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Introduction

This chapter deals with 3 equations 
commonly used in fluid mechanics

The mass equation is an expression of the 
conservation of mass principle.
The Bernoulli equation is concerned with the 
conservation of kinetic, potential, and flow 
energies of a fluid stream and their 
conversion to each other.
The energy equation is a statement of the 
conservation of energy principle.  
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Objectives

After completing this chapter, you should be able to

Apply the mass equation to balance the incoming 
and outgoing flow rates in a flow system.
Recognize various forms of mechanical energy, 
and work with energy conversion efficiencies.
Understand the use and limitations of the Bernoulli 
equation, and apply it to solve a variety of fluid flow 
problems.
Work with the energy equation expressed in terms 
of heads, and use it to determine turbine power 
output and pumping power requirements.
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Conservation of Mass

Conservation of mass principle is one of the 
most fundamental principles in nature.
Mass, like energy, is a conserved property, and 
it cannot be created or destroyed during a 
process.  
For closed systems mass conservation is implicit 
since the mass of the system remains constant 
during a process.
For control volumes, mass can cross the 
boundaries which means that we must keep 
track of the amount of mass entering and leaving 
the control volume.
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Mass and Volume Flow Rates

The amount of mass flowing 
through a control surface per unit 
time is called the mass flow rate
and is denoted 
The dot over a symbol is used to 
indicate time rate of change.
Flow rate across the entire cross-
sectional area of a pipe or duct is 
obtained by integration

While this expression for       is 
exact, it is not always convenient 
for engineering analyses.  

c c

n c
A A
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Average Velocity and Volume Flow Rate

Integral in     can be replaced with 
average values of ρ and Vn

For many flows, variation of ρ is 
very small: 

Volume flow rate      is given by

Note:  many textbooks use Q to 
denote volume flow rate.
Mass and volume flow rates are 
related by 

m&

1

c

avg n c
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V V dA
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m Vρ= &&

(use V to denote avg velocity)
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Conservation of Mass Principle

The conservation of 
mass principle can be 
expressed as

Where       and        are 
the total rates of mass 
flow into and out of the 
CV, and dmCV/dt is the 
rate of change of mass 
within the CV.

CV
in out

dmm m
dt

− =& &

inm& outm&

(kg/s)
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Conservation of Mass Principle

For CV of arbitrary shape
rate of change of mass within the CV

 

net mass flow rate

mnet > 0 net outflow

Therefore, general conservation
of mass for a fixed CV is:

CV

CV

dm d dV
dt dt

ρ= ∫

( )net n
CS CS CS

m m V dA V n dAδ ρ ρ= = =∫ ∫ ∫
r r

& & �

( ) 0
CV CS

d dV V n dA
dt

ρ ρ+ =∫ ∫
r r
�

ρ dV

ρ dV + .

.

.

(see also RTT with B = m and b = 1)
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Steady—Flow Processes

For steady flow, the total 
amount of mass contained in 
CV is constant: mCV = constant.
Total amount of mass entering 
must be equal to total amount 
of mass leaving

For incompressible flows,
in out

m m=∑ ∑& &

n n n n
in out

V A V A=∑ ∑
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Mechanical Energy

Mechanical energy can be defined as the form of 
energy that can be converted to mechanical work 
completely and directly by an ideal mechanical device 
such as an ideal turbine.
Flow P/ρ, kinetic V2/2, and potential gz energy are forms 
of mech. energy (per unit mass):  emech= P/ρ + V2/2 + gz
Mechanical energy per unit mass change of a fluid 
during incompressible flow becomes 

In the absence of losses, ∆emech represents the work 
supplied to the fluid (∆emech > 0) or extracted from the  
fluid (∆emech < 0).

( )
2 2

2 1 2 1
2 12mech

P P V Ve g z z
ρ
− −

∆ = + + −
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Mechanical Energy

( )
2 2

2 1 2 1
2 12mech

P P V Ve g z z
ρ
− −

∆ = + + −

An ideal hydraulic turbine produces the same 
work per unit mass wturbine = gh whether it
receives water from the top or from the bottom
of the container (in the absence of irreversible
losses).

If no changes in flow velocity or elevation, the power 
produced by an ideal hydraulic turbine is proportional 
to the pressure drop of water across the turbine.
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Francis Hydraulic Turbine

Distributor, Francis runner and shaft
The choice of Francis, Kaplan or Pelton runners is based 
on the water mass flow rate and on the available ‘’head’’.
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Efficiency

Transfer of emech is usually accomplished by a rotating 
shaft: shaft work
Pump, fan, compressor:  receives shaft work (e.g., from 
an electric motor) and transfers it to the fluid as 
mechanical energy (less frictional losses)         fluid 
pressure is raised
Turbine:  converts emech of a fluid to shaft work.
In the absence of irreversibilities (e.g. friction), the 
mechanical efficiency of a device or process can be 
defined as 

If ηmech < 100% losses have occurred during conversion.

