
Chapter 9:  Differential Analysis of 

Fluid Flow 
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Objectives 

1. Understand how the differential 

equations of mass and momentum 

conservation are derived. 

2. Calculate the stream function and 

pressure field, and plot streamlines for a 

known velocity field. 

3. Obtain analytical solutions of the 

equations of motion for simple flows. 
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Introduction 

Recall 
Chap 5:  Control volume (CV) versions of the laws of 
conservation of mass and energy 

Chap 6:  CV version of the conservation of momentum 

CV, or integral, forms of equations are useful for 
determining overall effects 

However, we cannot obtain detailed knowledge about 
the flow field inside the CV  motivation for differential 
analysis 
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Introduction 

Example:  incompressible Navier-Stokes 

equations 

 

 

 

 

We will learn: 

Physical meaning of each term 

How to derive 

How to solve 
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Introduction 

For example, how to solve? 

Step Analytical Fluid Dynamics 

(Chapter 9) 

Computational Fluid Dynamics 

(Chapter 15) 

1 Setup Problem and geometry, identify all dimensions and 

parameters 

2 List all assumptions, approximations, simplifications, boundary 

conditions 

3 Simplify PDE’s Build grid / discretize PDE’s 

4 Integrate equations Solve algebraic system of 

equations including I.C.’s and 

B.C’s 
5 Apply I.C.’s and B.C.’s to solve 

for constants of integration 

6 Verify and plot results Verify and plot results 
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Conservation of Mass 

Recall CV form (Chap 5) from Reynolds 

Transport Theorem (RTT) 

 

 

We’ll examine two methods to derive 

differential form of conservation of mass 

Divergence (Gauss) Theorem 

Differential CV and Taylor series expansions 
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Conservation of Mass 
Divergence Theorem 

Divergence theorem allows us to 

transform a volume integral of the 

divergence of a vector into an area integral 

over the surface that defines the volume. 
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Conservation of Mass 
Divergence Theorem 

Rewrite conservation of mass 

 

 

Using divergence theorem, replace area integral 

with volume integral and collect terms 

 

 

Integral holds for ANY CV, therefore: 
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Conservation of Mass 
Differential CV and Taylor series 

First, define an 

infinitesimal control 

volume dx x dy x dz 

Next, we approximate the 

mass flow rate into or out 

of each of the 6 faces  

using Taylor series 

expansions around the 

center point    , e.g., at 

the right face 
Ignore terms higher than order dx 
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Conservation of Mass 
Differential CV and Taylor series 

Infinitesimal control volume 

of dimensions dx, dy, dz Area of right 

face = dy dz 

Mass flow rate through 

the right face of the  

control volume 
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Conservation of Mass 
Differential CV and Taylor series 

Now, sum up the mass flow rates into and out of 

the 6 faces of the CV 

 

 

 

 

 

Plug into integral conservation of mass equation 

Net mass flow rate into CV: 

Net mass flow rate out of CV: 
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Conservation of Mass 
Differential CV and Taylor series 

After substitution, 

 

 

Dividing through by volume dxdydz 

Or, if we apply the definition of the divergence of a vector 

y z 

z  y 



Chapter 9:  Differential Analysis Fondamenti di Meccanica dei Continui            13 

Conservation of Mass 
Alternative form 

Use product rule on divergence term 
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Conservation of Mass 
Cylindrical coordinates 

There are many problems which are simpler to solve if 
the equations are written in cylindrical-polar coordinates 

Easiest way to convert from Cartesian is to use vector 
form and definition of divergence operator in cylindrical 
coordinates 
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Conservation of Mass 
Cylindrical coordinates 
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Conservation of Mass 
Special Cases 

Steady compressible flow 

Cartesian 

Cylindrical 

z y 
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Conservation of Mass 
Special Cases 

Incompressible flow 

Cartesian 

Cylindrical 

and  = constant  

z  y 
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Conservation of Mass 

In general, continuity equation cannot be 

used by itself to solve for flow field, 

however it can be used to  
 

1. Determine if velocity field is incompressible 

2. Find missing velocity component 
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The Stream Function 

Consider the continuity equation for  an 

incompressible 2D flow 

 

 

Substituting the clever transformation 

 

Gives 

This is true for any smooth 

function (x,y) 

y 
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The Stream Function 

Why do this? 

Single variable  replaces (u,v).  Once  is 

known, (u,v) can be computed. 

