Chapter 8: Flow in Pipes



Objectives

1. Have a deeper understanding of laminar and
turbulent flow in pipes and the analysis of fully
developed flow

2. Calculate the major and minor losses
associated with pipe flow in piping networks
and determine the pumping power
requirements
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Introduction

B Average velocity in a pipe

B Recall - because of the no-slip
condition, the velocity at the walls of
Vae | a pipe or duct flow is zero

E—
>\:\\ B We are often interested only in V,,

1 S which we usually call just V (drop the
=> e subscript for convenience)

! B Keep in mind that the no-slip
condition causes shear stress and

AN friction along the pipe walls

Friction force of wall on fluid
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Introduction

m For pipes of constant
diameter and

iIncompressible flow

m Vv, stays the same
down the pipe, even if
the velocity profile

Vavg Vavg changes

e \Why? Conservation of
Mass

m = ZQVMQA — constant

same \ same
Same
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Introduction

m For pipes with variable diameter, m is still the
same due to conservation of mass, but V; #V,

D,

|
j. N[
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Laminar and Turbulent Flows

Laminar Flow
Can be steady or unsteady.

(Steady means that the flow field at any
instant in time is the same as at any other
instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, predictable behavior

Tiye trace

Dye injection

—_—
Vove |
I

Amnalytical solutions are possible (see
Chapter 9.
Inertial forces

Viscous forces Occurs at Jow Reynolds numbers.
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Turbulent Flow

Is always wunsteady.

Why? There are always random, swirling
motions (vortices or eddies) in a turbulent
flow.

Nore: However, a turbulent flow can be
steady in the mean. We call this a
stationary turbulent Tow.

Is always three-dimensional.

Why? Apain because of the random
swirling eddies, which are in all directions.

Nore: However, a turbulent flow can be 1-
D or 2-D in the mean.

Has irregular or chaotic behavior (cannot
predict exactly — there is some randomness
associated with any turbulent flow.

Dwve trace
LY

f Drve injection

Mo analytical solutions exist! (It is too
complicated, again because of the 3-D,
unsteady, chaotic swirling eddies.)

Occurs at igh Reyvnolds numbers.
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Laminar and Turbulent Flows

m Critical Reynolds number

Definition of Reynolds number (Re,,) for flow in a round pipe
Re < 2300 = laminar

2300 £ Re £4000 = transitional
Re > 4000 = turbulent

Vove m Note that these values are
i approximate.

B For a given application, Re,,
depends upon
B Pipe roughness
— ' M Vibrations

B Upstream fluctuations and
disturbances (valves, elbows, etc.
that may perturb the flow)
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Osborne Reynolds (1842-1912)

"An experimental investigation of

the circumstances which determine
whether motion of water shall be
direct or sinuous and of the law of
resistance in parallel channels”,
Royal Society, Phil. Trans. 1883
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Osborne Reynolds 1880 Experiments

"the colour band would all at once mix up
with the surrounding water, and fill the
rest of the tube with a mass of coloured
water ... On viewing the tube by the light
of an electric spark, the mass of colour
resolved itself into a mass of more or
less distinct curls, showing eddies.’

@)

(b)

Re. ~ 13000 (??)
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Laminar and Turbulent Flows

For non-round pipes, define the
hydraulic diameter
Circular tube: @ Dh — 4AC/P

_ 4Dy A.= cross—sect_lon area
@D P = wetted perimeter
| 0.2 m%/s
Square duct: a (_——,
7 B Example: open channel
2 -
Dh:% — AC - 0'15 * 0'4 - 0'06m2 0.4m ‘

P=0.15+0.15+0.4=0.7m
Don’t count free surface, since it does not

Rectangular duct. ||4

b contribute to friction along pipe walls!
_ dab _ 2ab D, = 4A/P = 4*0.06/0.7 = 0.343m
h™2@+b) a+b

What does it mean? This channel flow is
equivalent to a round pipe of diameter
0.343m (approximately).
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The Entrance Region

m Consider a round pipe of diameter D. The flow
can be laminar or turbulent. In either case, the
profile develops downstream over several
diameters called the entry length L,. L,/D Is a
function of Re.

