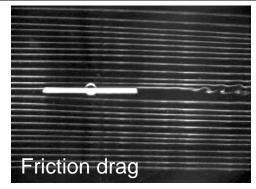
For applications such as tapered wings, C_L and C_D may be a function of span location. For these applications, a local $C_{L,x}$ and $C_{D,x}$ are introduced and the total lift and drag is determined by integration over the span L

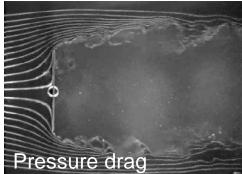
$$C_L = \frac{1}{L} \int_0^L C_{L,x} dx$$
 $C_D = \frac{1}{L} \int_0^L C_{D,x} dx$

"Lofting" a Tapered Wing



Friction and Pressure Drag





- Fluid dynamic forces are comprised of pressure and friction effects.
- Often useful to decompose,

$$\blacksquare F_D = F_{D,friction} + F_{D,pressure}$$

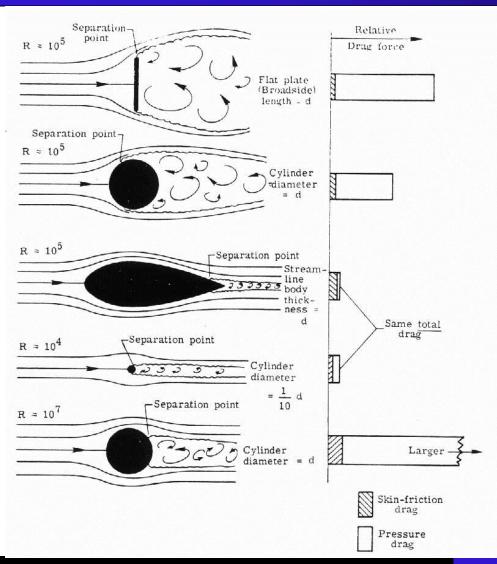
$$lacksquare$$
 $C_D = C_{D,friction} + C_{D,pressure}$

■ This forms the basis of ship model testing where it is assumed that

$$lacksquare C_{D,pressure} = f(Fr)$$

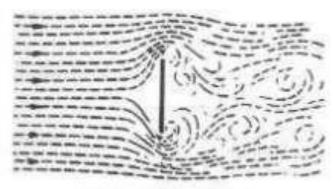
$$C_{D,friction} = f(Re)$$

Streamlining

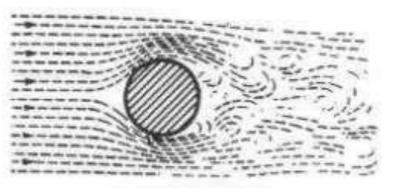


- Streamlining reduces drag by reducing $F_{D,pressure}$, at the cost of increasing wetted surface area and $F_{D,friction}$.
- Goal is to eliminate flow separation and minimize total drag F_D
- Also improves structural acoustics since separation and vortex shedding can excite structural modes.

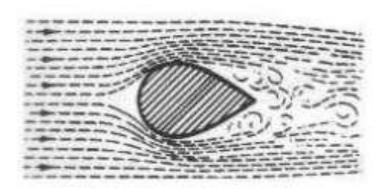
Streamlining



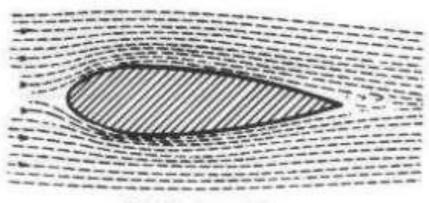
Resistance, 100%



Resistance, 50%



Resistance, 15%

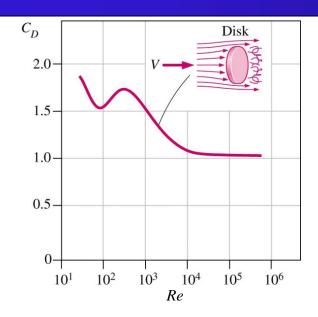


Resistance, 5%

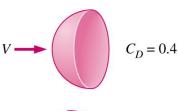
Streamlining via Active Flow Control

Rounded corners plus pneumatic control (blowing air from slots) reduces drag and improves fuel efficiency for heavy trucks

(Dr. Robert Englar, Georgia Tech Research Institute).



