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Overview 

Fluid kinematics deals with the motion of 
fluids without considering the forces and 
moments which create the motion. 

Items discussed in this Chapter.  

Material derivative and its relationship to 
Lagrangian and Eulerian descriptions of fluid 
flow. 

Fundamental kinematic properties of fluid 
motion and deformation. 

Reynolds Transport Theorem. 
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Lagrangian Description 

Lagrangian description of fluid flow tracks the 
position and velocity of individual particles. 

Based upon Newton's laws of motion.  

Difficult to use for practical flow analysis. 
Fluids are composed of billions of molecules. 

Interaction between molecules hard to 
describe/model.  

However, useful for specialized applications 
Sprays, particles, bubble dynamics, rarefied gases. 

Coupled Eulerian-Lagrangian methods. 

Named after Italian mathematician Joseph Louis 
Lagrange (1736-1813). 
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Eulerian Description 

Eulerian description of fluid flow: a flow domain or control volume 
is defined by which fluid flows in and out. 

We define field variables which are functions of space and time. 

Pressure field, P = P(x,y,z,t) 

Velocity field, 

 

 

Acceleration field, 

 

 

These (and other) field variables define the flow field. 

Well suited for formulation of initial boundary-value problems 
(PDE's). 

Named after Swiss mathematician Leonhard Euler (1707-1783). 

     , , , , , , , , ,V u x y z t i v x y z t j w x y z t k  

     , , , , , , , , ,x y za a x y z t i a x y z t j a x y z t k  

 , , ,a a x y z t

 , , ,V V x y z t
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Example:  Coupled Eulerian-Lagrangian 

Method 

Forensic analysis of Columbia accident:  simulation of 

shuttle debris trajectory using Eulerian CFD for flow field 

and Lagrangian method for the debris.  
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Acceleration Field 

Consider a fluid particle and Newton's second law,  

 
 

The acceleration of the particle is the time derivative of 

the particle's velocity: 

  

However, particle velocity at a point is the same as the 

fluid velocity, 
 

To take the time derivative, chain rule must be used. 

particle particle particleF m a

particle

particle

dV
a

dt


      , ,particle particle particle particleV V x t y t z t

particle particle particle

particle

dx dy dzV dt V V V
a

t dt x dt y dt z dt

   
   

   

, t) 
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Acceleration Field  

Since 

 

 

 
 

In vector form, the acceleration can be written as 

 

 

 

First term is called the local acceleration and is nonzero only for 
unsteady flows. 

Second term is called the advective (or convective) acceleration 
and accounts for the effect of the fluid particle moving to a new 
location in the flow, where the velocity is different (it can thus be 
nonzero even for steady flows). 

   , , ,
dV V

a x y z t V V
dt t


   



particle

V V V V
a u v w

t x y z

   
   

   

, ,
particle particle particledx dy dz

u v w
dt dt dt

  

.  . 
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Material Derivative 

The total derivative operator d/dt is call the material 
derivative and is often given special notation, D/Dt. 

 

 

 

Advective acceleration is nonlinear:                           
source of many phenomena and primary              
challenge in solving fluid flow problems. 

Provides “transformation”' between                    
Lagrangian and Eulerian frames. 

Other names for the material derivative include:           
total, particle, Lagrangian, Eulerian, and       
substantial derivative.  

 
DV dV V

V V
Dt dt t


   


. . 
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Flow Visualization 

Flow visualization is the visual examination of 
flow-field features. 

Important for both physical experiments and 
numerical (CFD) solutions. 

Numerous methods 
Streamlines and streamtubes 

Pathlines 

Streaklines 

Timelines 

Refractive flow visualization techniques 

Surface flow visualization techniques 
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Streamlines and streamtubes 

A streamline is a curve that is 

everywhere tangent to the 

instantaneous local velocity vector. 

Consider an infinitesimal arc length 

along a streamline:  

 

 

By definition       must be parallel to 

the local velocity vector  

 
 

Geometric arguments result in the 

equation for a streamline 

dr dxi dyj dzk  

dr

V ui vj wk  

dr dx dy dz

V u v w
  
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Streamlines and streamtubes 

NASCAR surface pressure contours 

and streamlines 

Airplane surface pressure contours, 

volume streamlines, and surface 

streamlines  
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Streamlines and streamtubes 

A streamtube consists of a bundle of 

individual streamlines. Since fluid 

cannot cross a streamline (by 

definition), fluid within a streamtube 

must remain there. Streamtubes are, 

obviously, instantaneous quantities 

and they may change significantly with 

time. 