, ,

, ,

1mech out mech loss
mech

mech in mech in

E E
E E

η = = −
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Pump and Turbine Efficiencies

In fluid systems, we are usually interested in 
increasing/decreasing the pressure, velocity, 
and/or elevation of a fluid: pumps or turbines.
In these cases, efficiency is better defined as 
the ratio of supplied or extracted work vs. rate 
of increase in mechanical energy 

Overall efficiency must include motor or 
generator efficiency, ratio of power output to 
input (shaft power and electric power).

,

,

,

,

mech fluid
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shaft out
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mech fluid
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W
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mechanical energy of the fluid________________
mechanical energy input
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Turbine and Generator Efficiencies

Example:

Determine:
(a) overall efficiency of the turbine-generator,
(b) mechanical efficiency of the turbine, 
(c) shaft power supplied by the turbine to the generator, and
(d) the irreversible losses through each component.
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General Energy Equation

One of the most fundamental laws in nature is the 1st 
law of thermodynamics, which is also known as the 
conservation of energy principle: energy can be 
neither created nor destroyed during a process; it can 
only change forms

Falling rock, picks up speed 
as PE is converted to KE.
If air resistance is neglected, 
PE + KE = constant
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General Energy Equation

The energy content of a fixed quantity of 
mass (closed system)  can be changed 
by two mechanisms: heat transfer Q
and work transfer W.
Conservation of energy for a closed 
system can be expressed in rate form as

Net rate of heat transfer to the system   
(> 0 if the system is heated): 

Net power input to the system                 
(> 0 if work is done on the system):

, ,
sys

net in net in

dE
Q W

dt
+ =& &

,net in in outQ Q Q= −& & &

,net in in outW W W= −& & &
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General Energy Equation

Recall general RTT

“Derive” energy equation using B=E and b=e

Break power into rate of shaft work and pressure work (neglect 
viscous work, and that done by other forces such as electric, 
magnetic and surface tension)

( )sys
rCV CS

dB d bdV b V n dA
dt dt

ρ ρ= +∫ ∫
r r
�

( ), ,
sys

net in net in rCV CS

dE dQ W edV e V n dA
dt dt

ρ ρ= + = +∫ ∫
r r& & �

( ), , , , , , ,net in shaft net in pressure net in shaft net inW W W W P V n dA= + = − ∫
r r& & & & �

b .dV

dV .

.
A
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General Energy Equation

Where does expression for pressure work 
come from?
When piston moves down by ds under the 
influence of F=PA, the work done on the 
system is δWboundary=PAds.
If we divide both sides by dt, we have

For generalized system deforming under 
the influence of pressure:

Note sign conventions:  
is outward pointing normal

negative sign ensures that work done is 
positive when is done on the system.

pressure boundary piston
dsW W PA PAV
dt

δ δ= = =& &

( )pressure nW PdAV PdA V nδ = − = − ⋅
r r&

nr
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General Energy Equation

Moving integral for rate of pressure work to RHS 
of energy equation results in:

Recall that P/ρ is the flow work, which is the 
work associated with pushing a fluid into or out 
of a CV per unit mass.
For fixed CV pressure work can exist only where 
the fluid enters and leaves the CV.

( ), , ,net in shaft net in r
CV CS

d PQ W edV e e V n dA
dt

ρ
ρ

⎛ ⎞
+ = + + ⋅⎜ ⎟

⎝ ⎠
∫ ∫

r r&dV ρ. .
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General Energy Equation

As with the mass equation, practical analysis is 
often facilitated when  P/ρ + e is averaged 
across inlets and outlets of a fixed CV: 

Since e=u + ke + pe = u + V2/2 + gz

( )
, , ,

C

net in shaft net in
out inCV

c
A

d P PQ W edV m e m e
dt

m V n dA

ρ
ρ ρ

ρ

⎛ ⎞ ⎛ ⎞
+ = + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= ⋅

∑ ∑∫

∫

& & &

r r

2 2

, , , 2 2net in shaft net in
out inCV

d P V P VQ W edV m u gz m u gz
dt

ρ
ρ ρ

⎛ ⎞ ⎛ ⎞
+ = + + + + − + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ & & &

ρe dV

.

ρ e dV

. .

. .
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Energy Analysis of Steady Flows

2 2

, , , 2 2net in shaft net in
out in

V VQ W m h gz m h gz
⎛ ⎞ ⎛ ⎞

+ = + + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑& &
. .