Irrotational (core) Velocity boundary Developing velocity Fully developed
flow region layer profile velocity profile
Vive > Vive / Vive Vive Vive /
— — | — —— —
T =~ |>/ 1 :
> e
r > =
----- e =aes R
> S e
_—
| L,
<+— Hydrodynamic entrance region > 7 -
Hydrodynamically fully developed region é’;_s(r,x) =0 =>| u=u()
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Fully Developed Pipe Flow

m Comparison of laminar and turbulent flow
There are some major differences between laminar
and turbulent fully developed pipe flows
V= = Uyl 2

Laminar / e e
e Can solve exactly (Chapter 9) |
e Flow is steady I
e Velocity profile is parabolic — X
e Pipe roughness not important l | > u(r) O]R

It turns out that V4 = %2 Uy, @and u(r)= 2V,,4(1 - r?/R?)

avg max
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Fully Developed Pipe Flow

Laminar _
—
Px Px+dx
— < —
7. =— udu/dr
d}i £ l Ir
i o S WG

/—’uj‘— Umax

Ring-shaped differential volume element

ﬂg—( du) dP = constant

ur) = ..., 1—P2:32,uLV /D?

avg
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2nRdx T,

|
1 |
TRP | t——
= 7RAP + dP)
|

h_

Force balance:
7TR2P — mR%(P + dP) - 2wR dx 7,,=0

Simplifying:
dP 27,
— = ——— = constant
dx
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Oil at 20°C (p = 888 kg/m3 and x = 0.800 kg/m's)
<> } flows steadily through a 5-cm-diameter 40-m-long

pipe. The pressure at the pipe inlet and outlet are
measured to be 745 and 97 kPa, respectively.

1) Determine the average velocity and the flow rate through the pipe;

2) Verify that the flow through the pipe is laminar;

3) Determine the value of the Darcy friction factor f;

4) Determine the pumping power required to overcome the pressure drop.

L pV,,>2
Definition: | AP, =f — £ 2%
D 2

(this definition applies to both laminar and turbulent flows)

f . Darcy friction factor
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Fully Developed Pipe Flow

Turbulent
e Cannot solve exactly (too complex)
¢ Flow is unsteady (3D swirling eddies), but it is steady in the mean

¢ Mean velocity profile is fuller (shape more like a top-hat profile,
with very sharp slope at the wall)

¢ Pipe roughness is very important

profiles

T r / Instantaneous
O 1

u(r)

=

e V_,85% of u,,, (depends on Re a bit)

avg
¢ No analytical solution, but there are some good semi-empirical
expressions that approximate the velocity profile shape. See text
Logarithmic law (Eg. 8-46)
Power law (Eq. 8-49)
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Fully Developed Pipe Flow

Wall-shear stress

m Recall, for simple shear flows u=u(y), we had
= p du/dy

| In fully developed pipe flow, it turns out that
T=-u du/dr

Laminar Turbulent

t,, = Shear stress at the wall, S
acting on the fluid Tw,turb ~ Tw,lam
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Fully Developed Pipe Flow

Pressure drop

B There is a direct connection between the pressure drop in a pipe and
the shear stress at the wall

m Consider a horizontal pipe, fully developed, and incompressible flow

B Let's apply conservation of mass, momentum, and energy to this CV
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Fully Developed Pipe Flow

Pressure drop

m Conservation of Mass

mlzmgzm

pV1 = pVg — V = const

D2
i~ = Vo~ 4

m Conservation of x-momentum

ZF :;%g:‘av‘FZFmpress‘FZFm visc +%her— ZﬂmV Zﬁmv

out

7 D? D32 _ _
P —— — P~ —TwWDL=W;6 Vi

(Vi = Vel

Terms cancel since g, = S,
and V, =V,
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Fully Developed Pipe Flow

Pressure drop

Hm Thus, x-momentum reduces to

2 L
(Pl Pg)ﬂ-f —Tw’ﬂ‘DL or Pl—P2:4Tw5

O Energy equation (in head form)

/{%MH_ /5?22/":}1 sznee‘I'hL

cancel (horizontal pipe)

