
Chapter 10:  Approximate Solutions of 

the Navier-Stokes Equation 
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Objectives 

1. Appreciate why approximations are 

necessary, and know when and where to 

use. 

2. Understand effects of lack of inertial 

terms in the creeping flow approximation. 

3. Understand superposition as a method 

for solving potential flow. 

4. Predict boundary layer thickness and 

other boundary layer properties. 
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Introduction 

In Chap. 9, we derived the NSE and developed several 

exact solutions. 

In this Chapter, we will study several methods for simplifying 

the NSE, which permit use of mathematical analysis and 

solution 

These approximations often hold for certain regions of the flow field. 
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Nondimensionalization of the NSE 

Purpose:  Order-of-magnitude analysis of the terms in 
the NSE, which is necessary for simplification and 
approximate solutions. 

We begin with the incompressible NSE 

 

 

 

Each term is dimensional, and each variable or property 
( V, t, , etc.) is also dimensional. 

What are the primary dimensions of each term in the 
NSE equation? 
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Nondimensionalization of the NSE 

To nondimensionalize, we choose scaling 

parameters as follows 
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Nondimensionalization of the NSE 

Next, we define nondimensional variables, using the 

scaling parameters in Table 10-1 

 

 

 

 

To plug the nondimensional variables into the NSE, we 

need to first rearrange the equations in terms of the 

dimensional variables 
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Nondimensionalization of the NSE 

Now we substitute into the NSE to obtain 

 

 

Every additive term has primary dimensions 

{m1L-2t-2}.  To nondimensionalize, we multiply 

every term by L/(V2), which has primary 

dimensions {m-1L2t2}, so that the dimensions 

cancel.  After rearrangement,  
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Nondimensionalization of the NSE 

      Terms in [ ] are nondimensional parameters 

Strouhal number Euler number Inverse of Froude 

number squared 

Inverse of Reynolds 

number 

Navier-Stokes equation in nondimensional form 
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Nondimensionalization of the NSE 

Nondimensionalization vs. Normalization 

NSE are now nondimensional, but not necessarily normalized.  

What is the difference? 

Nondimensionalization concerns only the dimensions of the 

equation - we can use any value of scaling parameters L, V, etc. 

Normalization is more restrictive than nondimensionalization.  

To normalize the equation, we must choose scaling parameters 

L,V, etc. that are appropriate for the flow being analyzed, such 

that all nondimensional variables are of order of magnitude 

unity, i.e., their minimum and maximum values are close to 1.0. 

If we have properly normalized the NSE, we can compare the relative 

importance of the terms in the equation by comparing the relative magnitudes of 

the nondimensional parameters St, Eu, Fr, and Re. 



Chapter 10:  Approximate Solutions Fondamenti di Meccanica dei Continui            10 

Creeping Flow 

Also known as “Stokes Flow” or “Low 

Reynolds number flow” 

Occurs when Re << 1 

, V, or L are very small, e.g., micro-

organisms, MEMS, nano-tech, particles, 

bubbles 

 is very large, e.g., honey, lava 
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Creeping Flow 

To simplify NSE, assume St ~ 1, Fr ~ 1 

 

 

 

 

Since 

Pressure 

forces 
Viscous 

forces 
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Creeping Flow 

This is important 
 

Very different from inertia dominated flows where 

  
 

Density has completely dropped out of NSE.  To 

demonstrate this, convert back to dimensional form. 

 

 

 

This is now a LINEAR EQUATION which can be 

solved for simple geometries. 
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Creeping Flow 

Solution of Stokes flow is beyond the scope of 

this course. 

Analytical solution for flow over a sphere gives a 

drag coefficient which is a linear function of 

velocity V and viscosity . 
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Inviscid Regions of Flow 

Definition:  Regions where net viscous forces 

are negligible compared to pressure and/or 

inertia forces 

 

 

 

 

 

~0 if Re large 

Euler Equation 
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Inviscid Regions of Flow 

Euler equation often used in aerodynamics 

Elimination of viscous term changes PDE from mixed 

elliptic-hyperbolic to hyperbolic.   This affects the type of 

analytical and computational tools used to solve the 

equations. 

Must “relax” wall boundary condition from no-slip to slip 

 For example for the case of a fixed wall: 

 
No-slip BC 

u = v = w = 0 

Slip BC 

w = 0, vn = 0 

vn = normal velocity 
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Irrotational Flow Approximation 

Irrotational 

approximation: vorticity is 

negligibly small 

 

 

In general, inviscid 

regions are also 

irrotational, but there are 

situations where inviscid 

flow are rotational, e.g., 

solid body rotation (Ex. 