For steady flow, time rate of change of the 
energy content of the CV is zero.
This equation states: the net rate of energy 
transfer to a CV by heat and work during steady 
flow is equal to the difference between the rates 
of outgoing and incoming energy flows with 
mass.
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Energy Analysis of Steady Flows

For single-stream devices, 
mass flow rate is constant. 
The steady flow energy 
equation per unit mass reads:

( )

( )

2 2
2 1

, , , 2 1 2 1

2 2
1 1 2 2

, , 1 2 2 1 ,
1 2

2 2
1 1 2 2

1 2 ,
1 2

2

2 2

2 2

net in shaft net in

shaft net in net in

pump turbine mech loss

V Vq w h h g z z

P V P Vw gz gz u u q

P V P Vgz w gz w e

ρ ρ

ρ ρ

−
+ = − + + −

+ + + = + + + − −

+ + + = + + + +

since emech,loss = u2 – u1 – qnet in, and
wshaft,net,in = wshaft,in – wshaft,out = wpump – wturbine
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Energy Analysis of Steady Flows

Divide by g to get each term in units of length

Magnitude of each term is now expressed as an 
equivalent column height of fluid, i.e., Head

2 2
1 1 2 2

1 2
1 22 2pump turbine L
P V P Vz h z h h

g g g gρ ρ
+ + + = + + + +
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The Bernoulli Equation

If we neglect piping losses, and have a system without pumps or turbines

This is Bernoulli’s equation
It can be derived in a formal way by using Newton's second law of  
motion (see text, p. 187). The formal derivation holds that in steady flow 
the sum of the kinetic, potential, and flow energies of a fluid particle is 
constant along a streamline, when compressibility and frictional effects 
can be neglected.  Also: total pressure along a streamline is constant.
3 terms above correspond to static, dynamic, and hydrostatic head 
(pressure). 

2 2
1 1 2 2

1 2
1 22 2
P V P Vz z

g g g gρ ρ
+ + = + + = C
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The Pitot Tube

The sum of static and dynamic 
pressure is called the stagnation 
pressure, i.e.

Pstag = P + ρ V2/2.  

It represents the pressure at a 
point where the fluid is brought 
to a complete stop isentropically.
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The Bernoulli Equation

The Bernoulli equation
is an approximate relation 
between pressure, 
velocity, and elevation 
and is valid in regions of 
steady, incompressible 
flow where net frictional 
forces are negligible.
Equation is useful in flow 
regions outside of 
boundary layers and 
wakes.stagnation streamline
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The Bernoulli Equation

Limitations on the use of the Bernoulli equation:

P + ρ V2/2 + ρ g z = constant (along a streamline)

Steady flow: d/dt = 0
Frictionless flow
No shaft work:  wpump= wturbine = 0
Incompressible flow:  ρ = constant
No heat transfer:  qnet,in = 0
Applied along a streamline (except when the flow is 
irrotational, in which case the constant  C is the         
same throughout the flow field, Chapt. 10)
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HGL and EGL

It is often convenient 
to plot mechanical 
energy graphically 
using heights.
Hydraulic Grade Line 

Energy Grade Line 
(or total energy)

PHGL z
gρ

= +

2P VEGL z
2g gρ

= + +
Frictional losses are present.
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HGL and EGL

Steep jump (or drop) in EGL and HGL appear whenever mechanical energy 
is added to (or removed from) the fluid by a pump (or a turbine).
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Examples and Applications

Bernoulli equation

Flow irrotational and incompressible; flow quasi-steady (water 
drains slowly); no frictional losses nor flow disturbances.
Exit velocity is given by   V2 = (2 g z1)1/2 (Torricelli equation) 
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Examples and Applications

Bernoulli equation

Siphon diameter = 4 mm; ρ gasoline = 750 kg/m3; no frictional losses.
Determine the time to siphon 4L of gasoline, and the pressure at
point 3 (careful of cavitation at point 3!).
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Examples and Applications

Bernoulli equation

When compressibility effects are important, the Bernoulli equation takes the 
form:

Simplify the relation above for 
(a) the isothermal expansion or compression of an ideal gas, and
(b) the isentropic flow of an ideal gas.

( ), , ,net in shaft net in r
CV CS

d PQ W edV e e V n dA
dt

ρ
ρ

⎛ ⎞
+ = + + ⋅⎜ ⎟

⎝ ⎠
∫ ∫

r r&dP/ρ + V2/2 + gz = constant (along a streamline) 
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Examples and Applications

Energy analysis of steady flows

( )
2 2

2 1 2 1
2 12mech

P P V Ve g z z
ρ
− −

∆ = + + −

( )
2 2

2 1 2 1
2 12mech

P P V Ve g z z
ρ
− −

∆ = + + −[ ]∆Emech,fluid = m
. .

Determine:
(a) the mechanical efficiency of the pump, and
(b) the temperature rise of water as it flows through

the pump, because of mechanical inefficiency. 
The specific heat of water is 4.18 kJ/(kg °C)
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Examples and Applications

Energy analysis of steady flows

Determine the mechanical power lost (and the head loss hL) 
while pumping water to the upper reservoir.

( )

( )

2 2
2 1

, , , 2 1 2 1

2 2
1 1 2 2

, , 1 2 2 1 ,
1 2

2 2
1 1 2 2

1 2 ,
1 2

2

2 2

2 2

net in shaft net in

shaft net in net in

pump turbine mech loss

V Vq w h h g z z

P V P Vw gz gz u u q

P V P Vgz w gz w e

ρ ρ

ρ ρ

−
+ = − + + −

+ + + = + + + − −

+ + + = + + + +
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