A hemisphere at two different orientations for $Re > 10^4$



- For many geometries, total drag C_D is constant for $Re > 10^4$
- $lackbox{lack}{C_D}$ can be very dependent upon orientation of body.
- As a crude approximation, superposition can be used to add C_D from various components of a system to obtain overall drag. However, there is no mathematical reason (e.g., linear PDE's) for the success of doing this.

Drag coefficients C_0 of various two-dimensional bodies for $Re > 10^4$ based on the frontal area A = bD, where b is the length in direction pormal to the page (for use in the drag force relation $F_0 = C_0 A_0 V^2/2$ where V is the upstream velocity.

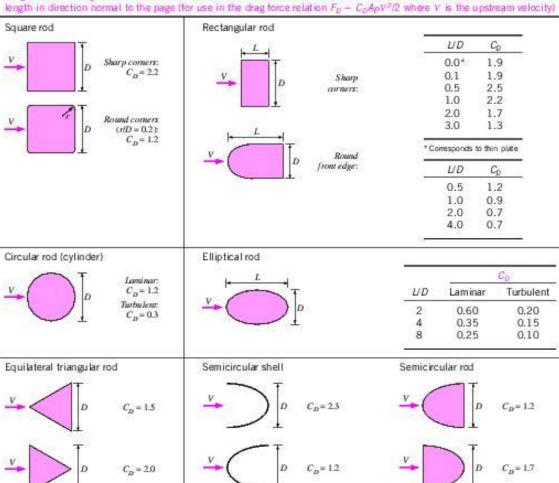
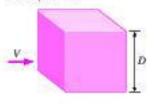


TABLE 11-2

Representative drag coefficients C_0 for various three-dimensional bodies for Re $> 10^4$ based on the frontal area (for use in the drag force relation $F_0 = C_0 A_D V^2 / 2$ where V is the upstream velocity)

Cube, $A - D^2$



C_D = 1.05

Thin circular disk, $A = \pi D^2/4$

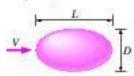
 $C_{D} = 1.1$

Cone (for $\theta = 30^{\circ}$), $A = \pi D^2/4$

 $C_D = 0.5$

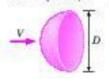
Sphere, $A = \pi D^2/4$

Laminar: $C_D = 0.5$ Turbulent: $C_D = 0.2$ Ellipsoid, $A = \pi D^2/4$

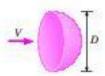


UD	$c_{\scriptscriptstyle D}$	
	Laminar	Turbulent
0.75	0.5	0.2
1	0.5	0.2
2	0.3	0.1
4	0.3	0.1
8	0.2	0.1