10-3) 
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Irrotational Flow Approximation 

What are the implications of irrotational 

approximation.  Look at continuity and 

momentum equations. 

Continuity equation 

Use the vector identity 

Since the flow is irrotational 

is a scalar potential function 
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Irrotational Flow Approximation 

Therefore, regions of irrotational flow are also 

called regions of potential flow. 

From the definition of the gradient operator  

 

 

 

 

Substituting into the continuity equation gives 

Cartesian 

Cylindrical 
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Irrotational Flow Approximation 

This means we only need to solve 1 linear 

scalar equation to determine all 3 components 

of velocity! 

 

 

Luckily, the Laplace equation appears in 

numerous fields of science, engineering, and 

mathematics.  This means that there are well 

developed tools for solving this equation. 

Laplace Equation 
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Irrotational Flow Approximation 

Momentum equation 

If we can compute   from the Laplace 

equation (which came from continuity) and 

velocity from the definition              , why do 

we need the NSE?   To compute Pressure. 

To begin analysis, apply irrotational 

approximation to viscous term of the NSE 

= 0 
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Irrotational Flow Approximation 

Therefore, the NSE reduces to the Euler 

equation for irrotational flow 

 

 

 

Instead of integrating to find P, use vector 

identity to derive Bernoulli equation 

nondimensional 

dimensional 
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Irrotational Flow Approximation 

This allows the steady Euler equation to be written as 

 

 

 

 

 

 

 

This form of Bernoulli equation is valid for inviscid and 

irrotational flow since we’ve shown that NSE reduces to 

the Euler equation.  

= _  = 
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Irrotational Flow Approximation 

However,  

Inviscid 

Irrotational ( = 0) 
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Irrotational Flow Approximation 

Therefore, the process for irrotational flow 

1. Calculate  from Laplace equation (from continuity) 

2. Calculate velocity from definition 

3. Calculate pressure from Bernoulli equation (derived 

from momentum equation) 

Valid for 3D or 2D 
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Irrotational Flow Approximation 
2D Flows 

For 2D flows, we can also use the streamfunction 

Recall the definition of streamfunction for planar (x-y) 
flows 

 

Since vorticity is zero, 

 

 

 

 

 

This proves that the Laplace equation holds for the 
streamfunction and the velocity potential  
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Irrotational Flow Approximation 
2D Flows 

Constant values of :  
streamlines 

Constant values of : 
equipotential lines 

 and  are mutually 
orthogonal 

 and  are harmonic functions 

 is defined by continuity;  
2  results from irrotationality 

is defined by irrotationality; 
 2 results from continuity 

Flow solution can be achieved by solving either 2 or 2,  

however, BC are easier to formulate for 



Chapter 10:  Approximate Solutions Fondamenti di Meccanica dei Continui            27 

Irrotational Flow Approximation 
2D Flows 

Similar derivation can be performed for cylindrical 

coordinates (except for 2  for axisymmetric flow) 

Planar, cylindrical coordinates :  flow is in (r,) plane 

Axisymmetric, cylindrical coordinates : flow is in (r,z) plane 

Planar Axisymmetric 
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Irrotational Flow Approximation 
2D Flows 
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Irrotational Flow Approximation 
2D Flows 

Method of Superposition 

1. Since 2 is linear, a linear combination of 

two or more solutions is also a solution, e.g., 

if 1 and 2 are solutions, then (A1), (1+2), 

(A1+B2) are also solutions 

2. Also true for  in 2D flows (2 =0) 

3. Velocity components are also additive 
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Irrotational Flow Approximation 
2D Flows 

Given the principal of superposition, there 

are several elementary planar irrotational 

flows which can be combined to create 

more complex flows.   

Uniform stream 

Line vortex 

Line source/sink 

Doublet 
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Elementary Planar Irrotational Flows 
Uniform Stream 

In Cartesian coordinates 

 

 

 

Conversion to cylindrical 

coordinates can be 

achieved using the 

transformation 
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Elementary Planar Irrotational Flows 
Line Vortex 

Vortex at the origin.  First 

look at irrotationality 

condition which leads to 

the following velocity 

components 

 

 

 

 

     G  is the circulation 

 

 

 

Equations are for a vortex 

centered on the origin 
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Elementary Planar Irrotational Flows 
Line Vortex 

 

 

 

 

Integrating: 
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Elementary Planar Irrotational Flows 
Line Vortex 

If vortex is moved to 

(x,y) = (a,b) 

 