Physical significance 

1. Curves of constant  are streamlines of the flow 

2. Difference in  between streamlines is equal to 

volume flow rate between streamlines 
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The Stream Function 
Physical Significance 

Recall from Chap. 4 that 

along a streamline 

 Change in  along 

streamline is zero 
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The Stream Function 
Physical Significance 

Difference in  between 

streamlines is equal to 

volume flow rate between 

streamlines 
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Conservation of Linear Momentum 

Recall CV form from Chap. 6 

 

 

 

 

Using the divergence theorem to convert area 

integrals 

Body 

Force 
Surface 

Force 

ij = stress tensor 
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Conservation of Linear Momentum 

Substituting volume integrals gives, 

 

 

Recognizing that this holds for any CV, 

the integral may be dropped 

This is Cauchy’s Equation 

Can also be derived using infinitesimal CV and Newton’s 2nd Law (see text) 
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Conservation of Linear Momentum 

Alternate form of the Cauchy Equation can be 

derived by introducing 

 

 

 

Inserting these into Cauchy Equation and 

rearranging gives 

(Chain Rule) 
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Conservation of Linear Momentum 

Unfortunately, this equation is not very 

useful 

10 unknowns 

Stress tensor, ij : 6 independent components 

Density  

Velocity, V : 3 independent components 

4 equations (continuity + momentum) 

6 more equations required to close problem! 
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Navier-Stokes Equation 

First step is to separate ij into pressure and 
viscous stresses 

 

 

 

 

Situation not yet improved 

6 unknowns in ij    6 unknowns in ij + 1 in P, 
which means that we’ve added 1! 

 

 ij 

 xx  xy  xz

 yx  yy  yz

 zx  zy  zz

 

 

 
 
 

 

 

 
 
 



p 0 0

0 p 0

0 0 p

 

 

 
  

 

 

 
 
 


 xx  xy  xz

 yx  yy  yz

 zx  zy  zz

 

 

 
 
 

 

 

 
 
 

Viscous (Deviatoric)  

Stress Tensor 
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Navier-Stokes Equation 

(toothpaste) 

(paint) 

(quicksand) 

Reduction in the 

number of variables is 

achieved by relating 

shear stress to strain-

rate tensor. 

For Newtonian fluid 

with constant 

properties 

Newtonian fluid includes most common 

fluids:  air, other gases, water, gasoline 
Newtonian closure is analogous 

to Hooke’s law for elastic solids 
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Navier-Stokes Equation 

Substituting Newtonian closure into stress 

tensor gives 

 

 

Using the definition of ij (Chapter 4)  

= 
_ 
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Navier-Stokes Equation 

Substituting ij into Cauchy’s equation gives the 

Navier-Stokes equations  

 

 

 

 

This results in a closed system of equations! 

4 equations (continuity and momentum equations) 

4 unknowns (U, V, W, p) 

Incompressible NSE 

written in vector form 
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Navier-Stokes Equation 

In addition to vector form, incompressible 

N-S equation can be written in several 

other forms 

Cartesian coordinates 

Cylindrical coordinates 

Tensor notation 
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Navier-Stokes Equation 
Cartesian Coordinates 

Continuity 

X-momentum 

Y-momentum 

Z-momentum 

See page 431 for equations in cylindrical coordinates 
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Navier-Stokes Equation 
Tensor and Vector Notation 

Continuity 

Conservation of Momentum 
Tensor notation Vector notation 

Vector notation Tensor notation 

Tensor and Vector notation offer a more compact form of the equations.  

Repeated indices are summed over j  

(x1 = x, x2 = y, x3 = z, U1 = U, U2 = V, U3 = W) 



Chapter 9:  Differential Analysis Fondamenti di Meccanica dei Continui            34 

Differential Analysis of Fluid Flow Problems 

Now that we have a set of governing 

partial differential equations, there are 2 

problems we can solve 

1. Calculate pressure (P) for a known velocity 

field   

2. Calculate velocity (U, V, W) and pressure 

(P) for known geometry, boundary 

conditions (BC), and initial conditions (IC) 
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Exact Solutions of the NSE 

Solutions can also be 

classified by type or 

geometry 

1. Couette shear flows 

2. Steady duct/pipe flows 

3. Unsteady duct/pipe flows 

4. Flows with moving 

boundaries 

5. Similarity solutions 

6. Asymptotic suction flows 

7. Wind-driven Ekman flows 

There are about 80 

known exact solutions 

to the NSE 

The can be classified 

as: 