Velocity terms cancel again because V; =V,

Pl _ P2 — PghL h, = irreversible head

loss; it is felt as a pressure
drop in the pipe
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Fully Developed Pipe Flow

Head Loss

B From momentum CV analysis L

Pl —P2 — 47‘1”5

B From energy CV analysis
Pl — P2 — pghL
m Equating the two gives
L 41, L
47, — = pgh hy =
w D pgnr 0g D

m To predict head loss, we need to be able to calculate z,. How?
B Laminar flow: solve exactly
B Turbulent flow: rely on empirical data (experiments)
B |n either case, we can benefit from dimensional analysis!
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Fully Developed Pipe Flow

Darcy Friction Factor

m 7, =func(p, V,D, 4 &

B [I-analysis gives

I =f

[:QZRG
€

HS—B

Hl = func(Hg, H3)

Meccanica dei Fluidi |

& = average roughness of the

iInside wall of the pipe

f=—= Re

~ pVD
L4

e/D = roughness factor

f = func(Re,e/D)
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Fully Developed Pipe Flow

Friction Factor

B Now go back to equation for h, and substitute f for z,,

47, L 87—11)
hr = %22 f =
pg D pV?
LV?
hy = f—=—
L D 2g

m Our problem is now reduced to solving
for Darcy friction factor f

>Tw:fpv2/8

av
2

Head loss: hy = p—gl‘-f%vzigvg
m Recal f= funC(Re,
B Therefore
e Laminar flow: f=64/Re (exact) .
¢ Turbulent flow: Use charts or But for laminar flow, roughness.
emp|r|ca| equa‘tions (Moody Chart, doeS nOt affeCt the ﬂOW Un|eSS |t

a famous plot of f vs. Re and &D) is huge
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Darcy friction factor, f

0.1
0.09
0.08
0.07

0.06

0.05 |

0.04

0.025

0.02

0015}

0.01

0.009 |

0.008
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The Moody Chart
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Fully Developed Pipe Flow

Friction Factor

B Moody chart was developed for circular pipes, but can
be used for non-circular pipes using hydraulic diameter

B Colebrook equation is a curve-fit of the data which is
convenient for computations
e/D  2.51 )

1
3.7 Re\Jf

— = —2.0log (
Implicit equation for f which can be solved with

an iterative numerical method

B Both Moody chart and Colebrook equation are accurate
to £15% due to roughness size, experimental error,
curve fitting of data, etc.
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Types of Fluid Flow Problems

B In design and analysis of piping systems, 3
problem types are encountered

1. Determine 4p (or h)) given L, D, V (or flow rate)

Can be solved directly using Moody chart and Colebrook
equation

2. Determine V, given L, D, 4p
3. Determine D, given L, 4p, V (or flow rate)

B Types 2 and 3 are common engineering
design problems, I.e., selection of pipe
diameters to minimize construction and
pumping costs. However, iterative approach
required since both V and D are in the
Reynolds number.
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Example

Heated air at 1 atm and 35°C is to be transported in a 150-m-long
circular plastic duct at a rate of 0.35 m3/s. If the head loss in the pipe
IS not to exceed 20 m, determine the maximum required pumping
power, the minimum diameter of the duct, average velocity, the
Reynolds number and the Darcy friction factor.

A

0.35 m3/s
air D

B i

Y

1IS0m—

p=1.145 kg/m3, v=1.655 10> m?/s

) 4.75 s 5 0.04 6 5
D —0.66 | 125 LY? Y (i) 107° <e¢/D < 10
ghr, ghr, 5000 < Re < 3 x 108
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Minor Losses

B Piping systems include fittings, valves, bends, elbows,
tees, inlets, exits, enlargements, and contractions.

B These components interrupt the smooth flow of fluid and
cause additional losses because of flow separation and
mixing

B We introduce a relation for the minor losses associated
with these components

V2 « K_is the loss coefficient.
hL — KL 2_ * It is different for each component.
g  |tis assumed to be independent of Re.