 
 

          In the converging portion of an     

          incompressible flow field, the 

          diameter of the streamtube must 

          decrease as the velocity   

          increases, so as to conserve 

          mass. 
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Pathlines 

A pathline is the actual path 
traveled by an individual fluid 
particle over some time period. 

Same as the fluid particle's 
material position vector  

 

 

Particle location at time t:  

 

 

 

Particle Image Velocimetry 
(PIV) is a modern experimental 
technique to measure velocity 
field over a plane in the flow 
field. 

 

      , ,particle particle particlex t y t z t

start

t

start

t

x x Vdt  
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Streaklines 

A streakline is the locus 

of fluid particles that have 

passed sequentially 

through a prescribed 

point in the flow. 

 

Easy to generate in 

experiments:  continuous 

introduction of dye (in a 

water flow) or smoke (in 

an airflow) from a point. 
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Comparisons 

If the flow is steady, streamlines, pathlines 

   and streaklines are identical. 

For unsteady flows, they can be very 

   different.  

Streamlines provide an instantaneous   

picture of the flow field 

Pathlines and streaklines are flow patterns 

that have a time history associated with them. 
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Timelines 

A timeline is a set of 

adjacent fluid particles 

that were marked at     

the same (earlier) instant  

in time. 

Experimentally, timelines 

can be generated using a 

hydrogen bubble wire: a 

line is marked and its 

movement/deformation   

is followed in time. 
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Plots of Data 

A Profile plot indicates how the 
value of a scalar property varies 
along some desired direction in 
the flow field. 

A Vector plot is an array of 
arrows indicating the magnitude 
and direction of a vector property 
at an instant in time. 

A Contour plot shows curves of 
constant values of a scalar 
property (or magnitude for a vector 
property) at an instant in time. 
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Kinematic Description 

In fluid mechanics (as in solid 
mechanics), an element may 
undergo four fundamental types 
of motion.  
a) Translation 

b) Rotation 

c) Linear strain 

d) Shear strain 

Because fluids are in constant 
motion, motion and deformation 
is best described in terms of 
rates  
a) velocity: rate of translation 

b) angular velocity: rate of rotation 

c) linear strain rate: rate of linear 
strain 

d) shear strain rate:  rate of shear 
strain 
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Rate of Translation and Rotation 

To be useful, these deformation rates must be expressed 

in terms of velocity and derivatives of velocity 

The rate of translation vector is described 

mathematically as the velocity vector.                                

In Cartesian coordinates: 
 

 

 

 

Rate of rotation (angular velocity)                                    

at a point is defined as the average                           

rotation rate of two lines which are                                 

initially perpendicular and that                                 

intersect at that point.  

V ui vj wk  
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Rate of Rotation 

 

In 2D the average rotation angle of the  

fluid element about the point  P  is 

                   w = (aa + ab)/2 
  

The rate of rotation of the fluid element 

about  P  is  

 

 
 

1 1 1

2 2 2

w v u w v u
i j k

y z z x x y
w

         
         

         

1 1 1

2 2 2

w v u w v u
i j k

y z z x x y
w

         
         

         
                       w   

In 3D the angular velocity vector is: 

a 
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Linear Strain Rate 

Linear Strain Rate is defined as the                                                 
rate of increase in length per unit length. 

In Cartesian coordinates 

 

  
The rate of increase of volume of a fluid                                       
element per unit volume is the volumetric                                        
strain rate, in Cartesian coordinates: 

 

 

  

     (we are talking about a material volume, hence the D) 

Since the volume of a fluid element is constant for an     
incompressible flow, the volumetric strain rate must be zero. 

 

, ,xx yy zz

u v w

x y z
  

  
  

  

1
xx yy zz

DV u v w

V Dt x y z
  

  
     

  
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Shear Strain Rate 

Shear Strain Rate at a point is defined as half the 

rate of decrease of the angle between two initially 

perpendicular lines that intersect at a point. 

positive shear strain 

negative shear strain 



Chapter 4:  Fluid Kinematics Meccanica dei Fluidi I                                     23 

Shear Strain Rate 

The shear strain at point P                                         

     is xy = - 
_ __

 aa-b  

 
 

Shear strain rate can be                           

expressed in Cartesian                            

coordinates as:  

1 1 1
, ,

2 2 2
xy zx yz

u v w u v w

y x x z z y
  

         
         

         