Linear solutions 

where the convective       

               term is zero 
 

Nonlinear solutions 

where convective 

term is not zero 
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Exact Solutions of the NSE 

1.Set up the problem and geometry, identifying all 
relevant dimensions and parameters 

2.List all appropriate assumptions, approximations, 
simplifications, and boundary conditions 

3.Simplify the differential equations as much as 
possible 

4.Integrate the equations 

5.Apply BC to solve for constants of integration 

6.Verify results 

Procedure for solving continuity and NSE 



Chapter 9:  Differential Analysis Fondamenti di Meccanica dei Continui            37 

Boundary conditions 

Boundary conditions are critical to exact, 

approximate, and computational solutions. 

Discussed in Chapters 9 & 15 

BC’s used in analytical solutions are discussed here 

No-slip boundary condition 

Interface boundary condition 

These are used in CFD as well, plus there are some 

BC’s which arise due to specific issues in CFD 

modeling.  These will be presented in Chap. 15. 

Inflow and outflow boundary conditions 

Symmetry and periodic boundary conditions 
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No-slip boundary condition 

For a fluid in contact 

with a solid wall, the 

velocity of the fluid 

must equal that of the 

wall 
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Interface boundary condition 

When two fluids meet at an 

interface, the velocity and 

shear stress must be the 

same on both sides 
 

  

 The latter expresses the fact that 

when the interface is in equilibrium, 

the sum of the forces over it is zero. 

If surface tension effects 

are negligible and the 

surface is nearly flat: 
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Interface boundary condition 

Degenerate case of the interface BC occurs at the free 
surface of a liquid. 

Same conditions hold 

 

 

 

 
Since air << water,  

 

 

 

As with general interfaces, if surface 
tension effects are negligible and the 
surface is nearly flat  Pwater = Pair 

 

 

 



Chapter 9:  Differential Analysis Fondamenti di Meccanica dei Continui            41 

Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

For the given geometry and BC’s, calculate the velocity 

and pressure fields, and estimate the shear force per 

unit area acting on the bottom plate 

 

Step 1:  Geometry, dimensions, and properties 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 2:  Assumptions and BC’s 

Assumptions 

1. Plates are infinite in x and z 

2. Flow is steady, /t = 0 

3. Parallel flow, the vertical component of velocity v = 0 

4. Incompressible, Newtonian, laminar, constant properties 

5. No pressure gradient 

6. 2D, w=0, /z = 0 

7. Gravity acts in the -z direction,  

Boundary conditions 

1. Bottom plate (y=0) : u = 0, v = 0, w = 0 

2. Top plate (y=h) : u =V, v = 0, w = 0 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 3:  Simplify 
3 6 

Note:  these numbers refer 

to the assumptions on the  

previous slide 

This means the flow is “fully developed” 

or not changing in the direction of flow 

Continuity 

X-momentum 

2 Cont. 3 6 5 7 Cont. 6 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 3:  Simplify, cont. 
Y-momentum 

2,3 3 3 3,6 7 3 3 3 

Z-momentum 

2,6 6 6 6 7 6 6 6 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 4:  Integrate 

Z-momentum 

X-momentum 

integrate integrate 

integrate 

(in fact the constant C3 should - in general –  

 be a function of y and z …) 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 5:  Apply BC’s 

y=0, u=0=C1(0) + C2    C2 = 0 

y=h, u=V=C1h    C1 = V/h 

This gives 

 

 

For pressure, no explicit BC, therefore C3 can remain 

an arbitrary constant (recall only P appears in 

NSE). 

Let p = p0 at z = 0 (C3 renamed p0) 

1. Hydrostatic pressure 

2. Pressure acts independently of flow 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Step 6:  Verify solution by back-substituting into 

differential equations 

Given the solution (u,v,w)=(Vy/h, 0, 0) 

 

 

Continuity is satisfied 

 0 + 0 + 0 = 0 

X-momentum is satisfied 
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Example exact solution (Ex. 9-15) 
Fully Developed Couette Flow 

Finally, calculate shear force on bottom plate 

Shear force per unit area acting on the wall  

Note that w is equal and opposite to the  

shear stress acting on the fluid yx  

(Newton’s third law).  