Chapter 10:  Approximate Solutions Fondamenti di Meccanica dei Continui            35 

Elementary Planar Irrotational Flows 
Line Source/Sink 

Potential and stream-

function are derived by 

observing that volume 

flow rate across any circle 

in the x-y plane is  

See also continuity 

equation 

This gives velocity 

components 
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Elementary Planar Irrotational Flows 
Line Source/Sink 

Using definition of (Ur , U) 

 

 

 

 

These can be integrated to 

give  and  

Equations are for a source/sink 

at the origin. Result is different in 3D. 
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Elementary Planar Irrotational Flows 
Line Source/Sink 

If source/sink is 

moved to (x,y) = (a,b) 
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Elementary Planar Irrotational Flows 
Doublet 

A doublet is a 

combination of a line 

sink and source of 

equal magnitude 

Source 

 

 

Sink 
a a 
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Elementary Planar Irrotational Flows 
Doublet 

Adding 1 and 2 

together, performing 

some algebra, and 

taking a  0 gives 

K  is the doublet strength 
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Examples of Irrotational Flows Formed 

by Superposition 

Superposition of sink and 

vortex : bathtub vortex 

Sink Vortex 
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Examples of Irrotational Flows Formed 

by Superposition 

Flow over a circular 

cylinder:  Free stream 

+ doublet 

 

 

 

Assume body is  = 0  

   (r = a)  K = Va2 



Chapter 10:  Approximate Solutions Fondamenti di Meccanica dei Continui            42 

Examples of Irrotational Flows Formed 

by Superposition 

Velocity field can be found by 

differentiating streamfunction 

 

 

 

 

 

On the cylinder surface (r = a) 

Normal velocity (Ur) is zero, Tangential 

velocity (U) is non-zero slip condition. 
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Examples of Irrotational Flows Formed 

by Superposition 

Compute pressure 

using Bernoulli 

equation and velocity 

on cylinder surface 

Irrotational 

flow 

Laminar 

separation 

Turbulent 

separation 

 1/2 
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Examples of Irrotational Flows Formed 

by Superposition 

Integration of surface pressure (which is 

symmetric in x), reveals that the DRAG is ZERO.  

This is known as D’Alembert’s Paradox  

For the irrotational flow approximation, the drag force 

on any non-lifting body of any shape immersed in a 

uniform stream is ZERO 

Why? 

Viscous effects have been neglected.  Viscosity and the no-

slip condition are responsible for 

Flow separation (which contributes to pressure drag) 

Wall-shear stress (which contributes to friction drag) 
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Boundary Layer (BL) Approximation 

BL approximation 
bridges the gap 
between the Euler 
and NS equations, 
and between the slip 
and no-slip BC at the 
wall. 

Prandtl (1904) 
introduced the BL 
approximation 

d99(x) 

Ue(x) 
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Boundary Layer (BL) Approximation 

Not to scale 

To scale 

d99(x) 

d99(x) 

 

Ue(x) 

Ue(x) 
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Boundary Layer (BL) Approximation 

BL Equations:  we 

restrict attention to 

steady, 2D, laminar 

flow (although method 

is fully applicable to 

unsteady, 3D, 

turbulent flow) 

BL coordinate system 

x : tangential direction 

y : normal direction 

d99(x) 

 e 

 Ue(x) 
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Boundary Layer (BL) Approximation 

To derive the equations, start with the steady 

nondimensional NS equations 

 

 

Recall definitions 

 

Since                                Eu ~ 1 

Re >> 1, should we neglect viscous terms?  No (!), 

because we would end up with the Euler equation along 

with deficiencies already discussed. 

Can we neglect some of the viscous terms? 

Ue
2 

Ue L 

Ue
2 
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Boundary Layer (BL) Approximation 

To answer this question, we need to do a 

normalization 

Use L as length scale in streamwise direction 

and for derivatives of velocity and pressure 

with respect to x. 

Use d(x) (a quantity proportional to the 

boundary layer thickness d99) for distances     

and derivatives in y. 