Hemisphere, $A = \pi D^2/4$

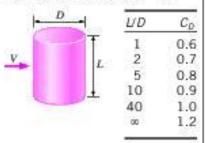


 $C_D = 0.4$



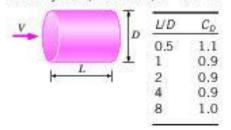
 $C_D = 1.2$

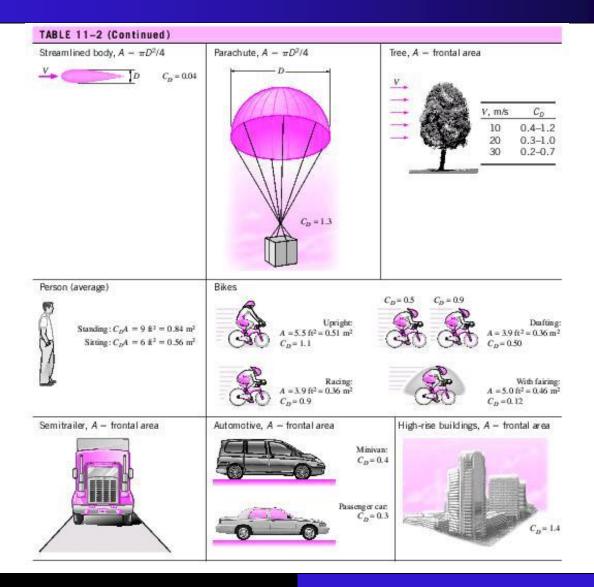
Short cylinder, vertical, A - LD



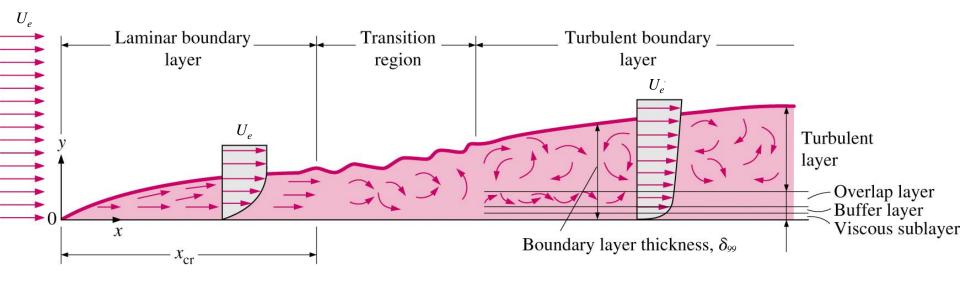
Values are for laminar flow

Short cylinder, horizontal, $A = \pi D^2/4$



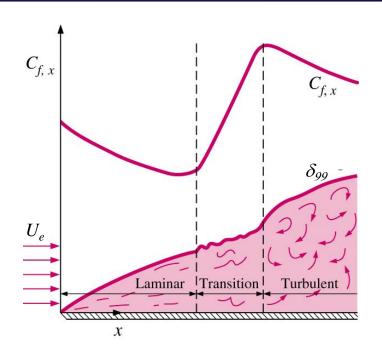


Flat Plate Drag



Drag on flat plate is solely due to friction created by laminar, transitional, and turbulent boundary layers.

Flat Plate Drag



Local friction coefficient

$$lacksquare C_{f,x} = rac{0.664}{Re_x^{1/2}}$$

Laminar:
$$C_{f,x}=\frac{0.664}{Re_x^{1/2}}$$
Turbulent: $C_{f,x}=\frac{0.059}{Re_x^{1/5}}$

Average friction coefficient

$$C_f = \frac{1}{L} \int_0^L C_{f,x} \, dx$$

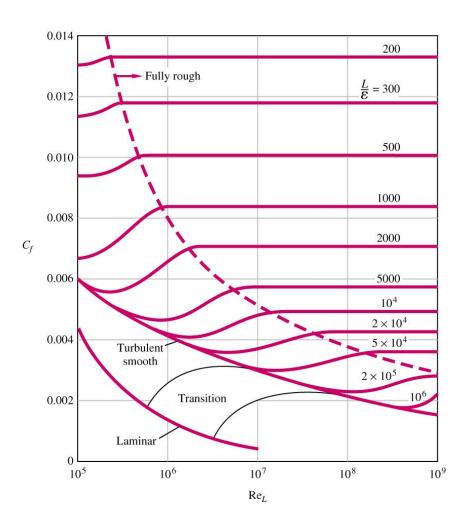
■ Laminar: $C_f = \frac{1.33}{Re_r^{1/2}}$

Turbulent: $C_f = \frac{0.074}{Re_s^{1/5}}$

For some cases, plate is long enough for turbulent flow, but not long enough to neglect laminar portion

$$C_f = \frac{1}{L} \left(\int_0^{x_{cr}} C_{f,x,lam} dx + \int_{x_{cr}}^L C_{f,x,turb} dx \right) \qquad C_f = \frac{0.075}{Re_L^{1/5}} - \frac{1742}{Re_L}$$