» Typically provided by manufacturer or
generic table (e.qg., Table 8-4 in text).
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Minor Losses

Sharp-edged inlet
Pipe section with valve: ‘ K, =0.50
I 1 ——
1 I

i
|%4
L = LL ‘ Recirculating flow

B -P

valve

Pipe section without valve:

Well-rounded inlet
Tl m \\L K, =0.03
v N
i® ® N
LL L D—
- —— - — - | - — -

e
APL - (P] - P2)valvc - (Pl T PZ)pipc //ﬁ. r .

The loss coefficient K| is determined by measuring
the additional pressure loss the component causes,
and dividing it by the dynamic pressure in the pipe

The head loss at the inlet of
a pipe is almost negligible for
well rounded inlets
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Minor Losses

m Total head loss in a system is comprised of major losses
(in the pipe sections) and the minor losses (in the
components)

hL — hL,majur hL,minnr

L; V7 V7
hL:;fiDi 2 I ZKL,ji

~ - g

I pipe ] components
sections

m If the piping system has constant diameter
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Minor Losses

Here are some sample loss coefficients for various minor loss components. More values are
listed in Table 8-4, page 350 of the Cengel-Cimbala textbook:

Fipe nfed .

Reentrani: K, = 0.80 Sharp- edged{.iff_ = CI 50} Well-rounded (WD = O, 21{ = E‘, y

{t=< Dand f= 010 L Shightly rovnded (7D = Q. 1‘ K = 2_

P Rounding ::" an inlet
‘ makes a big difference.
A |
p— _— '\—\%_
— ¥ —_— | D = D

-y “_,_,—l_

‘D
T

Fipe Exit

Reentrant: K, = « Sharp-ea'gedn(_& = J}
T | \ . a =2 for fully developed
J Rounding of laminar flow
an outlet a=1 for fully developed
: makes no turbulent flow
- = —_V difference.

i Il

Surchiden Expansion and Gonfraction (based an the velocily in the simalior-diametor pipe)

..
’

di 2
Sudden expansion: Ky = (_ - )

MNote that the larger velocity (the
4| welocity associated with the smaller pipe

; . y & ¥ "
rd section) is used by convention in the
rd equation for minor head loss, Le,,
".- h i..-..
s L A——
; ot "
k) "'.i"l
£
ra
/
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0.e

Sudden condraction: See chart, e

= \ K; for sudden
J "",'_ leriqli:ln
\.— 0.2 ]

o™

L — o =) \\\‘
\1-2 -\‘-\“"\-_

/”* ] Yy 0.2 04 e 04 L0

"l."l.llr].’
Mote: These are I_ IMiote again that the larger velociny (the velocity associated
backwards. The K; valnes with the smailer pipe section) is used by convention in the
listed for Expansion should e
be those for Conmacton, equation for minor bead loss, 18, A, . =K, .
and vice-versa \ =

Expansion: Conbmac tion (far # = 30y ——0u

K, = DOZTor 8 = e K, = 0.30 for 0 = 0.2 ?'"‘rb__
M = 0,04 for @ = 45° - ¥ K, = 0.25 far g’ = 0.4 0
K, = 007 for & = 6O [ <= ¥ | kﬂ' o K, = .15 far @D = 0.6 il ul o —
L K, - 0.10 for a0 = 0.8 P S
These are for confractions | . | e
! These are for expansions !
Bends and Beanciies
S0P smoeth baend: 50° mitey bead BF miter bemnd 45 threaded albow:
Flargad: K, = 0.3 twithcut vanesk: K, = 1.1 | (with vanes): K, = 0.2 K= 0.4
Threaded: K, = 0.9
B
.\\: L .-'IJ1
— ] ¥ — --\..\ll Vo ..__‘"C
- -\.I'I ! S,
1
1| ] ] NN
TBF return bend; ,/f-ee [branch flawl: ™, /’7'9? lima flow); "‘\' Threaged umien;
Flargad; K, = 0.2 Flanged: &, = 1.0 | Flamged: K, = 0.2 | K = 008
Threaded: K, = 1.5 [ Jhreadest: K = E,E"f- \]::raaﬂud- K = I:l__j__:l,f"
—\_-\.L-\._ :’_'-.___ I — i
Ve \\_':\. ) !
— R J e
=\ 5L |/ ™
|32 ) -
o ] i ! i —_—
p— o ¥ ——l———
.l'__-' )
- e | F
e o
—

| For teas, there are two values of I, one for branch fTow and one for ling fow. |
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Head Loss at a Sharp-Edge Inlet