Use local outer (or edge) velocity Ue. 
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Boundary Layer (BL) Approximation 

Orders of Magnitude (OM) 

 

 

What about V?  Use continuity 

 

 

 

Since 

e 

e 

e 

e 

Ue 
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Boundary Layer (BL) Approximation 

Now, define new nondimensional variables 

 

 

All are order unity, therefore normalized 

Apply to x- and y-components of NSE 

  ... 
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Boundary Layer (BL) Approximation 

Incompressible Laminar Boundary Layer 

Equations 

Continuity 

x-momentum 

y-momentum 

(from now on use small letters to denote dependent variables) 
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Boundary Layer Procedure 

1. Solve for outer flow, ignoring the 
BL.  Use potential flow (irrotational 
approximation) or Euler equation 

2. Assume d/L << 1 (thin BL) 

3. Solve BLE 
y = 0  no-slip, u=0, v=0 

y = d99  u = Ue(x) 

x = x0   u = ustarting(x0,y) 

4. Calculate d, , d*, w, Drag 

5. Verify d/L << 1 

6. If d/L is not << 1, use d* as body, 
go to step 1 and repeat 

Ue(x) 
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Boundary Layer Procedure 

Possible Limitations 

1. Re is not large enough  BL 

may be too thick for thin BL 

assumption. 

2. p/y  0 due to wall curvature 

d99 ~ R 

3. Re too large  transitional 

flow starts at Re  105.  BL 

approximation still valid, but 

new terms required. 

4. Flow separation 

d99

Ue(x) 
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Boundary Layer Procedure 

Before defining and d* and are there 

analytical solutions to the BL equations? 

Unfortunately, NO 

Blasius Similarity Solution boundary layer on a 

flat plate, constant edge velocity, zero external 

pressure gradient (Ue = const.)

u = Ue 
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Blasius Similarity Solution 

Blasius introduced similarity 
variables 

 

 

 

This reduces the BLE to 

 

 

 

 

This ODE can be solved using 
Runge-Kutta technique 

Result is a BL profile which holds at 
every station along the flat plate 

e 

 u 

 2 
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Blasius Similarity Solution 
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Blasius Similarity Solution 

Boundary layer thickness can be computed by 

assuming that d99 corresponds to point where 

u/Ue = 0.990.  At this point,  = 4.91, therefore 

 

 

 

Wall shear stress w  and friction coefficient Cf,x 

can be directly related to Blasius solution 

Recall 

Rex = Ue x / n99 

 99 
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Displacement Thickness 

Displacement thickness d* is the 

imaginary increase in thickness of the 

wall (or body), as seen by an ideal 

inviscid flow of same flow rate, and is 

due to the effect of a growing BL. 

Expression for d* is based upon control 

volume analysis of conservation of mass 

 

 

 

Blasius profile for laminar BL can be 

integrated to give 

(1/3 of d99) 

d99(x) 

d99(x) 

u = Ue 

u(x,y) 

  Ue 

u 
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Momentum Thickness 

Momentum thickness   is another 

measure of boundary layer thickness. 

Defined as the loss of momentum flux 

per unit width divided by Ue
2 due to 

the presence of the growing BL. 

Derived using CV analysis (Karman 

integral equation). 

  for Blasius solution, 

identical to Cf,x 

d99(x) 

d99(x)

 Ue 

    Ue 

u u 

   u 
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Turbulent Boundary Layer 

Illustration of unsteadiness of a  

turbulent BL 

Black lines:  instantaneous 

Pink line:  time-averaged 

Comparison of laminar and  

turbulent BL profiles 

  e 

e 

 99 

99 
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Turbulent Boundary Layer 

All BL variables [u(x,y), d99, d*, ] are 

determined empirically. 

One common empirical approximation for 

the time-averaged velocity profile is the 

one-seventh-power law 

99  ) 

99 

1 
  u 

u 

 99 
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Turbulent Boundary Layer 

d99 d9
9

d9
9
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Turbulent Boundary Layer 

Flat plate zero-pressure-gradient TBL can be plotted in 

a universal form if a new velocity scale, called the 

friction velocity U, is used.  Sometimes referred to as 

the “Law of the Wall” Velocity Profile in Wall Coordinates 

u 
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Turbulent Boundary Layer 

Despite its simplicity, the Law of the Wall 

is the basis for many CFD turbulence 

models. 

Spalding (1961) developed a formula 

which is valid over most of the boundary 

layer 

 

 

, B are constants 
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Pressure Gradients 

Shape of the BL is strongly 

influenced by external pressure 

gradient 

(a) favorable (dp/dx < 0) 

(b) zero 

(c) mild adverse (dp/dx > 0) 

(d) critical adverse (w = 0) 

(e) large adverse with reverse (or 

separated) flow 
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Pressure Gradients 

The BL approximation is 

not valid downstream of a 

separation point because 

of reverse flow in the 

separation bubble. 

Turbulent BL is more 

resistant to flow separation 

than laminar BL exposed 

to the same adverse 

pressure gradient 

Laminar flow separates at corner 

Turbulent flow does not separate 