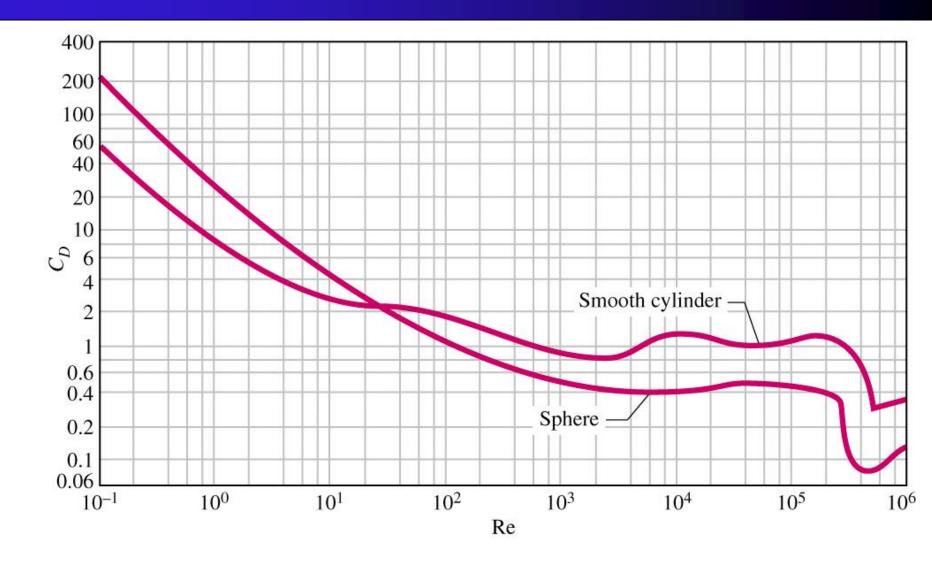
Effect of Roughness



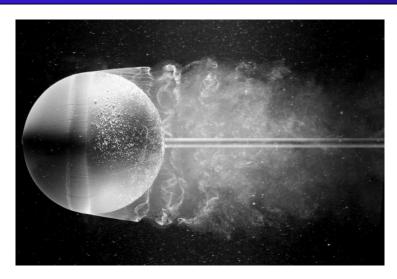
- Similar to Moody Chart for pipe flow
- Laminar flow unaffected by roughness
- Turbulent flow significantly affected: C_f can increase by 7 times for a given Re

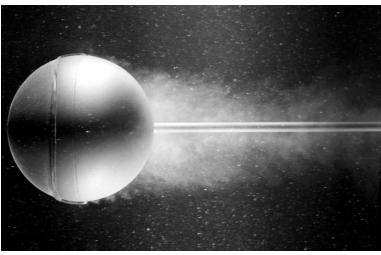
$$C_f = (1.89 - 1.62 \log \frac{\epsilon}{L})^{-2.5}$$