 1 

2 

d 

dt 
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Shear Strain Rate 

We can combine linear strain rate and shear strain 

rate into one symmetric second-order tensor called 

E: strain-rate tensor. In Cartesian coordinates: 

 
1 1

2 2

1 1

2 2

1 1

2 2

xx xy xz

ij yx yy yz

zx zy zz

u u v u w

x y x z x

v u v v w

x y y z y

w u w v w

x z y z z

  

   

  

       
    

        
         
                  

   
                    

E 
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State of Motion  

Particle moves from O to P in time D t 
 

Taylor series around O (for a small displacement) 

yields: 

 

 

 
 

The tensor   u  can be split into a symmetric part (E, the 

strain tensor) and an antisymmetric part W, the rotation 

tensor part as 

 

 
 

so that  
     
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Shear Strain Rate 

Purpose of our discussion of fluid element 
kinematics:   

Better appreciation of the inherent complexity of fluid 
dynamics  

Mathematical sophistication required to fully describe 
fluid motion 

Strain-rate tensor is important for numerous 
reasons.  For example, 

Develop relationships between fluid stress and strain 
rate.  

Feature extraction and flow visualization in CFD 
simulations. 
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Translation, Rotation, Linear Strain, 

Shear Strain, and Volumetric Strain 

Deformation of fluid elements (made visible with a tracer) during 

their compressible motion through a convergent channel; shear   

strain is more evident near the walls because of larger velocity     

gradients (a boundary layer is present there).  
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Strain Rate Tensor 

                  Example:  Visualization of trailing-edge turbulent  

                  eddies for a hydrofoil with a beveled trailing edge 

Feature extraction method is based upon eigen-analysis of the strain-rate tensor. 
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Vorticity and Rotationality 

The vorticity vector is defined as the curl of the velocity 
vector 

Vorticity is equal to twice the angular                       
velocity of a fluid particle:  
Cartesian coordinates 
 

 
 

    Cylindrical coordinates 

 

 
 

In regions where z = 0, the flow is called irrotational. 

Elsewhere, the flow is called rotational. 

Vz  

2z w

w v u w v u
i j k

y z z x x y
z

         
         

         
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z

 

       
        

         
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Vorticity and Rotationality 
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Comparison of Two Circular Flows 

Special case:  consider two flows with circular streamlines 

   2

0,

1 1
0 2

r
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z z z

u u r

rru u
e e e

r r r r
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z w
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 
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1 1
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r

r
z z z

K
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r
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    
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    

solid-body rotation line vortex 
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Circulation and vorticity 

 

Circulation: 
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Circulation and vorticity 

Stokes theorem: 

 

 

 

 

If the flow is irrotational 

everywhere within the 

contour of integration C 

then G = 0. 
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Reynolds Transport Theorem (RTT) 

A system is a quantity of matter of fixed identity. No 
mass can cross a system boundary. 

A control volume is a region in space chosen for study. 
Mass can cross a control surface. 

The fundamental conservation laws (conservation of 
mass, energy, and momentum) apply directly to 
systems. 

However, in most fluid mechanics problems, control 
volume analysis is preferred over system analysis (for 
the same reason that the Eulerian description is usually 
preferred over the Lagrangian description). 

Therefore, we need to transform the conservation laws 
from a system to a control volume. This is accomplished 
with the Reynolds transport theorem (RTT). 
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Reynolds Transport Theorem (RTT) 

 

There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis 
using infinitesimally small fluid elements) and the 
transformation from systems to control volumes (for integral 
analysis using large, finite flow fields). 
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Reynolds Transport Theorem (RTT) 

Material derivative (differential analysis): 

 

 
 

RTT, moving or deformable CV  (integral analysis):                 Vr = V - Vcs 

 
 

 

 

 

 

 

 

 

 

In Chaps 5 and 6, we will apply RTT to conservation of mass, energy, linear 
momentum, and angular momentum. 

 
Db b

V b
Dt t


  



Mass Momentum Energy Angular 

momentum 

B, Extensive properties m E 

b, Intensive properties 1 e 

mV

V

H

 r V

. 
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Reynolds Transport Theorem (RTT) 

 

 

 

 

RTT, fixed CV: 

 

 

 

 

 

 

 

 

 

 sys

CV CS

dB
b dV bV ndA

dt t
 


 

 
. 

V 

    Time rate of change of the property B of the closed system  

 is equal to (Term 1) + (Term 2) 
 

    Term 1:  time rate of change of B of the control volume 
 

    Term 2:  net flux of B out of the control volume by mass 

 crossing the control surface 