Pressure head

Head 4 converted to Total
velocity head head
------ i :/; i e _il_K_g‘:zizé’_ — Lost velocity head
2¢ VZii2g Remaining

velocity head

Py
pg

_Pl/(Pressure P, ———— Remaining
e head g pressure head

>

[S—

2

Vena contracta

=7
=7

==
e

\

Separated
flow

e
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Example

A 9-cm-diameter horizontal water pipe contracts gradually to a 6-cm-diameter
pipe. The walls of the contraction section are angled 30° from the horizontal.
The average velocity and pressure of water at the exit of the contraction
section are 7 m/s and 150 kPa, respectively. Determine the head loss in the
contraction section and the pressure in the larger-diameter pipe. In the case of

plastic pipes, determine also the friction factor for both pipes in series.

<
\
@ / R ‘ @
" |6cm ,| } 9cm| |«
\ I
Water J’ ! //
7 m/s

Turbulent fully developed flow at sections 1 and 2 (?), p = 998 kg/m3,
4 =1.002 x 103 kg/(m s), K, ?
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Piping Networks and Pump Selection

m Two general types of A )
l
networks ¥y B
B Pipes in series /L, D
. fas Ly Dy T
¢ VVolume flow rate is & _ 1
— VB
constant by 1a=hy Ay g
¢ Head loss is the
summation of parts et
B Pipes in parallel Y NN
¢ Volume flow rate is the w
sum of the components s LD
e Pressure loss across all 1 =h

branches is the same
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Piping Networks and Pump Selection

m For parallel pipes, perform CV analysis between
points A and B oty

P, L= = Py<P,
V=V @
P V3 P V3
Ay A= By TBy i
Py g Py g
AP
h

 pg
B Since AP Is the same for all branches, head loss
INn all branches iIs the same
L]_ Vl

Lo V2
hr1=h > fj—— = —2
L1 L2 lel 2 = fo— D, 24
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Piping Networks and Pump Selection

B Head loss relationship between branches allows the following ratios
to be developed

Vl (f2L2D1)

Vo \f1 L1 D,

ba|=

&_D% (f2L2D1)%
Vo D3\ fi L1 D,

so that the relative flow rates in parallel pipes are established from
the requirements that the head loss in each pipe is the same

B Real pipe systems result in a system of non-linear equations.
m Note: the analogy with electrical circuits should be obvious

B Flow rate (\/): current (1)
B Pressure gradient (4p): electrical potential (V)
B Head loss (h): resistance (R), however h, is very nonlinear
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Piping Networks and Pump Selection

m When a piping system involves pumps and/or
turbines, pump and turbine head must be included in

the energy equation

Py V2 Py V.2
— + L + 21 + hpump,u — — + = + 29 + hturbine,e + hp,

P9 29 pg 29

B The useful head of the pump (h,,,,) or the head
extracted by the turbine (hy,pine ), are functions of
volume flow rate, i.e., they are not constants.

B Operating point of system is where the system is in

balance, e.g., where pump head is equal to the
head loss (plus elevation difference, velocity head

difference, etc.)
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Pump and systems curves

m Supply curve for hy,,
determined experimentally by

Pump exit is closed to produce maximum head

1 manufacturer. It is possible to
L\["ipgrgvm Tpump build a functional relationship
40 ~ T 80
\ K : for hpump,u_
R ra = m System curve determined from
=7 / N A Y analysis of fluid dynamics
3 \// Operaing | 5 ys y
= 0l _ AN | o B equations
LT X £ m Operating point is the
10 famr=="" \\ Supply T\ 20 intersection of supply and
System euve \ demand curves
o1 2 3 4 5 6 ° m If peak efficiency is far from
Flow rate, me/s operating point, pump is wrong

for that application.
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