Cylinder and Sphere Drag



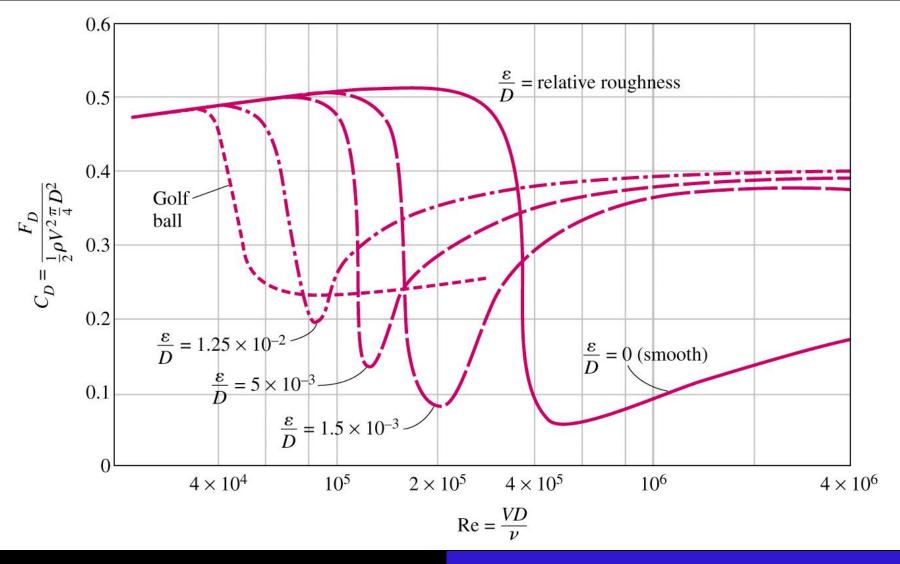
Cylinder and Sphere Drag



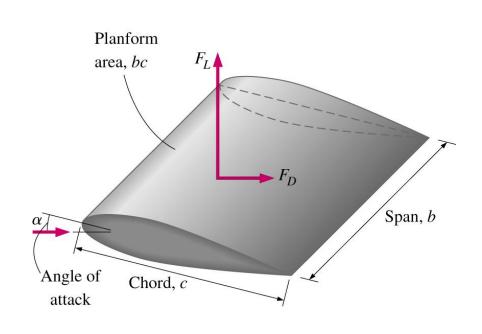


- Flow is strong function of *Re*.
- Wake narrows for turbulent flow since TBL (turbulent boundary layer) is more resistant to separation due to adverse pressure gradient.
- $\theta_{\text{sep,lam}} \approx 80^{\circ}$
- $\theta_{\text{sep,turb}} \approx 140^{\circ}$

Effect of Surface Roughness



Lift

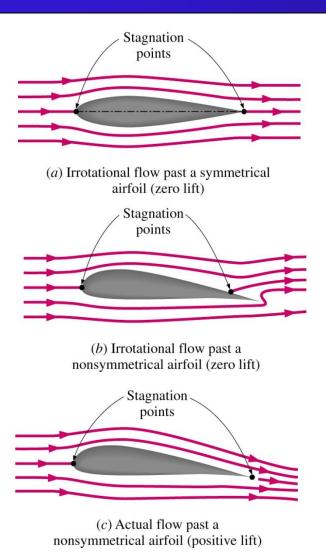


- Lift is the net force (due to pressure and viscous forces) perpendicular to flow direction.
- Lift coefficient

$$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$$

 $\blacksquare A = bc$ is the planform area

Computing Lift

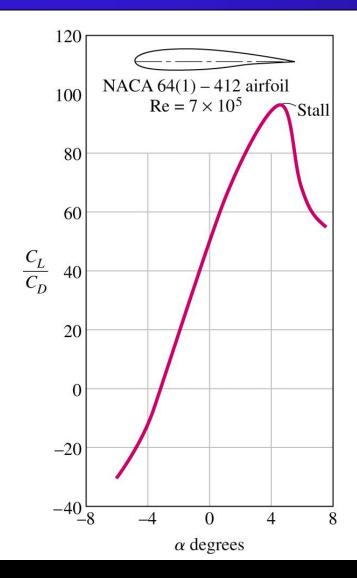


- Potential-flow approximation gives accurate C_L for angles of attack below stall: boundary layer can be neglected.
- Thin-foil theory: superposition of uniform stream and vortices on mean camber line.
- Java-applet panel codes available online:

http://www.aa.nps.navy.mil/~jones/online_tools/panel2/

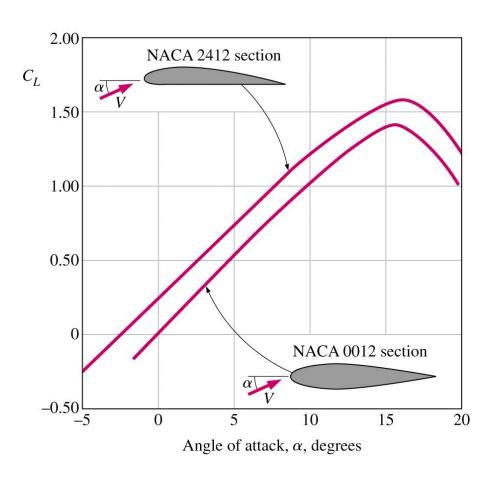
Kutta condition required at trailing edge: fixes stagnation point at TE.

Effect of Angle of Attack



- Thin-foil theory shows that $C_L \approx 2\pi \alpha$ for $\alpha < \alpha_{\text{stall}}$
- Therefore, lift increases linearly with α
- Objective for most applications is to achieve maximum C_L/C_D ratio.
- $ightharpoonup C_D$ determined from wind-tunnel or CFD (BLE or NSE).
- C_L/C_D increases (up to order 100) until stall.

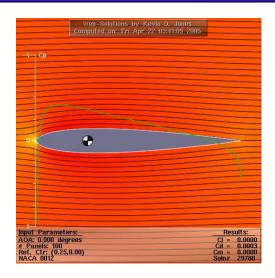
Effect of Foil Shape

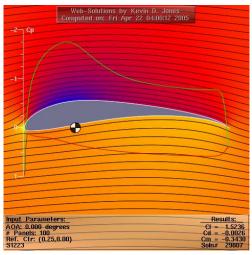


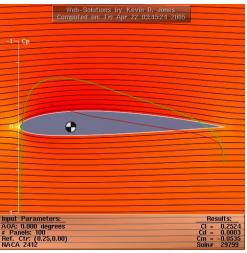
- Thickness and camber influence pressure distribution (and load distribution) and location of flow separation.
- Foil database compiled by Selig (UIUC)

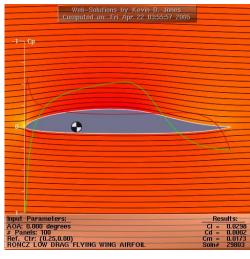
http://www.aae.uiuc.edu/m-selig/ads.html

Effect of Foil Shape



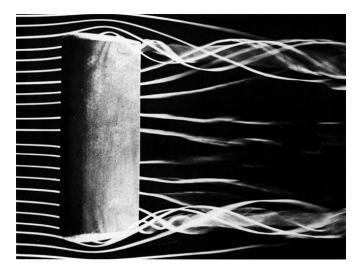






- Figures from NPS airfoil java applet.
 - Color contours of pressure field
 - Streamlines through velocity field
 - Plot of surface pressure
- Camber and thickness shown to have large impact on flow field.

End Effects of Wing Tips

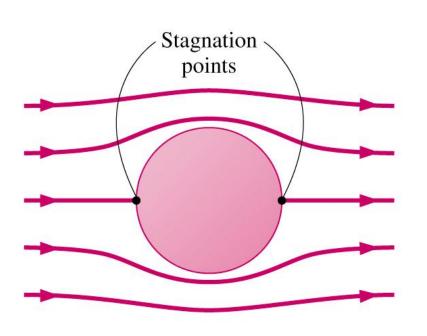


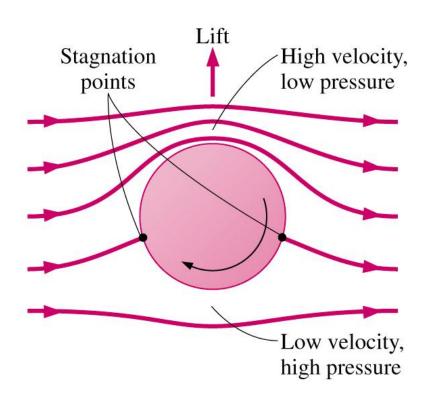
- Tip vortex created by leakage of flow from highpressure side to lowpressure side of wing.
- Tip vortices from heavy aircraft persist far downstream and pose danger to light aircraft. Also sets takeoff and landing separation times at busy airports.

End Effects of Wing Tips

- Tip effects can be reduced by attaching endplates or winglets.
- Trade-off between reducing induced drag and increasing friction drag.
- Wing-tip feathers on some birds serve the same function.

Lift Generated by Spinning (Magnus effect)



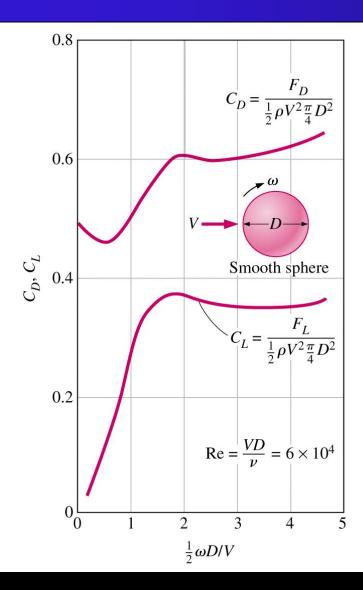


(a) Potential flow over a stationary cylinder

(b) Potential flow over a rotating cylinder

Superposition of Uniform stream + Doublet + Vortex

Lift Generated by Spinning



- lacksquare C_L strongly depends on rate of rotation.
- The effect of rate of rotation on C_D is smaller.
- Baseball, golf, soccer, tennis players utilize spin.
- Lift generated by rotation is called the *Magnus Effect*.